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Abstract: In Nicolau et al. [2018], the authors proposed a solution (in the form of an
algorithm that constructs a causal and bounded feedback) for the input-output decoupling
and linearization problem for the particular class of two-input two-output time-varying delay
systems. In this paper, we generalize that algorithm to the multi-input multi-output case. The
main idea is to introduce, at each step when the input-output decoupling is not possible, an
artificial delay for the inputs that appear ”too early” in the system.
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1. INTRODUCTION

Input-output decoupling and linearization is an important
tool in nonlinear control theory which aims to construct a
feedback transformation for which the input-output map
of the feedback modified systems is linear. This problem is
well know for nonlinear control systems without delays and
has been extended to nonlinear control systems with mul-
tiple delays Germani et al. [1998], Germani et al. [2003],
Marquez-Martinez and Moog [2004], Oguchi and Watan-
abe [1998], Oguchi et al. [2002], see also Califano et al.
[2013], Garcia-Ramirez et al. [2016]. These previous works
consider constant time-delays. Motivated by applications,
the class of time-varying delay systems has been studied
mainly from a stability analysis point of view (see, e.g.,
Fridman [2014], Germani et al. [2000] and the references
therein), but the problem of input-output decoupling and
linearization for that class of systems is still largely open.
Therefore, the goal of this paper is to study the input-
output decoupling and linearization for nonlinear time-
varying delay systems.

The main difficulty when dealing with such systems is
that the linearizing feedback has to be constructed from
a relation that involves recursively the input and its
successive delays. Therefore, the constructed control may
not be bounded nor causal. In Nicolau et al. [2018], the
authors considered the particular case of two-input two-
output time-varying delay systems and proposed, for that
class of systems, a solution (in the form of an algorithm
constructing a causal and bounded feedback) for the input-
output decoupling and linearization problem, yielding a
maximal loss of observability (see Isidori and Moog [1988]
for that notion). Related results for the single-input single-
output case can be found in Haidar et al. [2019]. In this
paper, we generalize the algorithm of Nicolau et al. [2018]
to the multi-input multi-output case and similarly to the
aforementioned paper, we adopt the so-called standard
solution implying the maximal loss of observability. This
solution is classical for systems without delays. However,

when applied to time-delay systems, it may provide a non
causal or non bounded feedback transformation.

The algorithm is constructive and gives sufficient condi-
tions for designing a causal and bounded linearizing feed-
back. As for the two-input two-output case, the main idea
is to introduce an artificial delay for the inputs that appear
”too early” in the system (see Descusse and Moog [1985],
Nijmeijer and Respondek [1988] for a related method for
nonlinear systems without delays where the inputs that ap-
pear ”too early” are precompensated). The main difficulty
is that, contrary to the two-input two-output case, where
only one control could show up before the second one, for
the general case, at each new iteration, several different
controls may appear ”too early”. The endpoint criterion
of the algorithm is more complicated than that proposed
in Nicolau et al. [2018]. In fact, the main difficulty that
still remains to be solved is that we are not able to give a
upper bound for the number of iterations. The algorithm
stops if we succeed to construct a new object with suitable
properties allowing the construction of a bounded and
causal feedback or after a maximal number of iteration
that has to be defined by the user The paper is organized
as follows. In Section 2, we give some notations and defini-
tions. In Section 3, we discuss the input-output decoupling
algorithm, which is the main result of the paper. Finally,
we illustrate it by an example in Section 4.

2. DEFINITIONS AND PROBLEM STATEMENT

Throughout, Rn denotes the n-dimensional Euclidean
space with norm ‖ · ‖ and R+ the set of non-negative
real numbers. For a real matrix A = (aij), 1 ≤ i ≤ n,
1 ≤ j ≤ m, we define ‖A‖sup = supij(|aij |).
Definition 1. (δi-operator). Let θ : R 7→ [0, θ̄] be a suffi-
ciently smooth bounded time-varying delay function sup-
posed to be known and satisfying dθ

dt < 1. Denote by θ̄ > 0
its supremum. Consider the recursive relation

τi+1 = τi − θ ◦ τi, for i ≥ 0, where τ0(t) = t.
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We denote by δi the time delay operator that shifts the
time from t to τi(t), that is

δ0σ(t) = σ(t) and δiσ(t) = σ(τi(t)), for i ≥ 1,

where σ is defined on an interval containing [t − iθ̄, t].
Applied on functions composition, resp., on functions prod-
uct, the delay operator δi acts as

δiϕ(t, σ(t)) = ϕ(τi, δ
iσ(t)) = ϕ(τi, σ(τi)), for i ≥ 0, (1)

resp., as

δiϕ(t) · σ(t) = (δiϕ(t)) · (δiσ(t)), for i ≥ 0, (2)

i.e., the delay spreads to the right. If parentheses are
present, i.e., we have (δiϕ(t)) · σ(t), then the delay affects
only the first function (here ϕ).

Notation 1. Let q be the maximal order of the time delay
operator acting on a map σ. Then the δ-operator denotes

δσ(t) = (δ0σ(t), . . . , δqσ(t)). (3)

We study input-output decoupling of multi-input multi-
output nonlinear time-varying delay systems of the form ẋ(t) = f(δx(t), t) +

m∑
j=1

gj(δx(t), t)uj(t),

yi(t) =hi(δx(t), t), 1 ≤ i ≤ m,
(4)

where t ≥ 0, with initial condition

x(t) = ζ(t), for all t ∈ [−µ, 0], (5)

where x ∈ Rn and u ∈ Rm, all vector fields f, gj :

Rn(q+1) × R+ → Rn and functions hi : Rn(q+1) × R+ → R
are supposed sufficiently smooth. The integer q corre-
sponds to the maximal delay order explicitly involved
in f , gj and hi, for 1 ≤ i ≤ m, (this does not mean that all
of them depend explicitly on δqx(t)). Recall that by (3), we
have δx(t) = (δ0x(t), . . . , δqx(t)). The initial condition ζ
belongs to the Banach space of continuous functions from
[−µ, 0] into Rn, where µ is a sufficiently large integer, and
the input u(·) is a Lebesgue measurable function. We
also assume that system (4) is forward complete guar-
anteeing the existence of solutions on [−µ,+∞) for each
determined u. Moreover, we suppose that all outputs are
independent (i.e., there is no nontrivial relation between
the outputs and the delayed outputs).

Remark 1. Our results can be generalized to general time-
varying delay systems of the form ẋ(t) = f(δx(t), t) +∑m
j=1

∑s
`=1 g

`
j(δx(t), t)δ`uj(t), with s the maximal order

of delays involved in the controls, but considering that
general form would considerably complicate the notations.

In the case of the input-output decoupling problem, the
output is connected to the control only indirectly through
the state. To achieve input-output decoupling and lin-
earization, we must find a direct relation between the
inputs and the outputs of the system. In general, this is
done by successive differentiation of the outputs hi until
the inputs appear in the resulting derivative equations. An
important tool when differentiating is the Lie derivative,
see Haidar et al. [2019] for its definition in the context
of time-varying delay, but we will not use that notion
here (even if what follows is related). Similarly to Nicolau
et al. [2018] (but without using the Lie derivative), for each
output we define its relative degree and then construct the
decoupling matrix of the system which will be seen as a
polynomial of the δ`-operator with matrix coefficients.

The derivative of hi, for 1 ≤ i ≤ m, can be expressed as:

dhi(δx(t), t)

dt
=
∂hi(δx(t), t)

∂t
+

q∑
`=0

[
∂hi(δx(t), t)

∂δ`x
· τ̇`(t)·

δ`

f(δx(t), t) +

m∑
j=1

gj(δx(t), t) · uj(t)


yielding

ḣi =
∂hi
∂t

+

q∑
`=0

∂hi
∂δ`x

·τ̇`·(δ`f)+

m∑
j=1

q∑
`=0

∂hi
∂δ`x

·τ̇`·(δ`gj)·(δ`uj),

where ḣi = dhi

dt and, in order to simplify the nota-
tion, the arguments δx(t), t have been omitted. Recall
that q denotes the maximal delay order explicitly in-
volved in system (4) and observe that when computing
the time-derivative of hi, we introduce, via the terms

δ`
(
f +

∑m
j=1 gjuj

)
, new delays that affect both x and u

variables. Therefore, in order to compute ḣi for all t ≥ 0,
in addition to (5), we also need an initial condition on u:

u(t) = ψ(t), for all t ∈ [−µ, 0]. (6)

We suppose that ζ and ψ are known on a sufficiently
large interval [−µ, 0] and that they satisfy the differential
equations of (4) on that interval. The number of new

delays introduced in the derivative ḣi is actually related
to the maximal delay order appearing in hi only. Remark
also that, even if hi does not explicitly depend on t, i.e.,
hi = hi(δx(t)), the derivative ḣi does depend on t (through
the terms τ̇`(t)), explaining why we considered from the
beginning non autonomous systems.

If ḣi does not involve explicitly the control u or any delayed
control δ`u, for ` ≥ 1, i.e., ḣi is a function of (δx(t), t)
only, we repeat recursively the above differentiation until u
or δ`u, for some ` ≥ 1, appear. The smallest integer ρi such

that h
(ρi)
i depends explicitly on u or δ`u, for some ` ≥ 1, is

called the relative degree of the output hi. More precisely:
∂h

(s)
i

∂δ`uj
≡ 0, for all 1 ≤ s ≤ ρi − 1, 1 ≤ j ≤ m, ` ≥ 0,

∂h
(ρi)
i

∂δ`uj
6= 0, for some 1 ≤ j ≤ m and some ` ≥ 0.

Assumption 1. We work locally around a given initial
condition and suppose that the system evolves far from
singularities. So when we say that a function does not
vanish, we mean that it is nonzero for any t ≥ 0 (or any t
in the domain of validity of (4)) implying, in particular,
that relative degrees and ranks are constant with respect
to time.

Let d denote the maximal delay order of u involved in

the derivatives h
(ρi)
i , for 1 ≤ i ≤ m, (recall that when

computing h
(s+1)
i by differentiating h

(s)
i , we introduce as

many new delays as in h
(s)
i ). According to our notations,

we have d ≤ q × (max1≤i≤m ρi). Denote

αi(δx(t), t) =
∂h

(ρi−1)
i

∂t
+

d∑
`=0

∂h
(ρi−1)
i

∂δ`x
· τ̇` · δ`f, 1 ≤ i ≤ m,

and

a`ij(δx(t), t) =
∂h

(ρi−1)
i

∂δ`x
· τ̇` · δ`gj , 1 ≤ i, j ≤ m, 1 ≤ ` ≤ d.

With that notations, for 1 ≤ i ≤ m, we have
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h
(ρi)
i = αi(δx(t), t) +

m∑
j=1

d∑
`=0

a`ij(δx(t), t)δ`uj(t),

where, according to the definition of the relative degree
and of the integer d, for each 1 ≤ i ≤ m, at least
one function a`ij does not vanish, and there exist integers

1 ≤ i, j ≤ m such that adij(δx(t), t) 6= 0. For 1 ≤ i, j ≤ m,
define the δ-polynomials

aij(δ] =

d∑
`=0

a`ij(δx(t), t)δ`.

Each aij(δ] is associated to uj in the expression of h
(ρi)
i :

h
(ρi)
i = αi(δx(t), t) +

m∑
j=1

aij(δ]uj(t), (7)

where we use the fact that the delay operator spreads
to the right, see (2). We can now define the (m × m)-
decoupling matrix

A(δ] = (aij(δ])1≤i,j≤m ,

which is seen as a (matrix) δ-polynomial (whose coeffi-
cients are (m × m)-real matrices) and can be developed
with respect to the delay operator as follows:

A(δ] = A0(δx(t), t)δ0 + · · ·+Ad(δx(t), t)δd, (8)

where the (m×m) matrices A`, 0 ≤ ` ≤ d, are given by
A`(δx(t), t) =

(
a`ij(δ]

)
1≤i,j≤m . (9)

Finally, by α(δx(t), t) we will mean the vector of m smooth
functions whose i-entry is αi(δx(t), t) of (7).

Definition 2. Consider a δ-polynomial of the form B(δ] =∑d
`=0 B`(δx(t), t)δ`, whose coefficients are (m × m)-real

matrices and assume Bd(δx(t), t) 6= 0. We call minimal
degree of B the order of its first coefficient non identically
zero, i.e., the integer 0 ≤ k ≤ d such that

Bk(δx(t), t) 6= 0 and B`(δx(t), t) ≡ 0, ∀ 0 ≤ ` < k,

where 0 is the (m×m) zero-matrix. The integer d is called
the maximal degree of B.

Notation 2. Denote by p the minimal degree of the δ-
polynomial A(δ], given by (8)-(9), and associated to (4).

Definition 3. The problem of input-output decoupling is
solvable for system (4) if each output hi admits a finite
relative degree ρi and if there exist a bounded and causal
feedback u(t) and an integer k such that, for t ≥ τ−1

p (0),

A(δ]u(t) = −α(δx(t), t) + δkv(t) and k ≥ p, (10)
where p is the minimal degree of A. For such u(t) and k,
the feedback modified system satisfies

h
(ρi)
i = δkvi(t), for 1 ≤ i ≤ m,

where v is the new control (assigned with respect to the
properties that we want to achieve). Moreover, the system
is said input-output decoupled and linearizable with delay
if k > 0 (resp., without delay if k = 0).

Remark 2. Equation (10) leads to a solution for the prob-
lem of input-output decoupling yielding a maximal loss
of observability, Isidori and Moog [1988]. An interesting
question is how to obtain a general causal and bounded
feedback (with or without maximal loss of observabil-
ity). For the constant-delay case, we send the reader to
Marquez-Martinez and Moog [2004], Baibeche and Moog
[2015], where the right-hand side of (10) is replaced by a
polynomial of δiv; the generalization of their solution to
the time-varying delay case is not straightforward (and its
adaptation will be studied elsewhere).

Remark 3. In Definition 3, when we say that a bounded
feedback exists, we implicitly suppose that the zero-
dynamics or, equivalently, the unobserved (with the help
of (h1, . . . , hm)) part of (4), if there is one, is stable. In
general, this is not enough to guarantee the boundedness
of u constructed from an equation of form (10) and suffi-
cient conditions are given by Lemma 1, in Section 3.

Remark 4. In (10), we consider δkv instead of v (that
would lead to a linear input-output map for which the
delay is completely compensated) because we do not
request to know v in the future. Indeed, if we replace δkv
by v in (10), in the particular case where a feedback of the
form v = Ψ(δx(t), t) is applied, advances appear in (10) if
the lowest delay order in Ψ is smaller than p. Another
question is why we do not simply take δpv (instead
of δkv, with k ≥ p). This point will become clear when
presenting our algorithm where transformations involving
some artificial delays will be applied. Observe that, even
if we take δkv instead of v, advances may derive from the
term α. That will be excluded by causality conditions.

3. INPUT-OUTPUT DECOUPLING ALGORITHM

Two problems arise when constructing a feedback u from
an equation of form (10). Since u is described by a recursive
equation 1 , the solution may not be bounded or causal.
Lemma 1 gives sufficient conditions guaranteeing that the
feedback u constructed from an equation of the form

B(δ]u(t) = β(δx(t), t) + δkv, (11)

where k is the minimal degree of B(δ], stays bounded when
the right-hand side of (11) is bounded.

Lemma 1. Consider equation (11) where the δ-polynomial

B(δ]=
∑d
`=kB`(δx(t), t)δ` is such that its (m×m)-matrix Bk

is invertible for all t ≥ τ−1
k (0). Assume that v is such that

β(δx(t), t)+δkv(t) is bounded over [τ−1
k (0),+∞), and that

the initial condition u(t) = ψ(t) is bounded over [−dθ̄, 0].
If k = d, i.e., B(δ] = Bd(δx(t), t)δd with Bd invertible,
then the solution u(t) of (11) is always bounded. If k < d
and there exists a constant γ > 1 such that

sup
t≥τ−1

k
(0)

∥∥∥(Bk)
−1B`

∥∥∥
sup
≤ 1

2γ(d− k)
, for all ` > k,

(12)
then, for any t ≥ 0, the solution u(t) of (11) verifies

‖u(t)‖ ≤
γ

γ − 1
sup

s≥τ−1
k

(0)

∥∥∥(Bk)
−1(

β(δx(s), s) + δkv(s)
)∥∥∥+ ε(t),

where ε(t) tends to 0 when t tends to +∞.

Proof. The proof is similar to that of [Nicolau et al. 2018,
Lemma 1] for the two-input two-output case. �

One of the most important conditions of Lemma 1 is the
invertibility of Bk, the first nonzero matrix-coefficient of
the δ-polynomial B(δ]. It is Bk that have to be inverted in
order to compute u in function of v from (11). Its inverse
is also involved in (12), which is actually the condition
assuring that u stays bounded when B(δ] contains at least
two delays of different order.
1 By “recursive” we point out that the construction of u requires a
recursive prediction of the values of v over the intervals [0, τ−1

p (0)]

and [τ−1
i (0), τ−1

i+1(0)], for i ≥ p, the integer p being the minimal
degree of A(δ], see Definition 2 and Notation 2.
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Fig. 1. Input-output decoupling algorithm

We present next the main result of the paper: a construc-
tive input-output decoupling and linearization algorithm.
Recall that A(δ], given by (8)-(9), is the δ-polynomial
associated to (4), and that p and d denote its minimal
and maximal degree, resp. The main idea on which the
algorithm is based is that if Ap is invertible and satisfies
Lemma 1, then a bounded feedback can be constructed
from (10), with B(δ] being replaced by A(δ], the integer k
by p, and the m-valued β by α (defined with the help
of (7) in Section 2). But, in general, Ap does not need to
be invertible. In that case, the idea is to transform it in
such a way that its (new) first nonzero matrix is invertible
and satisfies Lemma 1. To that end, a two-step feedback
transformation (T,R) is proposed at each iteration of the
algorithm, which stops if we manage to construct a new δ-
polynomial with the desired properties or after a maximum
number of iterations defined by the user.

3.1 Algorithm
Fig. 1 summarizes the input-output decoupling algorithm
whose steps are presented and commented below.

1) Calculate the relative degrees ρ1, . . . , ρm associated to
the outputs h1, . . . , hm of system (4).
a) If ρ1 + · · · + ρm > n (where dimx = n), then the

system cannot be decoupled and linearized and the
algorithm stops.

b) If ρ1 + · · · + ρm ≤ n, then calculate the δ-
polynomial A(δ], its minimal (resp., maximal) de-
gree p (resp., d).

2) If p = d, i.e., A(δ] = Ad(δx(t), t)δd, then compute
rk (Ad), the rank of the (m×m)-real matrix Ad.
a) If rk (Ad) = m, i.e., Ad is invertible, then we can

always construct from (10), with k = d, a bounded
feedback u. If in addition

∂α

∂δix
≡ 0 and

∂Ad

∂δix
≡ 0, (13)

for 0 ≤ i ≤ d − 1, then the feedback u is also
causal, the system is input-output decoupled and
linearized with its help and the algorithm stops.

b) If rk (Ad) < m, then the system cannot be input-
output decoupled and linearized and the algorithm
stops.

3) If p < d, then set iter = 0 and define the maximum
number of iterations itermax ≥ d− p+ 1.

4) Identify the matrix Ap and compute its rank.
a) If rk (Ap) = m, i.e., Ap is invertible, then check

if Lemma 1 (and, in particular, condition (12)) is
verified for B(δ] = A(δ] and β = −α.

If (12) is satisfied, then we can construct
from (11), with B(δ] = A(δ] and β = −α, a
bounded feedback u. If in addition,

∂α

∂δix
≡ 0 and

∂A`

∂δix
≡ 0, (14)

for 0 ≤ i ≤ p− 1, p ≤ ` ≤ d, the feedback u is also
causal and the system is input-output decoupled
and linearized and the algorithm stops.

If (12) is not satisfied then the system cannot
be input-output decoupled and linearized by our
algorithm which stops.

b) If rk (Ap) = r < m, then compute the m-valued
vectors ν1(δx(t), t), . . . , νm−r(δx(t), t), that always
exist, such that

δpνj ∈ ker(Ap), 1 ≤ j ≤ m− r.
If all νj can be chosen such that none of them

contains any advances, then define the invertible
(m×m)-matrix
T =

(
D ν1(δx(t), t) . . . νm−r(δx(t), t)

)
, (15)

where D = (Dij), 1 ≤ i ≤ m, 1 ≤ j ≤ r, and its
construction is explained below. Since rkAp = r,
the matrix Ap contains r independent columns
indexed Cpjs , 1 ≤ s ≤ r. We put Dij = 1, if j = js
and i = s, for 1 ≤ s ≤ r, and Dij = 0, in all
other cases. If for all possible choices of vectors νj ,
1 ≤ j ≤ m−r, at least one of them always contains
advances, then the transformation is not causal and
the system cannot be input-output decoupled and
linearized by our algorithm which stops.

5) Define the block-matrix

R =

(
δ1 · Ir 0

0 Im−r

)
,

where In denotes the (n × n)-identity matrix (with
n = r and n = m − r, resp.). Introduce the following
feedback transformation u = T (Rũ), that transforms
the polynomial A(δ] into:

Ã(δ] = A(δ]TR = Ap(δpT )Rδp + · · ·+Ad(δdT )Rδd.
(16)

Rewrite (16) as

Ã(δ] = Ãp+1δp+1 + · · ·+ Ãd+1δd+1, with

Ã`+1 =
(
A`(δ`T )

)( Ir 0
0 0

)
+
(
A`+1(δ`+1T )

)( 0 0
0 Im−r

)
,

for p ≤ ` ≤ d, and where Ad+1 is the zero matrix.
6) Increase the number of iterations: iter = iter + 1. Set

A(δ] = Ã(δ], p = p+ 1, d = d+ 1, and u = ũ.
a) If iter > itermax, then the system cannot be

decoupled and linearized with those choices of
transformations T and our algorithm stops.

b) If iter ≤ itermax, then return to step 4).
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Ap =

 ap11 . . . ap1m
...

...
apm1 . . . a

p
mm


↓T

Ap(δpT ) =

 ap1i1 . . . a
p
1ir

0 . . . 0
...

...
...

...
apm1 . . . a

p
mm 0 . . . 0


↓R

Ãp+1 =

 ap1i1 . . . a
p
1ir

ãp+1
1r+1 . . . ãp+1

1m
...

...
...

...

apm1 . . . a
p
mm ãp+1

mr+1 . . . ã
p+1
mm


Fig. 2. Passage from Ap to Ãp+1.

3.2 Discussion

Remark 5. (Role of T ). If rk (Ap) = r < m, the transfor-
mation T changes the polynomial A(δ] such that, after its
application, the first nonzero matrix Ap has its m− r last
columns identically zero. Notice that it is not T that acts
on Ap, but δpT (hence the construction of T with its m−r
last columns spanning, after the application of a delay
of order p, the kernel of Ap). Since Ap is not identically
zero and rk (Ap) = r < m, the dimension of the kernel is
m− r and the choice of its generators (the vectors δpνj ’s,
1 ≤ j ≤ m − r) is not unique (and, obviously, T is not
unique either). An important question is how to choose
them. The vectors νj have to be chosen such that T is
causal, that is, none of them may contain any advances
(they depend on δx only). Such a (causal) choice may not
be possible, and, in that case the system cannot be input-
output decoupled and linearized by our algorithm.

Furthermore, D is also far from being unique. In fact,
any transformation of form (15) with the components Dij ,
1 ≤ i ≤ m, 1 ≤ j ≤ r, not necessarily constant, as assumed
in step 4.b), but being any functions of (δ(x), t) such that T
is invertible, would give a new matrix Ap with its m−r last
columns being identically zero. Here, we take the simplest
possible choice: D is actually the identity (r × r)-matrix
to which we inserted m−r identically zero lines such that,
after applying T , the r independent columns of Ap are
preserved (see Fig. 2).

Remark 6. (Role of R). The transformation R simply in-
troduces an artificial delay in the r first controls (after
the application of T , they correspond to the inputs that
appear ”too early” into the system), while the remain-
ing inputs are unchanged. The first nonzero coefficient
of the new δ-polynomial Ã(δ] is no longer the coefficient
of order p, but that of order p + 1 (the minimal degree
of the new polynomial increases from p to p + 1) and

the new corresponding matrix Ãp+1, inherits its r first
(independent) columns from Ap and its m−r last columns

fromAp+1(δp+1T ), see Fig. 2 (where ãp+1
ij denotes the (ij)-

component of the transformed matrix Ap+1(δp+1T )). By
introducing artificial delays, also the maximal degree of
the δ-polynomial increases from d to d+ 1, the new Ãd+1

being given by:

Ãd+1 =
(
Ad(δdT )

)( Ir 0
0 0

)
=

 ad1i1 . . . a
d
1ir 0 . . . 0

...
...

...
...

adm1 . . . a
d
mm 0 . . . 0

 .

(17)
Remark 7. (From an iteration to the next one). In order
to simplify the understanding, suppose that we have just
completed the first iteration iter = 1. At the second one,
step 4) is applied on the new polynomial Ã whose new

first non zero matrix is given by Ãp+1, see Fig. 2. By
construction, the r first columns of Ãp+1 are independent,
so the rank r̃ of Ãp+1 (we use the tilde symbol for

the objects related to Ã and for the transformations
introduced at the second iteration) is greater than or
equal to r (which is the rank of the original Ap and
was computed at the first iteration). It follows that the

new transformation T̃ is of the following form T̃ =
(D̃ ν̃1 . . . ν̃m−r̃), with D̃ an (m×r̃)-matrix whose first (r×
r)-block is simply the identity matrix (that preserves the r

first columns of Ãp+1) and whose remaining components
are as in step 4.b) and preserve the r̃ − r independent

columns among the last m − r last columns of Ãp+1.
An important observation is that, after the application

of the new transformation T̃ , the zero columns of the
matrix Ãd+1, see (17), are not preserved: each zero column
is replaced by a linear combination of the r-first columns
of (17), with coefficients equal to the components of the
vectors ν̃j ’s. So, after the application of the transformation

R̃ =

(
δ1 · Ir̃ 0

0 Im−r̃

)
,

the second to last matrix of the new δ-polynomial will
not inherit m − r̃ identically zero-columns, but m − r̃
linear combination of the r-first columns of (17) (and its
rank may increase by this last transformation). This is
one of the reasons for which we are not able to give a
upper bound for the maximum number of iterations, see
Remark 8 below. Finally, notice that the last matrix of the
new δ-polynomial (which is now associated to the delay of
order d+ 2) has exactly form (17).

Remark 8. (Maximum number of iterations). At first sight,
it seems that the maximum number of iterations cannot
exceed d − p + 1. Indeed, from Fig. 2 and relation (17),
we have the feeling that, after d − p + 1 iterations, the
first nonzero matrix inherits only identically zero columns
and thus its rank cannot grow anymore, but, as explained
in Remark 7, this is not what really happens. A natural
question arises: how to define the endpoint criterion? In
the proposed algorithm, the maximum number of itera-
tions is fixed by the user and, since it is closely related to
the maximal delay order involved in the system, it should
be chosen accordingly. It is however important to have an
upper bound for that number which is one of the main
difficulties that remains to be solved (for now, we are only
able to say that the upper bound should be greater than
d−p+1, where p and d are, resp., the minimal and maximal
degree of the original A(δ], given by (8)-(9)).

Remark 9. (Choice of T ). The choice of T is important,
because the parameters involved in T play an essential role
for obtaining a bounded and causal control and they have
to be chosen such that condition (12) is satisfied for the
(new) δ-polynomial whose first nonzero matrix is invertible
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(that new δ-polynomial, if it exists, is obtained at step 5)
after a certain number of iterations). Indeed, at each
iteration, step 4), and in particular checking Lemma 1,

is applied on the new matrix Ãp+1 that depends on the
previous one Ap, but also on the transformation T applied
before (in fact, Ãp+1 depends on all transformations T
of all previous steps). It is thus clear that the desired
properties of the control depends on the choices of T (or
equivalently, on the choices of D and vectors νj). Here, we
simply take the simplest form for D and any vectors νj . It
will be interesting to investigate which are the best choices
(that is, those for which (12) is satisfied) and if they can
be identified. Unfortunately, there is no an algorithmic
way to do it because the family of transformations is
parameterized by functional parameters.
Remark 10. (Sufficiency). We propose sufficient condi-
tions depending on certain choices made at each iteration,
and if we are not able to decouple and linearize the system
(via a bounded and causal feedback) with those choices,
this does not necessarily mean that the system cannot be
decoupled and linearized.

4. EXAMPLE
Consider the following example

ẋ1 = cos(δ1x1)u1 − sin(δ1x1)u2
ẋ2 = sin(δ1x1)u1 + cos(δ1x1)u2
ẋ3 = δ1x2
ẋ4 = a(δx(t), t) + u3

(18)

defined onX =]−π2 ,
π
2 [×R3, with hi = xi, 1 ≤ i ≤ 3, initial

conditions x(t) = ζ(t) and u(t) = ψ(t), for t ∈ [−θ̄, 0], and
a(δx(t), t) a nonlinear smooth function such that ∂a

∂x ≡ 0.
The relative degrees are (ρ1, ρ2, ρ3) = (1, 1, 2). Step 1)-b)
leads to the δ-polynomial A(δ] = A0δ0+A1δ1, with

A0=

(
cos(δ1x1) − sin(δ1x1) 0

0 0 0
0 0 1

)
,A1=τ̇1

(
0 0 0

sin(δ2x1) cos(δ2x1) 0
0 0 0

)
.

We have rkA0 = 2 < 3 (and is constant and equal to 2 for
all t ≥ τ−1(0)) the first and the third columns of A0 are
independent and ν1 = (sin(δ1x1) cos(δ1x1) 0)T ∈ kerA0,
so following step 4)-b), see (15), T is given by the first
matrix of (19) below and is invertible on X. We now apply
step 5) and introduce the transformation u = T (Rũ), with

T =

 1 0 sin(δ1x1)
0 0 cos(δ1x1)
0 1 0

 , R =

 δ1 0 0
0 δ1 0
0 0 1

 . (19)

The δ-polynomial A(δ] becomes

Ã(δ] = Ã1δ1 + Ã2δ2, with (20)

Ã1 =

 cos(δ1x1) 0 0
0 0 τ̇1
0 1 0

 , Ã2 =

 0 0 0
τ̇1 sin(δ2x1) 0 0

0 0 0

 .

For the new Ã(δ], the minimal degree is d = 1, the

associated matrix Ãp = Ã1 is everywhere invertible on X,
and it is thus possible to find, on X, a feedback ũ =
(ũ1, ũ2, ũ3)T , which satisfies the following equation:

Ã1δ1ũ = −Ã2δ2ũ− α(δx(t), t) + δ1v, t ≥ τ−1
1 (0), (21)

where α(δx(t), t) = (0 0 a(δx(t), t)T . Condition (14) is
satisfied (since ∂a

∂x ≡ 0) and it follows that ũ is causal. In
order to conclude that the system is, indeed, input-output
decoupled (via a bounded and causal transformation, see

Definition 3), Ã(δ] should also verify Lemma 1. Condi-
tion (12) translates into | sin(δ2x1)| < 1

2 , thus a bounded

feedback can be constructed for initial conditions x1 = ζ1
belonging to ]− π

6 ,
π
6 [ and sufficiently small delay functions.

As explained, the transformation T is not unique and some
choices (maybe more complicated than those proposed by
our algorithm) may lead to a simpler equation for ũ. For
instance, consider T given by the first matrix of (22) below,
which is invertible on X. By applying u = T (Rũ), where

T =

 cos(δ1x1) sin(δ1x1) 0
− sin(δ1x1) cos(δ1x1) 0

0 0 1

 , R =

 δ1 0 0
0 1 0
0 0 δ1

 ,

(22)we obtain the following δ-polynomial:

Ã(δ] = Ã1δ1, with Ã1 =

(
1 0 0
0 τ̇1 0
0 0 1

)
.

which is clearly simpler than (20) (which was given by the
algorithm). Now, the control ũ has to be constructed from:

Ã1δ1ũ = −α(δx(t), t) + δ1v, t ≥ τ−1
1 (0),

and, in this case, ũ is always bounded and causal (and,
contrary to choice (19) of T , proposed by the algorithm,
we do not need to verify Lemma 1).
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