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Abstract: The optimal control and operation of a Membrane Bioreactor (MBR) process by
Nonlinear Model Predictive Control (NMPC) is investigated in this work. First, the Benchmark
Simulation Model for MBR (BSM-MBR) provided by Maere et al. (2011) is introduced with
a detailed mathematical model. Then, an NMPC is designed by incorporating the nonlinear
process model of BSM-MBR to control the dissolved oxygen concentration at a certain level
while meeting input and other process constraints. The performance of the NMPC is evaluated
under both constant influent scenario and dynamic dry weather influent scenario. The simulation
results demonstrate that NMPC works better in the constant influent case compared to the
dynamic influent scenario.

Keywords: Nonlinear Model Predictive Control (NMPC), Membrane Bioreactor (MBR),
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1. INTRODUCTION

The Membrane Bioreactor (MBR) provides a good alter-
native technology for wastewater treatment. It combines
both the activated sludge process and membrane separa-
tion process, which provides better performance compared
to the traditional technologies in terms of wastewater qual-
ity, plant footprint, and wastewater treatment efficiency. It
has been widely used in municipal and industrial wastew-
ater treatment (Judd, 2010).

MBR processes are large complex systems that can be
modeled with nonlinear equations. Besides, the processes
have to be operated continuously while ensuring that
treated effluent meet the regulations imposed for discharge
or reuse. It is, therefore, essential to have advanced con-
trol strategies for the MBR to ensure continuous optimal
performance and high quality of the treated water. Many
studies investigated different control strategies for wastew-
ater treatment plants. However, the variable influent and
the intricacy of the biological and biochemical phenomena
prevent a good performance evaluation of the proposed
controllers in both simulation and practice. Nevertheless,
a Benchmark Simulation Model No.1 (BSM1) has been
proposed in Alex et al. (1999) for conventional wastewater
treatment plants, as a tool for the evaluation of controllers.
The benchmark is built on an accurate process model.
Furthermore, an extension of BSM1 to the Benchmark
Simulation Model for Membrane Bioreactor (BSM-MBR)
? This work has been supported by the King Abdullah Univer-
sity of Science and Technology (KAUST) Base Research Fund
(BAS/1/1627-0101) to Taous Meriem Laleg and the center of ex-
cellent for NEOM research at KAUST.

has been provided in Maere et al. (2011), which is a virtual
test platform for comparing different control strategies of
MBR. A comprehensive overview of the process control
of conventional wastewater treatment systems has been
proposed in Amand et al. (2013); Olsson (2012); Ferrero
et al. (2012); Olsson and Newell (1999).

Dissolved oxygen (DO) control is an important control
objective in the wastewater treatment plants (Olsson,
2012). Too little DO in the MBR would favor filamentous
bacteria Wilén and Balmér (1999) while supplying too
much DO would increase the energy cost. A Proportional
Integral (PI) controller has been proposed to control DO
concentration for BSM1 Alex et al. (1999) and BSM-MBR
Maere et al. (2011). An autotuning controller combined
with a Kalman filter that estimates the oxygen transfer
rate has been proposed to control the dissolved oxygen
level for conventional wastewater treatment plant Carlsson
et al. (1994). Moreover, a nonlinear DO controller was
developed in Lindberg and Carlsson (1996a) and Lindberg
and Carlsson (1996b), which improved the PI performance.
A multi-criteria control strategy with Takagi–Sugeno fuzzy
supervisor has been used to decrease the global cost
of activated sludge processes while keeping good perfor-
mance in Cadet et al. (2004). Recently, a neural network-
based adaptive Proportional-Integral-Derivative (PID) al-
gorithm has been designed for better DO control in Du
et al. (2018). Optimal control approaches have also been
investigated. For example, in Holenda et al. (2008) where
a Model Predictive Control (MPC) strategy has been
implemented for DO control in activated sludge systems
using a linear black-box state-space model identified from
the system input-output data. In this paper, a Nonlinear
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MPC (NMPC) of DO control is proposed for BSM-MBR
based on the system nonlinear mathematical model.

MPC is an algorithm that uses an explicit process model
to predict the future evolution of a plant. At each sampling
instant, the MPC algorithm solves a constrained optimiza-
tion problem to optimize the future behavior of the process
states by using the plant’s initial states and current states.
The optimization provides a series of optimal manipulated
variables, but only the first control input in this sequence is
applied. There are several advantages of MPC compared
to other control strategies. First, MPC can incorporate
different equality and inequality constraints. Second, com-
pared to conventional Linear Quadratic Regulator (LQR)
(Kwakernaak and Sivan, 1972), MPC can work for non-
linear systems without linearization. Third, MPC can be
implemented for Multiple Inputs and Multiple Outputs
(MIMO) systems easily, which is not the case for some
other controllers such as the PID controller. Finally, since
the optimization problem is solved online, the MPC can
capture system’s changes from the measurements at each
sampling time, and thus the control input can be adjusted
accordingly, which enhances the robustness of the MPC
algorithm.

Motivated by the above considerations, in this work, first,
we introduce the detailed mathematical model of BSM-
MBR. Then, we develop an NMPC control strategy based
on the proposed process model to maintain the DO con-
centration around a certain level, while meeting the input
constraints and other process constraints. In particular,
the upper limit concentrations of total nitrogen (TN) and
ammonia (NH3) in the effluent water are considered as
constraints in the NMPC to enhance the effluent water
quality.

The paper organizes as follows. In section 2, a brief review
of the BSM-MBR is given, then the bio-kinetic model,
detailed process equations of BSM-MBR are described.
Section 3 first defines the control problem formally, then
develops the NMPC controller for BSM-MBR to maintain
the DO concentration around a certain level while meeting
the input constraints and other process constraints. In
section 4, simulation results are presented with the initial-
ization of the system and influent data description. Finally,
section 5 draws some conclusions and some possible future
directions.

2. BSM-MBR REVIEW

A dynamic benchmark simulation model for MBR has
been proposed in Maere et al. (2011). The model has been
used to develop a platform to test different control algo-
rithms and evaluate the effluent quality and operational
cost.

Figure 1 gives the layout and flow scheme of the BSM-
MBR with all possible control inputs. There are five
activated sludge tanks with anoxic tank 1 and tank 2 and
aerobic tank 3 to tank 5 as shown in Fig. 1. Wastewater
influent enters the system from the first tank and is
withdrawn through the membrane filter in tank 5, which
is a membrane tank equipped with a membrane area
of 71,500 m2. The air is injected into tank 3 and 4
through fine bubble aeration to supply sufficient oxygen

to the process and is injected into tank 5 through coarse
bubble aeration for the mitigation of membrane fouling.
There are two recycle loops in the process: the sludge is
recycled from the second aerobic tank (tank 4) to the first
anoxic tank (tank 1) by internal circulation to enhance the
denitrification of the nitrate, and then recycled from the
tank 5 to the tank 3.

In this section, we will first introduce the bio-kinetic model
Activated Sludge Model No.1 (ASM1) (Henze et al., 1987),
which is adopted in the BSM-MBR process. The detailed
process equations of BSM-MBR will be given in the second
subsection.

2.1 Bio-kinetic model of BSM-MBR

Activated Sludge Model No.1 (ASM1) model is considered
as the bio-kinetic model of BSM-MBR, which describes
the dynamic behavior of heterotrophic and autotrophic
biomass, organic substrate, and nitrogen under anoxic
and aerobic environments. ASM1 considers 13 different
concentrations as system states with the following order:

c = [SI , SS , XI , XS , XBH , XBA, XP , SO, SNO, SNH ,

SND, XND, SALK ]

A detailed model description can be found in Henze et al.
(1987). The same bio-kinetic parameters are adopted in
the BSM-MBR. It is shown that the default parameter
values are sufficient (Verrecht et al., 2010).

2.2 System Equations of BSM-MBR

To derive the dynamic equations for BSM-MBR, we first
consider a single well-mixed tank reactor as shown in Fig.
2. The mass balance equation can be written as follows:

d

dt
(V c) =

Nin∑
i=1

Qin
i cini +

Nout∑
j=1

Qout
j coutj + q + V Sρ(c), (1)

where V is the reactor’s volume, which is considered
as constant in this case (i.e.

∑Nin

i=1 Q
in
i =

∑Nout

j=1 Qout
j ),

Nin and Nout are the numbers of flow rate of sludge
stream entering and leaving the reactor, respectively, Qin

i
i ∈ (1, 2, · · · , Nin), and Qout

j j ∈ (1, 2, · · · , Nout) are
the flow rates of sludge entering and leaving the reactor,
respectively, cini is the incoming sludge concentrations, q is
the material inputs that are not included in the sludge flow
into the reactor (e.g., air or carbon); ρ(c) is the vector of
reaction rates, S is the stoichiometric matrix, and we have
dim(Sρ(c))=dim(c). The stoichiometric matrix S and the
biological process rates ρ(c) are different for different bio-
kinetic models.

Based on the analysis above, Table 1 shows the nonlinear
dynamic equations for BSM-MBR derived from the mass
balance equations among five reactors. Nonlinearity comes
from the reaction rates ρ(c) of ASM1 and the material
input vector q. V1 to V5 are the volume of reactor 1 to
reactor 5, c1 to c5 are the system states for reactor 1 to
reactor 5, respectively. Qfeed and cfeed are the flow rate
and concentrations of influent, respectively. Qint and Qr

are the flow rate of two recycle streams, Qw is the flow rate
of waste stream. These model parameters can be found in
the first block of Table 2. The vector of input flow rates
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3.3 Processes and models used in this work

feed

effluent

1 2 3 4 5

carbon dosage flow rates
 Qec,1       Qec,2       Qec,3       Qec,4

QA,1       QA,2

biological air flow rates

membrane air flow rate
QA,3

Qint 

internal recycle flow rate
flow rate of the 

membrane tank recycle  Qr

Qw

sludge wastage rate 

material flow

signal flow

Figure 3.6: The BSM-MBR process (Maere et al., 2011) in its basic configuration, with

all possible control inputs.

two-day period starting at time 8.5 d. The storm weather scenario (c) includes two

short but intense rain events at time 8.8 d and 11.0 d.

The ASM1-concentrations SI , SS, XI , XS, XBH , SNO, SND, XND and SALK are con-

sidered as time-varying pollutant concentrations. Their values, and the total wastew-

ater feed rate, are specified as functions of time in the influent scenarios which are

part of the BSM-MBR model definition. All other concentrations in the wastewater

feed (XBA, SO, XP , and SNO) are zero.

The operating goals of the BSM-MBR plant are, firstly, to treat all incoming

wastewater such that the pollutant concentrations in the e✏uent remain below certain

limits at all times (see Table 3.1), and secondly, to minimize the operating cost. An

operating cost index (OCI) is defined as part of the model and considers the elec-

tricity cost of sludge pumps and compressors, the cost of disposing wasted sludge,

and the cost of carbon dosage. The e✏uent quality is modeled based on an E✏uent

Quality Index (EQI) which considers the discharge of nitrogen, NH+
4 , COD and BOD

in the e✏uent. (See Appendix B.1 for the equations of the operating cost and e✏uent

quality models, and Maere et al. (2011) for more details.) The OCI and EQI allow to

compare the performance of di↵erent controller strategies on the plant operation.

Manipulated and controlled variables

The manipulated variables of the BSM-MBR plant model are the biological air flow

rates QA,1, QA,2, the membrane air flow rate QA,3, the sludge recirculation flow rates

29

Fig. 1. BSM-MBR (Maere et al., 2011) layout and flow scheme, with all possible control inputs (Elixmann and Nopens,
2016).

BSM-MBR

M

T. Janus 3.1. PRINCIPLES OF MODELLING ACTIVATED SLUDGE SYSTEMS

tends to resemble one of a plug-flow and ultimately reaches one of ideal plug-flow when
N Ñ 8. The structure of the cascade of bioreactors can be adjusted by varying the
number, volumes and sequence of completely stirred tank reactors (CSTRs), recycle
rates, addition of sidestream tanks to represent dead-zones, introduction of by-passes
to represent short-circuits, etc.

Identification of the ‘tank-in-series’ model topology is usually carried out first by
identifying recirculation zones, dead-zones and short-circuits in the physical system
through tracer tests, i.e. the analysis of time response to pulse or step change in
the concentration of an introduced substance to the influent, and then by fitting the
response curve of the mathematical ‘tanks-in-series’ model to the measurements [193].
Practical experiences with identification of the structures of wastewater treatment plant
models using the ‘tanks-in-series’ approach often show that the structure of connections
between reactors changes with operating conditions (influent flow rate, aeration rate,
mixing, etc.) [3]. As tracer tests are usually carried out at just a single operating point,
the modelled RTD is very likely to differ from the RTD of the physical system upon
the change of the operating conditions. Despite of its limitations, this approach is at
present the only viable option for process engineers due to high computational demand
posed by hydrodynamic models, as already mentioned above.

Figure 3.1: Graphical representation of a cascade of N CSTRs.

Figure 3.2: Graphical representation of a variable (a) and constant (b) volume CSTRs.

Each bioreactor in Figure 3.1 and Figure 3.2 is described with a general mass
balance equation of the following form.

d

dt
pCV q “

ÿ
sources ´

ÿ
sinks (3.1)

where C denotes the vector of concentrations of various components in the bioreactor
and V is the liquid phase volume.

44

!""# $""# !%&'( $%&'(

$ = $(+)
- = constant

Fig. 2. Graphical representation of a well-mixed tank
reactor with constant active volume Janus (2013).

qi contains the carbon dosage rates qEC,i and the oxygen
transfer rates qO2,i:

(qi)j =

{
cECqEC,i, j = 2

0, otherwise
i ∈ {1, 2}, (2)

(qi)j =


cECqEC,i, j = 2

qO2,i, j = 8

0, otherwise
i ∈ {3, 4, 5}. (3)

The oxygen transfer rates qO2,i are associated to the air
flow rates QA,i through the aeration model (Maere et al.,
2011):
qO2,i = QA,i · ρA ·OAm,i ·AOTEi, (9)

AOTEi = yi · SOTEi

βSsat,av,cw
O,i (T )− (ci)8

Ssat,cw
O (20 ℃)

φT−20 ℃αiFi,

(10)
αi = e−ωi·XTSS,i , (11)

XTSS,i = iBM,TSS

7∑
k=3

(ci)k, (12)

Ssat,av,cw
O,i (T ) =

1

2
Ssat,cw
O (T )(

Pd

Patm
+
Oout,i

OA,v
), (13)

Pd = Patm + ρsludge · g · h, (14)

Oout,i =
OA,v(1−AOTEi)

1−OA,v ·AOTEi
, (15)

with i ∈ {3, 4, 5}. Second block of Table 2 gives the values
of all parameters used in Eq. 9 to Eq. 15.

The effluent concentrations ce can be calculated as follows:
(ce)j = γ(c5)j , j ∈ {3, 4, 5, 6, 7, 12},
(ce)j = (c5)j , j ∈ {1, 2, 8, 9, 10, 11, 13}. (16)

where γ is a modeling parameters related to the membrane
property. In this work, membrane is considered as an ideal
separator by taking γ = 0, which means only soluble
component can be went through the membrane.

In the membrane tank, the following mass balance equa-
tions must hold:

(Qfeed +Qr)c5 = (Qfeed −Qw)ce + (Qr +Qw)cr. (17)

Therefore, combining Eq. 16 and Eq. 17, the recycle
concentrations cr can be expressed as follow:

(cr)j =
(1− γ)Qfeed +Qr − γQw

Qr +Qw
(c5)j , (18)

j ∈ {3, 4, 5, 6, 7, 12},
(cr)j = (c5)j , j ∈ {1, 2, 8, 9, 10, 11, 13}. (19)

3. CONTROLLER DESIGN OF BSM-MBR

In this section, we will first give the control problem
formulation in the first subsection, in which the general
system model, control objective will be discussed. Then
the NMPC design for BSM-MBR will be introduced in
the section subsection.

3.1 Control problem formulation

As mentioned above, the objective of the NMPC design
is to maintain the DO concentration around a certain
level. In Maere et al. (2011), the DO control problem
is defined to keep the DO concentration in the second
aerobic reactor at 1.5 g.m−3 by using a PI controller. In
this work, the NMPC will be designed to achieve such
control objective by using the airflow rate of QA,2 as the
manipulated variable. Hence, in this scenario, we can treat
the DO concentration at the second aerobic reactor as the
output y(t) of the whole process, while the airflow rate
QA,2 as the input of the process u(t).

The compact states space representation of the considered
system can be written as follows:
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Table 1. Nonlinear dynamic equations for BSM-MBR

V1ċ1 = Qfeedcfeed +Qintc4 − (Qfeed +Qint)c1 + V1SASM1ρASM1(c1) + q1 (4)
V2ċ2 = (Qfeed +Qint)(c1 − c2) + V2SASM1ρASM1(c2) + q2 (5)
V3ċ3 = (Qfeed +Qint)c2 +Qrcr − (Qfeed +Qint +Qr)c3 + V3SASM1ρASM1(c3) + q3 (6)
V4ċ4 = (Qfeed +Qint +Qr)(c3 − c4) + V4SASM1ρASM1(c4) + q4 (7)
V5ċ5 = (Qfeed +Qr)c4 − (Qfeed −Qw)ce − (Qr +Qw)cr + V5SASM1ρASM1(c5) + q5 (8)

Table 2. BSM-MBR model and the membrane
fouling model parameters a: coarse bubble, b: fine

bubble.

parameter unit value
V1 · · · V5 m3 1500
cEC mg COD l−1 400
Qint m3 d−1 2000
Qr m3 d−1 2000
Qw m3 d−1 200
β - 0.95

F1 · · · F5 - 0.9a − 0.7b

g m s−2 9.81
OA,m - 0.232
OA,v - 0.21
Patm Pa 101325
ρA g m−3 1200

ρsludge kg m−3 1000
SOTE1···5 m−1 0.02a − 0.06b

T ℃ 15
y1 · · · y5 m 3.5a − 5b

h m 5
φ - 1.024

ω1 · · · ω5 m 0.05a − 0.083b

ż = Γ(z, Qfeed, cfeed, Qint, Qr, Qw, u)

y = Hz (20)
where z = [c1; c2; c3; c4; c5] ∈ Ω ∈ R65 consists of all
state variables of BSM-MBR; Γ(·) presents the nonlinear
behavior of the process; Qfeed and cfeed are the influent
flow rate and concentrations, respectively; Qint, Qr, and
Qw are the recycle flow rates and wastage flow rate,
respectively; u(t) is the manipulate variable of the process,
which refers to the air flow rate QA,2 of the second aerobic
reactor; y is the output of the process, which refers to
the dissolved oxygen concentration of reactor 4; H is the
corresponding output matrix.

3.2 NMPC design for BSM-MBR

The control objective of the NMPC designed for BSM-
MBR is to steer the DO level at the second aerobic zone
(tank 4) to the desired value while meeting input and other
process constraints. This is done by minimizing a quadratic
function that penalizes the deviation of the process output.
Specifically, the following optimization problem is solved
iteratively to drive the process output to the desired value:

min
u(t)∈S(∆)

∫ tk+N

tk

(ỹ(τ)− yr)TQc(ỹ(τ)− yr) (21a)

s.t. ˙̃z = Γ(z̃, Qfeed, cfeed, Qint, Qr, Qw, u) (21b)
ỹ = H z̃ (21c)
u ∈ U, ∀ t ∈ [tk, tk+N ) (21d)
z̃ ∈ Z, ∀ t ∈ [tk, tk+N ) (21e)
z̃(tk) = z(tk) (21f)

where S(∆) is the family of piece-wise constant functions
with sampling period ∆, N is the prediction horizon of
NMPC, and the weighting matrix Qc is a positive constant
since we only have one output in this case. In the NMPC
optimization problem (21), (21a) gives the quadratic cost
function, which minimizes to drive the system output
to the desired value; constraint (21b) and (21c) refer to
the predicted model that used to predict the behavior of
the system within the predicted horizon, where z̃ is the
predicted state trajectory of the process under the input
trajectory u(t) calculated by the NMPC optimization
problem; due to the physical constraints on the actuators,
the manipulated input u(t) is restricted to be in a convex
set overN∆ constraint (21d); (21e) is the constraint on the
process states; (21f) denotes the initial condition at time
instant tk. In NMPC, only the first control action u(tk)
of the NMPC (21) is implemented, and then the NMPC
horizon is rolled again over the next time step. Specifically,
if we denote the optimal solution to (21) as u∗NMPC(t),
throughout the sampling period (i.e., tk → tk+1), the first
control action is applied in a sampled-and-hold fashion:

u(t) = u∗NMPC(t|tk), ∀t ∈ [tk, tk+1). (22)
In this work, the input of the system is constrained as fol-
lows: U = {u(t) ⊂ S(∆)|0 Nm3h−1 ≤ u ≤ 7000Nm3h−1}
Maere et al. (2011). Throughout the sampling period, the
following system process constraints are incorporated:

TNe ≤ 18 g N m−3, (23)
NH3e ≤ 4 g N m−3. (24)

which is the effluent upper limit proposed for the BSM-
MBR (Maere et al., 2011; Elixmann and Nopens, 2016),
TNe and NH3e are calculated as follows:
TNe = (ce)10,

NH3e =

12∑
j=9

(ce)j + iXB(

6∑
k=5

(ce)k) + iXP ((ce)3 + (ce)7).

where ce is defined in Eq. 16, iXB and iXP are the
stoichiometric parameters of ASM1.

4. SIMULATION RESULTS AND DISCUSSION

In this section, the dynamic closed-loop simulation results
of BSM-MBR will be given. In the first two subsections,
the system initialization and influent data used in the
simulation will be introduced briefly. Then we provide
the simulation results of BSM-MBR under the proposed
NMPC scheme.

4.1 System Initialization

In Maere et al. (2011), the simulation procedure is pro-
vided, in which the initial condition for closed-loop simu-
lation is obtained from open-loop steady-state simulation,
which is shown in Table 3.
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4.2 Influent Data

As mentioned above, we will simulate the BSM-MBR
process under both constant influent and dynamic influent.
For the dynamic influent, simulated influent data are avail-
able online (http://iwa-mia.org/benchmarking/#BSM1)
in three two-week files derived from real operating data
corresponding to three different weather situations: dry
weather, rainy weather and stormy weather, respectively
(Vanhooren and Nguyen, 1996; Copp, 1999). Here we
choose the dry weather scenario as the dynamic influent.
In the data-set, the time is given in days, the flow rate is
given in (m3 d−1) and the unit of concentrations are given
in (g m−3) with the following order:
[ Time, SI , SS , XI , XS , XBH , XBA, XP , SO, SNO,

SNH , SND, XND, SALK , Qfeed ],

in which:
SO = 0 g COD m−3,

XBA = 0 g COD m−3,

SNO = 0 g N m−3,

XP = 0 g COD m−3,

SALK = 7 mol m−3.

Table 4 shows the flow-weighted average influent compo-
sitions for BSM-MBR in dry weather condition, which are
calculated as follows:

Qav =

∫ tf
t0
Q(t)dt

tf − t0
, (25)

cav,k =

∫ tf
t0
Q(t)c(t)kdt∫ tf
t0
Q(t)dt

, k ∈ {1, 2, · · · , 13}. (26)

The constant influent was chosen as the flow-weighted av-
erage influent composition under dry weather conditions.

Fig. 3 to Fig. 5 show the trajectories of the influent flow
rate, total nitrogen, and ammonia in dry weather condi-
tion, respectively. It is obvious that wastewater influent
does not satisfy the effluent water quality.

4.3 Simulation Results

In this section, we apply the NMPC scheme proposed
for the BSM-MBR process and compare the closed-loop

Table 3. Initial condition for closed-loop simu-
lation (steady-state open loop BSM-MBR re-

sults for reactor zones 1 to 5.)

Reactors 1 2 3 4 5
SI 30.00 30.00 30.00 30.00 30.00
SS 2.25 1.31 0.85 0.77 0.67
XI 2678.62 2678.62 3554.43 3554.43 4722.18
XS 82.52 76.19 65.13 59.35 67.25
XBH 2699.15 2697.86 3573.19 3572.44 4739.59
XBA 233.30 233.07 311.13 311.33 413.41
XP 1781.17 1782.50 2372.10 2373.11 3155.87
SO 0.01 0.00 2.46 2.19 8.11
SNO 4.09 1.48 10.08 11.54 12.57
SNH 8.57 9.22 1.58 0.33 0.07
SND 1.08 0.68 0.65 0.63 0.58
XND 5.38 5.16 4.73 4.40 5.14
SALK 5.07 5.30 4.14 3.95 3.85

Table 4. Flow-weighted average influent for
BSM-MBR in dry weather condition

Component Value Component Value
SI 30.00 SS 69.50
XI 51.20 XBH 28.17
SNH 31.56 SND 6.95
XND 10.59 SALK 7
Qav 18446.33
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Fig. 3. Trajectory of influent flow rate under dry weather
condition.
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Fig. 4. Trajectory of TN at influent under dry weather
condition.
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Fig. 5. Trajectory of NH3 at influent under dry weather
condition.

performance under both constant influent and dry weather
influent.

Throughout the simulation, the MATLAB built-in func-
tion called ode15s with an integration step size of h =
0.01 was used to simulate the BSM-MBR process. This
numerical integration method is developed to solve stiff
differential equations (Shampine et al., 1999), which is
the case for the BSM-MBR process model (Janus, 2013).
The optimization problem of Eq. 21 was solved by the
MATLAB built-in function fmincon. The parameters of
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Fig. 6. Trajectory of the dissolved oxygen at second aerobic
reactor under the design of NMPC (solid blue line
is under constant influent condition, solid red line is
under dry weather condition), and the reference value
(dashed yellow line).
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Fig. 7. The air flow rate u(t) profile under the design of
NMPC (blue line is under constant influent condition,
red line is under dry weather condition).

the NMPC used in the simulations are presented in Table
5.

Table 5. Parameters of NMPC

Parameters Value
Prediction Horizon N 5

∆ 0.1 d
h 0.01 d
tf 7 d
Qc 10

Fig. 6 to Fig. 9 gives the simulation results under the
design of the NMPC of Eq. 21 with both constant and
dynamic influents. Specifically, Fig. 6 shows the DO con-
centration of the second aerobic reactor, from which one
can observe that after around six sampling periods (i.e.,
t = 0.6 d), the DO concentration achieves the desired
value and stay there for the rest simulation period due to
the constant influent. However, for the dynamic influent
scenario, due to the periodic behavior of the influent,
the DO concentration shows a similar periodic behavior
around the reference value. A similar conclusion can be
obtained from Fig. 7, in which the air flow rate QA,2

increases first, then stays around some steady-state for the
rest simulation period under constant influent condition,
while the process inputQA,2 has the periodic profile within
the input constraints under dynamic weather condition.
TN and NH3 concentrations in the effluent are shown in
Fig. 8, and Fig. 9, respectively. It is clear that constraints
Eq. 23 to 24 are satisfied under both influent scenarios.
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Fig. 8. Trajectory of TN at effluent under the design of
NMPC (solid blue line is under constant influent con-
dition, solid red line is under dry weather condition),
and its upper limit (dashed yellow line).
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Fig. 9. Trajectory of NH3 at effluent under the design of
NMPC (solid blue line is under constant influent con-
dition, solid red line is under dry weather condition),
and its upper limit (dashed yellow line).

Table 6 gives the control performance Integral of Absolute
Error (IAE), Integral of Squared Error (ISE), and variance
of error of NMPC under two different influent scenarios, re-
spectively. Due to variant influent load in the dry weather
scenario, the closed-loop control performance is worse than
the case in the constant influent scenario as expected.

Table 6. Control performance of NMPC under
different influent scenarios

Index Constant influent Dry weather
IAE 0.0903 4.4161
ISE 0.0399 5.0484

Variance of error 0.0091 0.6433

5. CONCLUSION

This paper proposed an NMPC design for MBR processes
based on the nonlinear dynamic model of BSM-MBR.
The NMPC aims to keep the dissolved oxygen SO4

at
the desired value by minimizing a quadratic cost function
while meeting the input constraints and other process
constraints. Two influent scenarios are investigated in
this work: constant influent and dry weather influent. As
expected, the constant influent is easier for NMPC to
control due to its invariant influent nature.

As for future investigations, one can consider solving
different control problems by using MPC algorithms, such
as minimize the operation cost while ensuring the effluent
water quality. In addition, states estimation is critical for
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the MBR process and MPC algorithm, since not all the
system states are measurable. This technique may also
help to detect fouling events, which is a critical issue in
the MBR process.
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