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Abstract: We deal with the problem of energy management in buildings subject to uncertain
occupancy. To this end, we formulate this as a finite horizon optimization program and optimize
with respect to the windows’ blinds position, radiator and cooling flux. Aiming at a schedule
which is robust with respect to uncertain occupancy levels while avoiding imposing arbitrary
assumptions on the underlying probability distribution of the uncertainty, we follow a data
driven paradigm. In particular, we apply an incremental scenario approach methodology that has
been recently proposed in the literature to our energy management formulation. To demonstrate
the efficacy of the proposed implementation we provide a detailed numerical analysis on a
stylized building and compare it with respect to a deterministic design and the standard scenario
approach typically encountered in the literature. We show that our schedule is not agnostic with
respect to uncertainty as deterministic approaches, while it requires fewer scenarios with respect
to the standard scenario approach, thus resulting in a less conservative performance.

Keywords: Building energy management, Randomized optimization, Robust optimization,
Scenario approach.

1. INTRODUCTION

The overall household energy use has increased noticeably
over the last decade. As an example, in the United King-
dom, household consumption accounts for 50.2% of the
total energy consumed Palmer and Cooper (2013), Waters
(2018), while household and domestic heating/cooling is
also responsible for over a quarter of the total emission lev-
els Palmer and Cooper (2013). At the same time there have
been several advancements in instrumentation, control and
efficiency of actuation, which have in turn boosted research
towards optimal energy management within buildings.

To this end, optimization based control in building heating
and cooling has been extensively studied both from a cen-
tralized perspective Oldewurtel et al. (2012), Sturzenegger
et al. (2012), Sturzenegger et al. (2014), Sturzenegger et al.
(2016), Lehmann et al. (2013), Chen et al. (2013), and
by means of a distributed architecture in multi-building
settings Causevich et al. (2018), Belluschi et al. (2020).
In the aforementioned references, main concern has been
the development of energy models for buildings suitable
for being integrated within an optimization context, while
occupancy has been considered to be deterministic. In
the presence of uncertainty the attempts most closely
related to our work have been proposed in Oldewurtel
et al. (2010), Ioli et al. (2016). In the former a robust
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approach is proposed (see also Jacomino and Le (2012),
Saha et al. (2015) for conceptually similar robust consid-
erations), with uncertainty assumed to be confined in sets
with given geometry ignoring the underlying distribution
of the uncertainty; the latter, may lead to conservative be-
haviour and deteriorate performance. In Ioli et al. (2016),
a data driven approach is proposed using the so called
scenario approach theory for convex optimization Calafiore
and Campi (2006), Campi and Garatti (2008), Campi
et al. (2009), Campi et al. (2019), thus alleviating the
need of imposing certain assumptions on the underlying
probability distribution of the uncertainty or the geometry
of its support.

In this paper, we follow the data driven route and represent
occupancy by means of scenarios. We then determine a
sequence of blind positions and heater flux settings, which
remains feasible when a new realization of the uncer-
tainty/occupancy is encountered. We extend the develop-
ments in Ioli et al. (2016) using an incremental scenario
approach algorithm that has been recently proposed in
the literature Garatti and Campi (2019), and is motivated
by the developments of Campi and Garatti (2018b). It
leverages on the fact that the sample size proposed by the
standard scenario approach is tight only for a certain class
of programs (termed fully supported Campi and Garatti
(2008)), while for other problems typically encountered
in applications may result in conservative performance.
The incremental scheme gradually introduces additional
scenarios to a given initial set of scenarios and terminates
when the empirical estimate of the support constraints, a
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Fig. 1. 3D plot of the considered building model, generated
using the MATLAB Toolbox of Sturzenegger et al.
(2014).

notion at the core of the scenario approach theory Campi
and Garatti (2018a), is no greater than the current algo-
rithm iteration. It is guaranteed that the incremental sce-
nario approach leads to a performance no worse than the
standard scenario approach, thus reducing both the level of
conservatism of the resulting solution and the sample size
required. The latter is of significant importance if sampling
is expensive or if only a limited amount of historical data is
available. We apply the incremental scenario approach on
an energy management problem for a three-zone building,
and compare it against a deterministic approach and the
standard scenario approach implementation.

The energy management problem under consideration is
introduced in Section 2. Background on the scenario ap-
proach and the adopted incremental algorithm is presented
in Section 3. Section 4 provides a detailed simulation based
study, while Section 5 concludes the paper and provides
directions for future work.

2. PROBLEM STATEMENT

2.1 Description and mathematical modelling

We consider the heating and cooling problem for a sym-
metric building with two bedrooms and a living room
labelled by Z0001, Z0002 and Z0003, respectively, in Figure
1. We selected a symmetric case here as it allows verify-
ing the validity of the obtained results, with temperature
profiles being identical in the symmetric zones (see upper
left panel of Figure 2), however, non-symmetric buildings
can also be captured by the proposed methodology.

We consider a finite-horizon decision problem, where we
aim at identifying an optimal sequence of actions for the
following quantities, that are considered as inputs. These
involve

(1) Windows’ blinds position (u1);
(2) Positive (heating) heat flux in W/m2 by radiators or

any external heating sources (u2);
(3) Negative (cooling) heat flux inW/m2 by cooling pipes

or any external cooling sources (u3).

For our analysis we consider ambient temperature and
solar radiation to be deterministic, while building’s occu-
pancy is not fixed and is considered to be uncertain. Under

this setting we aim at identifying a sequence of the afore-
mentioned inputs that are (probabilistically) robust with
respect to uncertainty in occupancy levels. In particular,
we model uncertainty as a heat flux in W/m2 generated
by an uncertain level of occupancy.

To model the heat transfer dynamics we employed the
BRCM toolbox developed by Sturzenegger et al. (2014).
The internal heat transfer between zones is governed by
a linear time-invariant model while the external heat
fluxes into the building introduce bilinear terms according
to the nature of actuation. The modelling framework of
Sturzenegger et al. (2014) considers that i) the air volume
of each zone has uniform temperature; ii) temperature
within building elements varies only along the direction of
the normal surface; iii) there is no conductive heat transfer
between different building elements; iv) the temperature
within a layer of a building element is constant; v) all
model parameters are constant over time; vi) long-wave,
thermal radiation is considered in a combined convective
heat transfer coefficient. Under these assumptions, the
overall dynamical model of heat transfer is then given by
the following discrete time, bilinear system; more details
about the structure of the model and the energy exchange
can be found in Sturzenegger et al. (2012), Sturzenegger
et al. (2014).

xk+1 = Axk +Buuk +Bδδk

+

n∑
i=1

(
Buδδk +Bxuxk

)
ui,k, (1)

where for each time instance k, xk denotes the system
state which contains the temperature of each zone and
wall layer; uk contains the actuation inputs, and δk the
uncertain occupancy level. The total number of inputs is
denoted by n. All matrices are of appropriate dimensions.

Our goals is to determine an optimal sequence u by
integrating the dynamical system in (1) within a convex
optimization context. To this end, the bilinear terms
impose a challenge, as they would render the problem
non-convex. To alleviate this we impose the following
simplifying assumptions.

(1) The ambient air temperature during the summer is
assumed to be constant at 35°C;

(2) The global radiation flux or the solar constant as
considered to be constant at 200 W/m2 (see SoDa
(2019) for benchmark values);

(3) No ventilation or airflow between zones is considered.

Under these assumptions, (1) simplifies to a linear, time-
invariant dynamical system. The fact that ambient tem-
perature and global radiation are assumed to be determin-
istic eliminates the input-disturbance bilinear terms. The
resulting system is then denoted by

xk+1 = Axk +Buuk +Bδδk, (2)

for appropriately defined matrices.

Out of the imposed assumptions, only the last one appears
to be restrictive in practice, as it assumes absence of
airflow or ventilation. The main focus of the paper, is to
quantify the effect of using the algorithm in Garatti and
Campi (2019) as an efficient, data driven manner to deal
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with uncertain occupancy. This requires the underlying
optimization program to be convex, which in turn calls for
linear dynamics; the latter is ensured under the imposed
assumption. Current work concentrates towards relaxing
the convexity assumption, thus allowing airflow or venti-
lation to be present, using the non-convex developments
of Campi and Garatti (2018b).

2.2 Energy Management Optimization

We consider a finite-horizon energy management prob-
lem, where M denotes the number of time steps. Let
X = [x>1 . . . x

>
M ]> denotes a stacked vector including the

states of all time instances, and define U and δ similarly.
Propagating the linear, time-invariant dynamics in (2) by
M steps, we obtain the following compact representation
of the systems temperature evolutions.

X = Fx0 +GU +Hδ, (3)

where matrices F,G and H are of appropriate dimension;
e.g., the reader is referred to Campi et al. (2019) for dimen-
sions. Note that X depends on the history of inputs and
disturbances that are included in U and δ, respectively, as
well as on the initial state x0, which is given.

We aim at minimizing the following objective function.

J(U) = E[X>QX + U>RU ], (4)

where we denote the objective function as being a function
of U only, as X could be substituted by (3) which is also a
function of U and the uncertainty vector δ. We assume that
δ is distributed according to some probability distribution
P with support ∆ (possibly unknown if only data are avail-
able), and denote by E the corresponding expectation op-
erator. The objective function in (4) involves the expected
value of the sum of two components: one term penalizing
the state (temperature) and one the input, where Q � 0
and R � 0 are given matrices. In the numerical case study
we only consider the second term, seeking a minimum
effort sequence of actuation commands.

The minimization of J(U) is subject to the following
constraints.

Input constraints: The following constraints on the ele-
ments of the input vector U are considered. For all k,

(1) u1,k ∈ (0, 90)%: effective reduction of solar gain in
the form of percentage for window blinds;

(2) u2,k ≤ 1kW/m2: upper limit on the heating system;
(3) u3,k ≤ 1kW/m2: upper limit on the cooling system.

State constraints: We differentiate between different sea-
sons, namely, summer and winter, in line with the develop-
ments in Hussain et al. (2017). This distinction allows us to
model state constraints by means of single-sided inequality
constraints; in the opposite case we would have double-
sided inequalities; the latter may lead to feasibility issues,
but this is outside the scope of this paper. We then have
the following constraints on the temperature profiles in
X that encode comfort, which by means of (3), result in
constraints on U :

Summer day:

P{δ ∈ ∆ : Fx0 +GU +Hδ ≤ Tmax} ≥ 1− ε, (5)

Winter day:

P{δ ∈ ∆ : Fx0 +GU +Hδ ≥ Tmin} ≥ 1− ε, (6)

where ε ∈ (0, 1). Constraints (5), (6), are chance con-
straints, i.e., the guarantee that an upper (Tmax) and a
lower (Tmin) temperature limit, respectively, is achieved,
with probability at least 1− ε.
Note that we use an upper limit during summer because
there exists a continuous heat flux from the surroundings,
and a lower limit for winter time as there exist a continuous
heat flux to surroundings. For the considered case study,
in winter time occupancy level provides enough heating
for the temperatures to stay consistently above the lower
limit; to highlight all features of the proposed algorithm
we select a summer day for our numerical investigations.

By means of (3), we can collectively represent all input and
state constraints outlines above as constraints involving
only U and δ. To facilitate the algorithmic developments
of the following section, the energy management problem
under consideration is of the form

min
U∈RnM

J(U) (7)

subject to P{δ ∈ ∆ : g(U, δ) ≤ 0} ≥ 1− ε, (8)

where g is a scalar valued function (corresponding to the
maximum among all constraints imposed on U), convex
with respect to U for any fixed δ; the dependency on δ
could be arbitrary. Note that in our formulation we have
a total of nM = 3M decision variables, i.e., three scalar
inputs times the number of time-steps M .

3. SCENARIO APPROACH IMPLEMENTATION

3.1 Standard scenario approach

The scenario approach provides a way to obtain a so-
lution that is feasible for the chance constraint in (8)
with certain confidence, without requiring knowledge of
P and/or ∆. To this end, associate with (7)-(8) a scenario
program, which involves replacing the chance constraint
with N constraints, each of them corresponding to realiza-
tion/scenario of the uncertain occupancy level δ, extracted
in an i.i.d. (independent and identically distributed) fash-
ion. This is given by

min
U∈RnM

J(U) (9)

subject to g(U, δi) ≤ 0, for all i = 1, . . . , N. (10)

We assume that (9)-(10) is feasible for any multi-scenario
extraction, and admits a unique solution, denoted by U∗.
In case of multiple solutions, a convex tie-break rule could
be adopted to single out a particular minimizer. The
feasibility assumption can be relaxed as shown in Calafiore
and Campi (2006).

Under the feasibility and uniqueness requirements, the
standard scenario approach Campi and Garatti (2008),
shows that for a given β, ε ∈ (0, 1), if N is chosen so that
it satisfies

nM−1∑
j=0

(
N

j

)
εj(1− ε)N−j ≤ β, (11)

then

PN{(δ1, . . . , δN ) ∈ ∆N :

P{δ ∈ ∆ : g(U∗, δ) ≤ 0} ≥ 1− ε} ≥ 1− β, (12)
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where PN denotes the product probability measure, as
U∗ depends on all extracted scenarios used to solve (9)-
(10), hence it is a random variable in ∆N . In other words,
with confidence at least 1− β, the optimal solution U∗ of
(9)-(10) is feasible for the chance constraint in (8). Note
that the only structural characteristic appearing in the
confidence is the number of decision variables 3M .

We can obtain a sufficient, albeit explicit, condition for
the number of scenarios N that need to be extracted so
that (11) is satisfied. This is given by Campi and Garatti
(2018a), Campi et al. (2019),

N ≥ 2

ε

(
ln

1

β
+ nM

)
. (13)

3.2 Incremental scenario approach

The incremental approach Garatti and Campi (2019)
leverages on the fact that the sample size proposed by the
standard scenario approach is tight only for a certain class
of programs (termed fully supported in Campi and Garatti
(2008)), while for other problems typically encountered in
applications may result in conservative performance. The
incremental scheme gradually introduces additional sce-
narios to a given initial set of scenarios and is guaranteed
to result in a performance no worse than the standard
scenario approach, thus reducing both the level of con-
servatism of the resulting solution and the sample size
required. The general structure of the incremental scenario
approach scheme is presented in Algorithm 1.

Algorithm 1 Incremental scenario approach

1: j = 0 , N−1 = 0 ,
2: while S∗j > j do
3: Add (Nj −Nj−1) additional scenarios
4: Compute U∗j by solving (9)-(10) with N = Nj
5: Determine the number of support constraints S∗j
6: if S∗j < j then
7: Break and return U∗ = U∗j
8: else
9: j ← j + 1

10: end if
11: end while

For each j let U∗j denote the optimal solution of (9)-(10)
with N = Nj (step 4). Variable S∗j denotes the number
of support constraints (a constraint is of support if its
removal results in a different optimal solution Campi and
Garatti (2018a)) of U∗j . It can be determined by means of
an iterative process, where constraints are removed one by
one, checking whether their removal resulted in a change in
the optimal solution. For non-degenerate convex programs
(see Campi and Garatti (2008) for a formal definition
of non-degeneracy), this is equivalent to determining the
number of constraints active at the optimal solution; one
way of achieving this is by considering the constraints
corresponding to non-zero dual variables.

If at a given iteration j, S∗j < j, then the algorithm ter-
minates returning U∗j (step 7). This termination condition
involves comparing the estimate of the support constraints
with the iteration counter; this relationship between iter-
ations and support constraints is due to the fact that the

algorithm is guaranteed to terminate after at most nM
iterations, as the number of support constraints for convex
programs can be no greater than the number of decision
variables Campi and Garatti (2018a). Due to this feature,
the incremental scenario approach is guaranteed to require
a number of scenarios no worse than the standard scenario
approach.

In Theorem 1 in Garatti and Campi (2019), it is shown
that for non-degenerate problem instances, if the number
of scenarios N0, N1, . . . , NnM (recall that at most nM
algorithm iterations are required) is selected as shown in
the sequel, then for a given β, ε ∈ (0, 1),

PnM{(δ1, . . . , δN ) ∈ ∆N :

P{δ ∈ ∆ : g(U∗, δ) ≤ 0} ≥ 1− ε} ≥ 1− β, (14)

where U∗ denotes the solution returned upon termination
of Algorithm 1. The number of scenarios required at each
iteration j = 0, 1, . . . , nM is given by

Nj ≥ min

{
N : N ≥Mj and (15)(

N

j

)
(1− ε)N−j ≤ β

(d+ 1)(Mj + 1)

Mj∑
m=j

(
m

j

)
(1− ε)m−j

}
,

where Mj is given by

Mj ≥ min
{
N :

j−1∑
`=0

(
N

`

)
ε`(1− ε)N−` ≤ β

}
, (16)

We now provide sufficient conditions for the satisfaction of
the conditions in (16) and (15), to determine the number of
scenarios Mj and Nj , respectively. Due to the equivalence
between (16) and (11), similarly to Section 3.1, by Campi
and Garatti (2018a), Campi et al. (2019), one can take

Mj =
2

ε

(
ln

1

β
+ j − 1

)
. (17)

To obtain an explicit relation for Nj , set

βj =
β

(d+ 1)(Mj + 1)

Mj∑
m=j

(
m

j

)
(1− ε)m−j . (18)

We then seek a value for Nj that satisfies
(
N
j

)
(1−ε)N−j ≤

βj . By Corollary 1 in Calafiore and Campi (2006), we
obtain (the maximum ensures Nj ≥Mj)

Nj = max{Mj ,
(2

ε
ln

1

βj
+ 2j +

2j

ε
ln

2

ε

)
}. (19)

4. CASE STUDY

4.1 Simulation set-up

To quantify the efficacy of the proposed incremental sce-
nario approach of Section 3.2, we compare it against a de-
terministic variant, where a nominal/forecasted occupancy
level is considered, and against the standard scenario ap-
proach implementation of Section 3.1.

To this end, we revisit the energy management problem
of Section 2, considering (4) with Q = 0 and R = I, thus
resulting in minimizing J(U) = UTRU = UTU . Assuming
a summer day, this is subject to (5), where we consider
Tmax = 24°C. Moreover, the constraints on U defined in
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Table 1. Comparison between the determinis-
tic, the standard, and the incremental scenario

approach.

Algorithm
Number of
Scenarios

Cost (W
2

m4 )
Theoretical

Risk
Empirical

Risk

Deterministic 1 2.55× 104 N/A 85.27%

Standard
Scenario
Approach

3065 2.36× 105 10% 0%

Incremental
Scenario
Approach

376 1.94× 105 10% 5.1%

Section 2 are also imposed. A time horizon of 12 hours
with granularity of 15 minutes is considered, resulting in
M = 48 time-steps.

We considered that the occupancy level follows a discrete
Poisson distribution with a mean equal to 3. All scenarios,
for the standard and the incremental scenario approach,
as well as the ones used for validation purposes, were
generated in an i.i.d. fashion from the same distribution.
For the deterministic analysis we considered occupancy
to be the empirical expectation from a certain number of
scenarios extracted from the aforementioned distribution.

4.2 Simulation results

We consider three algorithmic alternatives, namely, the
deterministic approach, the standard scenario approach
and the incremental one. We compare them in terms
of the number of scenarios required by each alternative,
resulting cost of the optimization program, theoretical
risk (constraint violation level ε) level, and empirical risk.
The latter is determined by calculating the number of
violations encountered by the solution returned by each
approach over 3000 validation scenarios.

The comparison outcomes are summarised in Table 1. The
following observations are in order.
1) The cost incurred in the deterministic approach is sig-
nificantly lower, however, this comes at the expense of not
being robust with respect to uncertainty in the occupancy
level. This can be witnessed by the high empirical risk,
i.e., the empirical frequency of constraint violation against
the 3000 validation scenarios. 2) The standard scenario
approach requires 3065, as opposed to 376 scenarios re-
quired by the incremental algorithm. Within a data driven
context this is a desirable feature, in particular if data
resources are limited.
3) As a result of the lower number of scenarios required for
the same theoretical risk level ε = 10%, the incremental
algorithm leads to a less conservative behaviour. This is
witnessed by the lower cost, as well as by the higher
empirical risk (5% as opposed to 0%), which is closer to
the theoretical value.

Figure 2 shows the temperature profiles of zone 3 (Z0003)
generated by the three algorithms. The grey shadow corre-
sponds to the span of the system trajectories when the op-
timal solution of each algorithmic alternative is monitored
for the 3000 validation scenarios. The dashed red line is
the upper bound for temperature during the summer. The

Fig. 2. Temperature profile for zones Z0001 and Z0002 for
the incremental scenario approach (they coincide as
a result of the symmetry of the zones). Temperature
profile for zone Z0003 using the incremental (lower left
panel), the standard scenario approach (upper right
panel), and the deterministic approach (lower right
panel).

red trajectory corresponds to the response of the system
in the deterministic case, when occupancy is considered
to be equal to the forecasted value. For completeness, the
temperature profile of zones 1 (Z0001) and 2 (Z0002) is
also illustrated for the incremental algorithm.

Note that in the deterministic case (lower right panel of
Figure 2), the vast majority of the validation scenarios
leads to violation of the temperature limit. At the other
extreme, no violation is encountered for the standard sce-
nario approach (upper right panel of Figure 2). The incre-
mental scenario approach results in a moderate number
of violations, close to the theoretical acceptable risk level
(lower left panel of Figure 2).

The probability of violation is itself a random variable,
hence different sets of validation scenarios will result in
a different empirical risks. We thus generated 100 sets,
each with 3000 validation scenarios, and for each of them
calculated the empirical risk. The resulting distribution is
shown in Figure 3. It must be noted that in all 100 runs of
the validation process, not more than 160 scenarios were
violated within each set of 3000 scenarios which is below
the 10% theoretical risk level.

5. CONCLUDING REMARKS

We applied an incremental scenario approach algorithm
recently introduced in Garatti and Campi (2019) to the
problem of building energy management. To quantify the
trade-off between performance and robustness we provide
a detailed numerical analysis on a stylized building and
compare it with respect to a deterministic design and the
standard scenario approach implementation.

Current work concentrates towards relaxing the convexity
assumption, thus allowing airflow or ventilation to be
present. To this end, we aim at employing the non-convex
scenario approach developments of Campi and Garatti

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17364



Fig. 3. Histogram showing the empirical probability of
constraint violation for 100 sets, each with 3000
scenarios. The empirical risk was calculated as the
fraction out of 3000 validation scenarios that were
violated by the solution returned by the incremental
scenario approach algorithm.

(2018b). Moreover, we aim at replacing the open-loop
sequence of decisions with affine feedback policies with
respect to uncertainty Goulart et al. (2006), and quantify
the potential improvement in terms of performance.
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