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Abstract: Control of large-scale tower cranes is still an open research field. Due to their
lightweight structure and their large geometry structural deformations occur and need to be
considered for anti-sway feedback control. Especially, for self-erecting tower cranes no proper
model has been published yet. In this paper, a flexible multi-body model for this type of crane
is derived and a modal analysis is performed. The results are compared to measurement data
of an industrial tower crane.
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1. INTRODUCTION

Cranes are used to transport heavy goods hanging on
a rope. They are usually categorized according to their
degrees of freedom. The main categories are rotary and
overhead cranes. The latter have a trolley moving over
a horizontal girder, which is either mounted on a bridge
(bridge crane) or fixed on a mobile crane structure which
moves on floor level (gantry crane). Rotary cranes are
distinguished in tower cranes having a vertical tower and
horizontal jib and boom cranes having a sloped boom
which can be luffed. The payload can be hoisted by a rope
which is either suspended at the boom tip or on a trolley
moving along the horizontal jib of a tower crane.
Crane control aims at the reduction of payload pendulum
oscillations during operation to increase productivity and
safety. An overview of modeling and control of cranes,
which are in general underactuated machines, is given by
Abdel-Rahman et al. (2003) and Ramli et al. (2017). Most
publications address overhead cranes whose dynamical
behavior is typically modeled as a single or double pen-
dulum with planar motion of the rope suspension point.
In comparison, control of rotary cranes is more difficult
because the rotation of a jib or boom respectively yields
nonlinear kinematics. Nevertheless, many different control
approaches of boom and tower cranes are analyzed using
rigid crane models, e.g. open-loop feedforward control by
Vaughan et al. (2010), gain-scheduled state feedback con-
trol by Omar and Nayfeh (2003), flatness-based control
by Neupert et al. (2006), or model-predicitve control by
Arnold et al. (2005) and Graichen et al. (2010), or combi-
nations by Neupert et al. (2010).
Ju et al. (2006) analyzed the dynamical behavior of top-
slewing tower cranes applying the finite element method
and concluded that besides payload pendulum oscillations
the first few mode shapes of the crane structure are rel-
evant to describe the dynamical behavior. However, only
few publications deal with control of flexible tower cranes.
Takagi and Nisimura (1999), Jerman et al. (2004), Devesse
(2012), Schlott et al. (2016) modeled tower cranes using
rigid bodies with flexible links and Yang et al. (2007), Tin-
kir et al. (2011), and Rauscher and Sawodny (2017) used

Euler-Bernoulli-beams to consider elastic jib deformations.
The publication by Yang et al. (2007) led to discussions
about controversial assumptions commented by Zrnić and
Bošnjak (2008). Most investigations on control of rotary
cranes are made on scaled laboratory test rigs and pub-
lications about industrial cranes are very rare as pointed
out by Ramli et al. (2017). To the best of the authors’
knowledge, only the publication by Rauscher and Sawodny
(2020) shows control design and measurement results for
an industrial tower crane.
Tower cranes are distinguished in top-slewing and bottom-
slewing cranes depending on the slewing drive’s position.
The latter are typically called self-erecting cranes. Both
types of tower cranes have different geometry and dy-
namical behavior. Since existing tower crane models do
not describe the geometry of self-erecting tower cranes,
either because they are derived to control laboratory tower
cranes with simpler geometry or because they describe top-
slewing tower cranes, according to the author’s knowledge,
no proper dynamical model for control of self-erecting in-
dustrial tower cranes with elastic structure was published
until today. The authors assume that the consideration of
elastic deformations is essential for anti-sway control of
all types of industrial tower cranes. Therefore, a proper
dynamical model for self-erecting tower cranes is derived
in this paper and validated using experimental data of an
industrial crane.
The equations of motion are derived in Section 2 and
the required model parameters are discussed in Section 3
including an parameter optimization. The dynamical be-
havior of the elastic crane structure is analyzed in Section 4
and the results are compared to measurement data of an
industrial tower crane. Finally, a conclusion is given in
Section 5.

2. MODELING

We focus on bottom-slewing tower cranes with elastic
structure. Bottom-slewing means that the slewing drive’s
position is at the bottom of the tower. Typically, the
entire crane is located on a platform which is driven by
an asynchronous motor and thus the geometry differs
significantly from top-slewing tower cranes, which have
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Fig. 1. Model of the self-erecting tower crane.

a rotating jib and a fixed tower. Additionally, the tower
and jib of a bottom-slewing tower crane are often slightly
sloped and the tower’s longitudinal axis is not identical
to the rotational axis as it is the case for a top-slewing
crane with a vertical tower. Whereas the counter weight is
positioned at the crane platform for bottom-slewing tower
cranes, top-slewing cranes usually have a counter-jib. It is
clear, that the differences in geometry will lead to different
dynamical behavior.
The resulting model of the bottom-slewing tower crane is
shown in Fig. 1. The tower is represented by two rigid
bodies with heights htu and htl. The centers of mass are
at positions stu and stl. Whereas the lower part of the
tower is fixed at the crane platform, a (virtual) spherical
joint allows rotations of the upper part around all three
axes representing structural deformations. The elasticity is
considered by discrete springs with stiffnesses c. The guy-
ing, which is not modeled in detail and not shown in Fig. 1,
allows a rigid body motion of the jib in radial direction.
The elasticity of jib and guying is modeled by a discrete
spring. The jib’s center of mass is sj. Whereas the jib is
rigid in radial direction, jib’s deformation in slewing direc-
tion is modeled as bending of an Euler-Bernoulli-beam. In
general, tower cranes are more elastic in slewing direction
and therefore it is essential to model deformations in this
direction in more detail. Counterweight, trolley, hook and
payload are represented by point masses mcw, mtr, mh,
and mpl whereas the ropes and the platform masses are
neglected. The distance of the tower’s bottom point to
the rotation axis zn is r. It is tilted by the angle αt.
Jib’s tilt angle is αj and its center of mass is at stl. The
rope length l(t) is actuated whereas the lower rope with
length ldp is constant for each payload.

2.1 Kinematics

The mechanical degrees of freedom describing the dynam-
ical behavior of the elastic crane structure and pendulum
motions are

qm =[νz(t), νy(t), νx(t), β(t), v(xj, t), ϕx(t), ϕy(t),

φx(t), φy(t)]T,
(1)

with angles ν(t) describing the elastic deformations of the
tower, angle β representing bending of the jib in radial di-
rection (rigid-body motion) and v(xj, t) describes bending
of the jib in slewing/tangential direction. ϕx(t) and ϕy(t)
are the upper, and φx(t) and φy(t) are the lower pendulum

angles whereas xj is a spatial coordinate.
To derive the kinematic relations, four different Carte-
sian coordinate systems are introduced: the jib-fixed local
frame (Jx, coordinates: xj, yj, zj), the tower-fixed local
frame (Tx, xt, yt, zt), the platform-fixed rotating frame
(Rx, xr, yr, zr), and the Newtonian (inertial) frame (Nx
or just x, coordinates: xn, yn, zn) with arbitrary vector x,
see Fig. 1.
The transformations from the jib to the tower frame

Tx=Rz,νz

(
Rx,νxRy,(αj−αt)︸ ︷︷ ︸

:=Rjt

Jx+Ry,νyRx,νx

[
0
0
htu

])
, (2)

from the tower to the rotating frame

Rx = Ry,αt

(
Tx + [0, 0, htl]

T
)
, (3)

and from the rotating frame to the Newtonian frame

Nx = Rz,γ

(
Rx + [r, 0, 0]

T
)

(4)

are expressed using Cardan angles with the elementary
rotation matrices

Rx,θ =

[
1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

]
, (5)

Ry,θ =

[
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

]
, (6)

and

Rz,θ =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
. (7)

The center of mass of the tower’s lower part

Rrtl = Ry,αt
[0, 0, stl]

T
(8)

in the rotating frame and of its upper part

Trtu = Rz,νz Ry,νy Rx,νx [0, 0, stu]
T

(9)

in the tower frame are expressed using matrices (5), (6),
and (7). Points at the jib in the local jib frame are

Jrj = Ry,β [xj, v (xj, t) , 0]
T
. (10)

The trolley position xtr is determined by xj = xtr and is
used to calculate the hook position

Rrh = Rrtr −Rϕy
Rϕx

[0, 0, l]
T

(11)

in the rotating frame. It yields the payload position

Rrpl = Rrh −Rφy Rφx [0, 0, ldp]
T

(12)

and the counter weight’s position is

Rrcw = [−xcw, 0, zcw]
T
. (13)

The lower part of the tower is fixed at the crane platform
and its angular velocity is

Nωtl = [0, 0, γ̇]T (14)

whereas the tower’s upper part additionally rotates due to
elastic deformations which yields the angular velocity

Nωtu =

[
0
0
γ̇

]
+Rz,γRy,αt

([
0
0
ν̇z

]
+Rz,νz

([
0
ν̇y
0

]
+Ry,νy

[
ν̇x
0
0

]))
.

(15)
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The angular velocity of the jib is

Nωj =

[
0
0
γ̇

]
+Rz,γRy,αt

[ 0
0
ν̇z

]
+Rz,νzRy,νy

[
ν̇x
0
0

]
+Rjt

0

β̇
0

 .

(16)
2.2 Energy expressions

The mass inertia tensors of the jib

JΘj =

[
Θ1j 0 0
0 Θ2j 0
0 0 Θ3j

]
(17)

and of the tower

TΘtu =

[
Θ1tu 0 0

0 Θ2tu 0
0 0 Θ3tu

]
(18)

and

TΘtl =

[
Θ1tl 0 0

0 Θ2tl 0
0 0 Θ3tl

]
(19)

are determined in local coordinate frames. Using the
transformations (2), (3), and (4) yields the mass moments
of inertia of the jib

NΘj = RΘnj

JΘj RT
Θnj

(20)

with RΘnj
= Rz,γRy,αt

RjtRy,β of tower’s upper part
NΘtu = RΘntu

TΘtu RT
Θntu

(21)

with RΘntu = Rz,γRy,αtRz,νz Ry,νy Rx,νx and of tower’s
lower part

NΘtl = Rz,γ Ry,αt

TΘtl R
T
y,αt

RT
z,γ (22)

in the Newtonian frame. The total kinetic energy consists
of the translational part

Ttrans =
1

2

(
mcw ṙT

cw ṙcw +mtr ṙT
tr ṙtr +mh ṙT

h ṙh

+mpl ṙ
T
pl ṙpl +mtl ṙ

T
tl ṙtl +mtu ṙT

tu ṙtu

+

∫ lj

0

µj ṙT
j ṙj dxj

) (23)

and the rotational part

Trot =
1

2

(
ωT

tl Θtl ωtl + ωT
tu Θtu ωtu + ωT

j Θj ωj

)
, (24)

whereas the total potential energy consists of parts due to
gravitation

Ug = g

(
mcw rT

cw +mtr rT
tr +mh rT

h +mpl r
T
pl

+mtl r
T
tl +mtu rT

tu +

∫ lj

0

µj rT
j dxj

)
ez

(25)

and due to elastic deformations

Uel =
1

2

(
ctz ν

2
z + cty ν

2
y + ctx ν

2
x + cjy β

2
)

+
1

2

∫ lj

0

Ej Izz,j

(
∂2 v

∂x2
j

)2

dxj.

(26)

2.3 Discretization with Ritz method

The jib’s deformation in slewing direction v(x, t), which
is modeled by a cantilever beam, is discretized applying
Ritz’s method, see e.g. Hagedorn and DasGupta (2007).
The ansatz

v(xj, t) = Ψ1(xj) qv1(t) + Ψ2(xj) qv2(t) (27)

yields two degrees of freedom qv1(t) and qv2(t). Both
shape functions Ψ1 and Ψ2 have to satisfy the geometric
boundary conditions

Ψi(0) = 0 and
dΨi

dxj

∣∣∣∣
xj=0

= 0, i ∈ 1, 2. (28)

Additionally, they are assumed to satisfy the dynamic
boundary conditions

d2Ψi

dx2
j

∣∣∣∣∣
xj=lj

= 0 and
d3Ψi

dx3
j

∣∣∣∣∣
xj=lj

= 0, i ∈ 1, 2 (29)

and condition

Ψi(lj) = Ψli, i ∈ 1, 2, (30)

which is used to normalize shape functions Ψ1 and Ψ2.
This is necessary to compare them with eigenvectors e.g.
resulting from a finite element analysis (FEA). Besides
(28), (29), and (30), the conditions

d3Ψ1

dx3
j

∣∣∣∣∣
xj=x̄1lj

=0, Ψ2(x̄2lj)=0 and
d2Ψ2

dx2
j

∣∣∣∣∣
xj=x̄3lj

=0 (31)

are used to introduce additional parameters x̄1, x̄2 and x̄3.
Both shape functions

Ψ1(xj) =a11

(
xj

lj

)5

+ a12

(
xj

lj

)4

+ a13

(
xj

lj

)3

+ a14

(
xj

lj

)2
(32)

and

Ψ2(xj) =a21

(
xj

lj

)6

+ a22

(
xj

lj

)5

+ a23

(
xj

lj

)4

+ a24

(
xj

lj

)3

+ a25

(
xj

lj

)2
(33)

are chosen to be polynomial. The conditions (28)-(31) lead
to two matrix equations 20 12 6 2

60 24 6 0
60 x̄2

1 24 x̄1 6 0
1 1 1 1


a11

a12

a13

a14

 =

 0
0
0

Ψl1

 , (34)

and 
30 x̄4

3 20 x̄3
3 12 x̄2

3 6 x̄3 2
x̄6

2 x̄5
2 x̄4

2 x̄3
2 x̄2

2
30 20 12 6 2
120 60 24 6 0
1 1 1 1 1



a21

a22

a23

a24

a25

 =


0
0
0
0

Ψl2

 (35)

to calculate the coefficients in (32) and (33). The resulting
symbolical terms are quite lengthy and therefore omitted
here. The parameters x̄1, x̄2 and x̄3 in those terms are used
to fit the polynomials to shape functions resulting from a
FEA by optimization.

2.4 Equations of motion

The Lagrangian formalism is applied to derive the equa-
tions of motion. Lagrange’s equations of second kind read

d

dt

∂L

∂ q̇m
− ∂L

∂ qm
= 0 (36)

with the Lagrangian L = Ttrans + Trot − Ug − Uel,
which is the difference between total kinetic and potential
energy. Besides (1), the rotational angle of the crane
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platform γ(t), the trolley position xtr(t) and the rope
length l(t) are introduced, which are all driven by electrical
drives. The resulting equations of motion are quite lengthy
and therefore omitted in this paper. The matrix structure
of these equations is

M(qm) q̈m + k (qm,qa, q̇m, q̇a) = Buq̈a (37)

with qa = [γ xtr l]
T

. For simulations, the explicit form of
these equations is determined by inverting the mass ma-
trix M numerically. To analyze the dynamical behavior of
the crane structure, (37) is linearized around the position
of rest q0 calculated by

k (qm,qa,0,0) = 0. (38)

In q0 only the mechanical degrees of freedom νy and β in
radial direction are unequal to zero because all forces act
in tower-jib-plane. The linear equations of motion

M(q0)︸ ︷︷ ︸
Mlin

q̈lin +
∂k

∂q

∣∣∣∣
q̇=0,q0︸ ︷︷ ︸

Klin

qlin = Bu(q0)︸ ︷︷ ︸
Blin

q̈a (39)

with qT =
[
qm qT

a

]T
and qlin = q − q0 are derived

symbolically. These equations are used for the modal
analysis in Section 4 and can be used for linear control
design. Notice, that v(xj, t) is replaced by qv1 and qv2.
Since all coupling forces (Coriolis and centrifugal) are
nonlinear, the linear equations of motion are decoupled
and the motions are distinguished in radial (tower-jib-
plane) and slewing direction. A transformation yields the
first order differential equation[

q̇
q̈

]
=

[
0 I

M−1
lin Klin M−1

lin Dmod

] [
q
q̇

]
+

[
0

Blin

]
q̈a. (40)

Varying the modal damping ratios of the modes describing
the structural deflections, see Fig. 2 (b),(d),(f), and (g),
up to 0.1 in simulation, showed that small damping does
not have a significant influence on the natural frequencies.
Therefore Dmod = 0 is assumed for the modal analysis.

3. PARAMETRIZATION AND OPTIMIZATION

Tower and jib have piecewise constant parameters because
they consist of different segments which itself have con-
stant parameters. Crane manufacturers usually perform a
finite element analysis (FEA) with thousands of degrees
of freedom to verify structural durability. Therefore, it
is assumed that results from FEA are available to de-
termine the missing parameters. If this is not the case,
a FEA of tower and jib can be performed using Euler-
Bernoulli-beam elements and linear elements with two
nodes and linear shape functions can be used for (tower)
torsion. Moreover, the material and geometry data of the
different segments of tower and jib are available. In the
following, the area moments of inertia I, Young’s mod-
uli E, densities ρ, masses m, centers of mass, lengths l,
and cross-sectional areas A of the different segments are
assumed to be known. However, these parameters cannot
be used directly in the derived model. Whereas the inertia
parameters result from the geometry and densities, the
stiffnesses c and area moment of inertia Izz,j are more
challenging. Therefore, those parameters are determined
by numerical optimization using measurement data. In the
following, all model parameters are expressed by known
parameters.
The joint’s position between the two tower segments is

chosen to be htl = 0.272 lt, suggested by Dresig and Fidlin
(2014) for homogeneous Euler-Bernoulli-beams, although
tower’s parameters are only piecewise constant. The prin-
cipal mass moments of inertia of the tower

Θ1t =

Nt∑
i

ρt,i lt,i

(
Ixx,t,i +

At,i

3
l2t,i

)
, (41)

Θ2t =

Nt∑
i

ρt,i lt,i

(
Iyy,t,i +

At,i

3
l2t,i

)
, (42)

Θ3t =

Nt∑
i

ρt,i lt,i (Ixx,t,i + Iyy,t,i) , (43)

and of the jib

Θ1j =

Nj∑
i

ρj,i lj,i (Iyy,j,i + Izz,j,i) , (44)

Θ2j =

Nj∑
i

ρj,i lj,i

(
Iyy,j,i +

Aj,i

3
l2j,i

)
, (45)

Θ3j =

Nj∑
i

ρj,i lj,i

(
Izz,j,i +

Aj,i

3
l2j,i

)
(46)

depend on the known parameters of the Nt tower and
Nj jib segments. The mass moments of inertia of jib and
tower’s upper part are calculated in the jib and the tower
coordinate frames with respect to their origin, see Fig. 1.
For tower’s lower part the principal mass moments of
inertia are calculated with respect to the origin of the
rotating frame. The mass per length of the jib

µj(xj) =

(
12mj sj

l3j
− 6mj

l2j

)
xj +

(
4mj

lj
− 6mj sj

l2j

)
,

(47)
is chosen such, that the total mass mj and the center of
mass sj of the jib are described accordingly.
For optimization of the stiffness parameter initial values
are needed. Since the natural frequencies ω of the isolated
bodies (tower and jib) are available from FEA, they are
used to estimate these parameter. The stiffnesses of the
tower are

ctx = ω2
tx

(
Θ1tu +mtu s

2
tu

)
, (48)

cty = ω2
ty

(
Θ2tu +mtu s

2
tu

)
, (49)

and
ctz = ω2

tz Θ3tu. (50)

Jib’s stiffness in radial direction

cjy =

 1

ω2
jy

(
Θ2j +mj s2

j

) +
1

cg

−1

(51)

depends on the natural frequency for jib bending ωjy and
the stiffness of the guying cg, which typically consists of
rods and ropes. The first is assumed to be available from
FEA and the latter is calculated with the unit deforma-
tion method assuming a rigid crane structure and elastic
springs for the guying. Alternatively, the stiffness of the
most elastic rope or rod of the guying is a good guess.
The optimization variables in (32) and (33) are calculated
next. We decided to determine the zero x̄2 graphically plot-
ting the second eigenvector, which is calculated by a FEA
using Euler-Bernoulli-beam elements. The parameters x̄1
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(a) single pendulum (b) tower bending (c) double pendulum (d) jib motion

(e) single pendulum (f) tower torsion (g) tower bending (h) double pendulum

Fig. 2. Mode shapes of a self-erecting tower crane in radial (a-d) and slewing direction (e-h).

and x̄3 are determined by optimization using a nonlinear
least square algorithm minimizing

F =

Nfem∑
k

(Ψi (xk)− ṽ (xk))
2
, i ∈ 1, 2 (52)

where ṽ is the deformation of the node at position xk from
a finite element analysis of the jib using in total Nfem

nodes. The jib’s area moment of inertia

Izz,j =
qT

1 Kj,fem q1 + qT
2 Kj,fem q2∫ lj

0
Ej (Ψ′′1)

2
dxj +

∫ lj
0
Ej (Ψ′′2)

2
dxj

(53)

is calculated by the equivalence of elastic deformation
energy due to bending of the jib. Therefore, the stiffness
matrix Kj,fem and the first two eigenvectors q1 and q2

are calculated applying the finite element method. Finally,
experimental data is used for optimization of the stiffness
parameters c and Izz,j by solving

min

N∑
k=1

det
(
Klin − ω2

k,meas Mlin

)2
(54)

with measured frequencies ωk,meas using a nonlinear least
squares algorithm again. Thereby, only the natural fre-
quencies of the structure are considered and those of the
pendulum motions are neglected in the objective func-
tion (54). The optimization parameters are constrained
to avoid resulting stiffnesses which are unrealistic. Addi-
tionally, the payload mass mpl and the rope length l are
chosen large enough to avoid that the order of the frequen-
cies change for different stiffness values during numerical
optimization.

4. MODAL ANALYSIS AND VALIDATION

In the following, a modal analysis is applied and the
results are compared with measurement data. To deter-
mine the natural frequencies experimentally, an industrial
tower crane was equipped with inertia measurement units
located at jib’s and tower’s tip. The crane structure was
excited in radial direction either by lifting a payload from
the ground or by setting it down. Thereby, the payload’s
gravitation force acting on the crane structure changes
very fast, which leads to large structural vibrations. To
achieve an excitation in slewing direction, the tower crane

was rapidly stopped from a constant rotation speed using
the emergency stop. In both cases, the natural frequencies
are determined applying a Fast Fourier Transform to the
measured angular velocities and accelerations.
To calculate the natural frequencies and mode shapes
using the dynamical model, the ansatz qlin = q̂lin e

iωt

is substituted into (39). Assuming q̈a = 0 yields the
eigenvalue problem(

Klin − ω2
k Mlin

)
q̂k = 0 (55)

for k natural frequencies ωk and eigenvectors q̂k. Solving
this problem numerically leads to the mode shapes shown
in Fig. 2. The two mode shapes corresponding to the
highest natural frequencies are not shown. They mainly
describe bending of the jib in slewing direction and have
significant higher corresponding natural frequencies than
the other modes. However, those mode shapes are essential
to describe the trolley position on the jib accordingly.
Ignoring these mode shapes additionally yields too high
natural frequencies which cannot be compensated modify-
ing the stiffnesses.

In Fig. 3 and Fig. 4, the normalized frequencies 2πf
√

l+ldp
g

with ω = 2πf are plotted over the payload mass mpl

and the trolley position xtr respectively. The natural fre-
quencies strongly depend on the rope length l, payload
mass mpl, and trolley position xtr. The single pendulum
frequencies in radial and slewing direction mainly depends
on the rope length (for cranes with rigid structure, the
relation ω =

√
g
l holds). For elastic cranes, however,

these frequencies decrease with increasing payload masses
mpl and trolley positions xtr as simulations and measure-
ments show. Besides, the pendulum frequency in slewing
direction is lower than those in radial direction due to
greater elastic deformations of the crane structure in this
direction, see Fig. 3 and Fig. 4. The double pendulum
frequencies, see Fig. 2(c) and (h) depend significantly on
the ratio between hook mass mh and payload mass mpl as
well as on the rope lengths l and ldp. For heavy payloads,
the double pendulum frequency grows with increasing
payload mass mpl, whereas for small mpl similar to mh

the double pendulum frequency decreases with increasing
payload mass, see Fig. 3. Compared to the pendulum
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Fig. 3. Natural frequencies corresponding to the mode
shapes shown in Fig. 2 from simulation (blue lines)
and measurements (red squares) for trolley at the jib
tip.
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Fig. 4. Natural frequencies corresponding to the mode
shapes shown in Fig. 2 from simulation (blue lines)
and measurements (red squares) for a payload mass
of 600 kg.

frequencies, most structural frequencies keep almost con-
stant. The frequency corresponding to the mode shape
shown in Fig. 2(d) significantly decreases with increasing
payload mass and trolley positions. In the model, this
effect is overstated, see Fig. 4(d). This is assumed not to
be critical for control because this mode is hard to excite
by the drives. Additionally, the frequency corresponding
to the mode shape shown in Fig. 2(b) decreases for large
trolley positions, which is not described by the model, see
Fig. 4. Again, this is assumed not to be critical for control.

5. CONCLUSION

An elastic multi-body model of a bottom-slewing tower
crane is derived considering the geometry of an self-
erecting tower crane. The mode shapes and natural fre-
quencies are analyzed via simulation and the results are
compared with experimental data of an industrial tower
crane. It is shown that the frequencies strongly depend
on the rope length, trolley position, and payload mass.

Especially, the pendulum frequencies in slewing and radial
direction are different. This behavior cannot be described
by a rigid crane model whereas the derived model describes
these effects correctly. Although it is not assumed to be
critical for anti-sway control, it might be desirable to
model a crane specific guying in more detail to describe
the frequencies in radial direction more accurate. This
dynamical analysis of an industrial tower crane is part of
an ongoing research project. In the next step, a feedback
controller will be designed based on the derived multi-body
model.
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