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Abstract: Multi-robot manipulation systems are usually high-dimensional, kinematically
complex and the internal forces are sensitive to robot motion errors due to the physical
coupling, especially when the manipulated object is rigid. In this work, a distributed cooperative
controller is designed for this scenario. Besides transporting the object, obstacle avoidance and
manipulability enhancement are also achieved online by a novel optimisation-based approach.
Since the local controller does not require the other robots to send the model or joint-space
data, the system is flexible and the communication cost is minimal. Experiments show that no
internal force is generated when the robots are changing their poses for the additional tasks and
the online computation is fast.
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1. INTRODUCTION

Manipulation and transportation are common tasks for
robots in industry and daily service. Due to the complexity
and variability of the task details and the environment,
multi-robot systems have become quite useful in many
situations because they support higher payload and they
are more adaptive to changes thanks to their flexibility.
Research work on cooperative robot control already exists
since the 1990s, such as by Sugar and Kumar (1999,
1998), where the mechanical design and decentralised
control of a multi-robot mobile manipulation system are
presented. The goal is to let the workpiece track a given
trajectory. Erhart et al. (2013) introduced the cooperative
control design for two mobile manipulators. In addition
to motion error, the internal forces are also recorded and
analysed. Similarly a more recent research by He et al.
(2018) has focused on internal force suppression in multi-
robot transportation. Pure arm systems are also common
and of great interest. Salehian et al. (2018) has proposed
a unified multi-arm control framework for manipulation
tasks, and Behrens et al. (2019) developed a task scheduler
and motion planner for a dual-arm manipulator in real
industrial application.

Today centralised control is still popular in dual-arm sce-
narios. For example the aforementioned work of Salehian
et al. (2018) includes a centralised inverse kinematic solver
and quadratic programming for self-collision avoidance.
Another centralisedly controlled dual-arm manipulator is
shown by Lin et al. (2018) with the main focus on the
robustness against external force disturbances. They use
two KUKA LWR arms so 14 joints are controlled online.
A responsive coordination motion controller for an ABB
YuMi dual-arm system, also with 14 DOFs, has been

successfully implemented by Beuke et al. (2018). However
for much more complicated systems such as that of Erhart
et al. (2013), centralised control would be too computa-
tionally demanding.

The challenge with decentralised controller is to guarantee
the global coordination. For manipulation this is extremely
important because due to the physical coupling via the
grasped object, any conflicting motion would generate
undesired internal force, as discussed by Erhart and Hirche
(2015). Early solutions to this issue, such as by Kume
et al. (2002), mostly rely on a leader-follower architecture,
however the system scalability is still very limited, and
the group performance strongly depends on the leader
alone. On the other hand, a distributed and leaderless
multi-robot system, e.g. as proposed by Antonelli et al.
(2013), often implements an global state observer on each
robot, which requires either the detailed model of the other
cooperating agents or a lot of communication, making it
unsuitable for heterogeneous robot systems in practice.

To reduce internal forces and improve safety in physical
interaction with robots, impedance control or PD control
with a position reference is often desired for robot arms,
however a position-level optimisation problem for redun-
dant manipulators is usually difficult and the solution re-
lies on pure numerical approaches. Programming libraries
including NLopt, SciPy, OptimLib and some MATLAB
toolboxes do allow users to implement their online solver,
and researchers like Ratliff et al. (2009) have developed
optimisation algorithms for robotics, but usually the com-
putation time is too long and it takes much effort to tune
solver parameters to get a reliable result.

In this paper a novel and fast approach to achieve a
position-level optimum is proposed for motion planning

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9994



and control in cooperative robotic manipulation. The
considered scenario includes unexpected dynamic obstacle,
and joint-space constraints are also considered. Based on
this solution a coordination strategy is designed so that
the robots do not perform conflicting motion and thus
no internal force arises even if the manipulated object is
rigid. The overall control has a distributed structure with
each robot requiring only local sensor data and a limited
amount of communication that does not include any joint-
space data/model of the other robots. Furthermore, the
measurement or estimation of the manipulation forces is
not needed. Experiments are done on a dual-arm platform
to evaluate the control performance.

2. OPTIMAL MOTION PLANNING

As mentioned above, for robot arms a direct optimisation
in the position level is usually hard for online implemen-
tation, however a velocity-level optimisation problem can
be solved analytically. Therefore the main idea in this part
is to firstly obtain an optimal velocity reference, and then
transform it into a pose reference.

2.1 Velocity-level solution

Multitask robot control is possible with the null space
control law, which originates from an optimisation prob-
lem as described by Siciliano et al. (2009), where different
priorities must be assigned to the objectives. For example
the robot may stick to its desired end effector motion
while try to avoid obstacles as a secondary task using its
redundancy. But in many cases obstacle avoidance is of
the same importance as the main task and it is desired
to sacrifice some transportation accuracy in order to be
collision-free, so in this work the problem is formulated as

min
q̇d0

g0 =
1

2
(ẋobj,d0 − ẋtrp)

T
W1 (ẋobj,d0 − ẋtrp)

+

NPOI∑
j=1

1

2
(vj,d0 − vj,obs)TW2,j (vj,d0 − vj,obs)

+
1

2
(q̇d0 − q̇mpb)

T
W3 (q̇d0 − q̇mpb)

(1)

where q̇d0 is the desired optimal joint velocity.

The first term in the cost function is related to the main
manipulation task. ẋobj,d0 is the object velocity as a con-
sequence of q̇d0, which can be computed using differential
kinematics with the assumption that the grasping geome-
try is known, as

ẋobj,d0 = Jobjq̇d0 (2)

where Jobj is the Jacobian for the object frame. ẋtrp is
the desired object velocity (or “twist”) for tracking the
transportation trajectory. With known grasping geometry,
the Cartesian pose of the object can be calculated using
forward kinematics, and the 6-by-1 pose error x̃obj,trp

relative to the desired transportation pose reference Td,trp

is obtainable. Here it is assumed that Td,trp is already
available to every robot by either a high-level path planner
or offline pre-design. ẋtrp can be determined according to
x̃obj,trp in various ways. In this work a simple P control is
chosen as shown in the following Equation (3).

ẋtrp = Ktrpx̃obj,trp (3)

where Ktrp is the P-gain matrix. W1 is a positive-definite
weighting matrix.

The second component of g0 is for whole-body obstacle
avoidance. Firstly several Points of Interest (POIs) that
are fixed on the robot body as well as the manipulated
object need to be selected. Theoretically all points that
have the potential of colliding with an obstacle should
be chosen, but that would add too much computational
burden to the system, so in practice only those critical
ones are needed. For each POI j, its translational velocity
vj,d0 can be computed with

vj,d0 = Jv,j q̇d0 (4)

where Jv,j is the first three rows of the Jacobian matrix
corresponding to the j-th POI.

The robot only needs to detect and react to obstacles
that are close enough, and this is achieved by defining
a reaction radius robs. Based on forward kinematics the
position of the j-th POI pj can be obtained online and its
distance to the obstacle position pobs can be computed.
The desired avoidance velocity vj,obs is then computed
using the following law (5).

vj,obs =

{
Kobs (pj − pobs) , if ||pj − pobs|| < robs
0, otherwise

(5)

where Kobs is again a P control gain. Similarly the weight
also has a switching mechanism

W2,j =

{
Wobs, if ||pj − pobs|| < robs
0, otherwise

(6)

where Wobs is the positive-definite weighting matrix to
use when an obstacle is close to the j-th POI. In practice
the obstacle position pobs can be measured with LiDAR,
UWB, infrared, camera sensors, etc. If the sensor does not
have high detection accuracy, the reaction radius robs can
be chosen relatively large to ensure safety.

The purpose of the last part of g0 is to utilise the redun-
dancy of the robot arm to maintain a good manipulability,
a criterion indicating the capability of performing further
motion or delivering required forces with the current pose.
Depending on the use case, this criterion can be defined in
various ways. This paper does not discuss its detailed for-
mulation but simply denotes it as w(q). W3 is a positive-
definite weighting matrix. q̇mpb is a desired joint velocity
for maximising w(q), which according to Siciliano et al.
(2009) can be computed using

q̇mpb = Kmpb
∂w (q)

∂q
(7)

If w (q) does not have a closed form, a “best pose” qmpb

can be chosen beforehand either by experience or by an
offline optimisation and then the following Equation (8)
can be used to determine q̇mpb in real-time.

q̇mpb = Kmpb (qmpb − q) (8)

To solve the problem in (1), the position-dependent vari-
ables are treated constant, meaning the optimisation is
intended only for that instant. Then the quadratic opti-
misation problem can be solved analytically by letting the
gradient of g0 be zero, which leads to

q̇d0 = A−1b (9)
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where

A = JT
objW1Jobj +

NPOI∑
j=1

JT
v,jW2,jJv,j +W3

b = JT
objW1ẋtrp +

NPOI∑
j=1

JT
v,jW2,jvj,obs +W3q̇mpb

(10)

The joint-space optimisation leads to the existence of
the positive-definite weight W3 in A, making A always
invertible and therefore the solution (10) is robust against
singularities.

2.2 Position-level solution

The q̇d0 obtained in the previous section is not compatible
with many position-based motion controllers. Hence an
iterative process is proposed here to convert it into a
position-level reference.

The algorithm first multiplies q̇d0 by a small enough time
step ∆titr to obtain a position-level increment, and starting
from the actual pose qnow, a pose reference qd0 will be
updated and then fed into the next iteration, where a
new q̇d0 will be computed using Equation (10), and the
incrementation repeats until a specified time horizon Titr
is reached or q̇d0 settles at almost zero.

The basic principle is the same as some Jacobian-based
inverse kinematics algorithms as introduced by Siciliano
and Khatib (2008) and Siciliano et al. (2009). The idea
behind this is to run a small simulation inside the motion
planning algorithm with the robot dynamics modelled as a
pure integrator. By taking the actual states as the initial
condition and looking into a future horizon, the steady-
state robot pose under the optimal velocity control law
will be predicted. This final pose is considered a position-
level optimum and provided to the robot motion/torque
controller as a reference. Since in each iteration q̇d0 is
solved analytically using Equation (10), the computation
is fast enough for online responsive control. In fact com-
putation times at millisecond level have been observed in
experiments. To summarise, a pseudocode is attached as
Algorithm 1.

Algorithm 1 Position-level optimisation

1: function LocalOptim(qnow, xd,trp, pobs)
2: Initialise qd0 = qnow, titr = 0
3: repeat
4: Compute the object pose based on qd0
5: Compute POI positions based on qd0
6: Compute Jacobians based on qd0
7: Compute ẋtrp, vj,obs’s, W2,j ’s, q̇mpb

8: q̇d0 = A−1b
9: qd0 = qd0 + q̇d0∆titr

10: titr = titr + ∆titr
11: until titr ≥ Titr . or until q̇d0&q̈d0 ≈ 0
12: return qd0
13: end function

3. COORDINATION STRATEGY

The motion planner presented in the previous chapter is
only for one robot locally. If in a multi-robot manipulation

system each robot moves according to its own optimum,
conflicting motion will happen. In order to achieve coordi-
nation, all robot members must have an agreement on the
desired object motion and strictly stick to it, even though
this may indicate a compromise and lead to some sacrifice
of local optimality. Based on this thought, communication
is added to the system to allow robots to negotiate.

First the robot would generate the locally optimal motion
reference qd0 using Algorithm 1, however this value will
not be sent to the controller. Instead, its corresponding
object pose Tobj,d0 will then be calculated according to
the forward kinematic model and broadcast to the whole
group. An average pose of all local optimal poses is
computed to serve as the negotiation result, denoted as
Tobj,d, and it must be fulfilled by every robot member.

Since the motion task is changed after negotiation a new
motion planning problem is formulated. Now the optimisa-
tion problem is constrained by the global agreement Tobj,d:

min
q̇d

g =

NPOI∑
j=1

1

2
(vj,d − vj,obs)TW2,j (vj,d − vj,obs)

+
1

2
(q̇d − q̇mpb)

T
W3 (q̇d − q̇mpb)

s.t. J (q) q̇d = ẋobj,d

(11)

where ẋobj,d is a desired Cartesian velocity for tracking
the global optimum Tobj,d, computed in a similar way to
ẋtrp as in Equation (3).

Compared with g0 in (1), the removal of the transportation
component is noticeable. This is because the motion of the
object is already constrained. For the same reason any ob-
stacle avoidance POI on the grasped object should also be
neglected. The other velocity variables and weights remain
the same, but since it is now a multi-robot situation, it is
worth highlighting that all vectors are transformed into
the robot local coordinate frame. The resulting q̇d will be
the final optimal joint velocity with global consideration.

The method of Lagrangian multipliers are used to solve
this equality-constrained optimisation problem, leading to

q̇d = Γ−1
(
Θ + JT

objλ
)

(12)

with

Γ =

NPOI∑
j=1

JT
v,jW2,jJv,j +W3

Θ =

NPOI∑
j=1

JT
v,jW2,jvj,obs +W3q̇d

(13)

and

λ =
(
JobjΓ

−1JT
obj

)−1 (
ẋobj,d − JobjΓ

−1Θ
)

(14)

Equation (12-14) form the final solution of this second
optimisation problem. Note that due to Equation (14), this
solution is no longer robust against singularity. A simple
workaround in practice is to use the damped least squares
inverse to avoid dangers.

With this new analytical solution, the iterative process
introduced in Section 2.2 is used again to compute a
position-level optimum, which will be fed into the low-
level robot controller. The global synchronisation of the
object motion guarantees that the grasping formation is
maintained. No internal force will thus be produced since
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there is no tendency of deformation. Additionally, when
one robot has to avoid an obstacle, the intended avoidance
motion will be propagated to the other members via
negotiation, resulting in a group cooperation for collision
avoidance.

The whole design can be intuitively explained as follows: A
robot first plans a motion based on its own demand, and
then shares its proposal with the other members. After
negotiation a compromised solution will be decided, and
the robot searches again for the locally best behaviour
under this agreement. It can be seen that from a local view
the use of multiple robots has introduced new physical con-
straints. For example, compared with the un-coordinated
case, smaller motion for obstacle avoidance would proba-
bly be observed with coordination, because the locally op-
timal motion might push the other robots towards ill poses
and they would act against this tendency. By synthesising
all the optima, these additional constraints are implicitly
tackled in the optimisation problem (11). The pseudocode
of the coordinated design is attached as Algorithm 2.

Algorithm 2 Coordinated optimisation

1: function GroupOptim(qnow, xd,trp, pobs)
2: qd0 = LocalOptim(qnow, xd,trp, pobs)
3: Tobj,d0 = f (qd0)
4: Broadcast Tobj,d0

5: Tobj,d = mean(all Tobj,d0’s)
6: Initialise qd = qnow, titr = 0
7: repeat
8: Compute the object pose based on qd
9: Compute POI positions based on qd

10: Compute Jacobians based on qd
11: Compute vj,obs’s, W2,j ’s, q̇mpb

12: λ =
(
JobjΓ

−1JT
obj

)−1 (
ẋobj,d − JobjΓ

−1Θ
)

13: q̇d = Γ−1
(
Θ + JT

objλ
)

14: qd = qd + q̇d∆titr
15: titr = titr + ∆titr
16: until titr ≥ Titr . or until q̇d&q̈d ≈ 0
17: return qd
18: end function

An advantage of this approach is that the robot does
not have to sense the whole environment or know the
whole system model, because any run-time demand of the
other members will be included in the shared task-space
information, and this also makes it easier to expand the
multi-robot system with different types of manipulators.
In this motion planning stage, only kinematic data are
used, so there is no need to measure the manipulation
forces online, which is normally expensive. Another main
strength is the minimal amount of transferred data. The
only message to be sent is a pose variable, normally costing
less than 100 bytes.

4. ROBOT ARM CONTROL

As mentioned before, for better safety and controllability,
impedance control is often preferred in physical interac-
tion with robot manipulators. The desired behaviour of
impedance control in Cartesian space is the same as a
mass-spring-damper with totally customisable dynamic

a b 

Robot #1 Robot #2 

Z 

X 

Fig. 1. The experimental setup in the robotics lab of LRS,
where (a) is a 2D laser scanner and (b) is a wooden
stick as an obstacle

parameters, but its implementation is often difficult, there-
fore in reality simpler alternatives are often used. If the
exact decoupled Cartesian space behaviour is not neces-
sary and the robot will mainly perform slow to medium
motion, a joint-space PD control can be considered. Its
torque control law

τcmd = KPx̃+KD
˙̃x (15)

is actually implemented in this work, with KP and KD

being the stiffness and damping coefficients. q̃ and ˙̃q the
joint pose and velocity error, respectively.

5. EXPERIMENT

5.1 Set-up

To evaluate the control performance, experiments are
conducted in the robotics laboratory of the Institute of
Control Systems (LRS) in the University of Kaiserslautern.
The dual-arm platform shown in Fig. 1 consists of two
Franka Emika Panda 7-DOF robot arms. The control
algorithm is implemented in C++ on two Ubuntu laptops
with the PREEMPT RT patch.

As shown in Fig. 1, Robot 1 is installed at the origin
of the world coordinate frame, while Robot 2 is on the
other side, opposing it. A Hokuyo laser scanner is used for
obstacle detection. Due to its 2D nature, the robot control
and obstacle detection have to be restricted in the XZ
plane, and a wooden stick is used as the dynamic obstacle.
The detection algorithm is implemented on a Raspberry
Pi 3B, which is in the same local area network as the
two robots. To simplify the communication topology, this
Raspberry Pi also serves as a data exchanging hub for the
negotiation, and it is also responsible for the computation
of Tobj,d. These adjustments however do not change the
control structure.

The location of Robot 2 is (0.956, 0, 0). For both robots
the initial joint pose is [0, -π/4, 0, -3π/4, 0, π/2, π/4]T.
This initial pose, as illustrated in Fig. 1, is used in all the
official programming examples by Franka and therefore in
the following experiments it is assumed to have the best
manipulability, i.e. these values are assigned to qmpb and
Equation (8) is used. In all tests, the transportation mo-
tion reference is a constant pose that coincides the initial
tense-free pose of the grasped object. The parameters are
chosen as follows:Ktrp=3I,W1=I,Kobs=2I,Wobs=30I,
robs=0.3m, Kmpb=I, W3=0.2I. For obstacle avoidance
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Fig. 2. The initial grasping states of the two objects, the
elastic tube on the left and the steel stud on the right

Fig. 3. The robot poses during the experiment without
coordination, the object being elastic

the selected POIs are the object centre, the gripper, the
wrist and elbow joints of the robot. A fixed time horizon
Titr=5s and time step ∆titr=0.01s are set for the iterative
process, which means it always performs 500 iterations.

In order to observe the effect of internal forces, an elastic
tube and a rigid steel stud will be used as the manipulated
objects in different experiments, as shown in Fig. 2. The
same test routine is designed for the manipulation of both
workpieces, and the controllers with and without coordi-
nation are both tested. A video of these experiments can
be found on YouTube: https://youtu.be/4EPGzOdIQds

5.2 Results

First the elastic tube is manipulated. During the test the
human operator moved the wooden stick to four different
positions to see how the robots react. The resulting robot
configurations without the negotiation mechanism can be
seen in Fig. 3. The detected obstacle position is marked
with a red circle. As a consequence of the conflicting mo-
tion caused by obstacle avoidance the tube has experienced
very obvious deformation in comparison with Fig. 2. The
situation with coordinated motion planning is shown in
Fig. 4, where the robots successfully maintain the grasping
geometry while avoiding the obstacle. The shape of the
elastic object is almost unchanged.

Then with the steel stud the same routine is repeated.
Because of the rigidity, no matter with or without negoti-
ation the object has not visibly deformed during obstacle
avoidance, so the photos are not attached. But now the
grasp geometry is known and fixed, therefore the internal

Fig. 4. The robot poses during the experiment with coor-
dination, the object being elastic
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Fig. 5. The internal forces on a rigid object without
coordinated motion planning
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Fig. 6. The internal forces on a rigid object with coordi-
nated motion planning

forces can be analysed using the virtual linkage model
proposed by Williams and Khatib (1993). Fig. 5 shows the
result without negotiation. A 40N conflicting force along
X in the object frame and 20Nm internal torque about
Y can be observed. This is large enough to damage some
fragile materials. In Fig. 6, where the coordination strategy
is applied to get a synchronised object motion reference,
hardly any internal stress can be observed.

The costs during the one-minute experiment without co-
ordination are shown in Fig. 7. Since the optimisation
cost functions are formulated for the velocity level, the
displayed cost here is the integration of g0 over the 500
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Fig. 7. The integrated costs in the test with a rigid object
and without coordination
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Fig. 8. The integrated costs in the test with a rigid object
and with coordination

iterations in each program cycle. The values of different
cost components are also plotted in the figures. When
the human operator moves the wooden stick close to the
robots, an obvious rise appears on the curve. Since the
weights for obstacle avoidance are large, the robots react
fast enough and this cost component always diminishes im-
mediately so the red curve experiences almost no change.

In Fig. 8 the costs with active coordination are shown, and
they are obviously larger than in the no-coordination case.
The reason is that g0 is designed only to indicate the local
performance. As discussed in Section 3, after negotiation
with the other members, the robot has to compromise and
sacrifice part of its original optimality in order to achieve
synchronisation and thus avoid dangerous internal load, so
the increase of the local costs is actually justifiable.

On one laptop with Intel Core i7-3520M and 8GB RAM,
the average online computation time is 3 milliseconds
without coordination, and 6 milliseconds otherwise. On
the other slower laptop with Intel Core 2 Duo CPU
P8700 and 4GB RAM, the computation time cost is
13 milliseconds. Since Titr=5s is actually a conservative
choice, by shortening the horizon the computation could
be even faster.

6. CONCLUSION

This paper presents a novel approach for fast optimal mo-
tion planning. An optimal velocity reference is firstly an-
alytically obtained and then through an iterative process
an optimal pose can be calculated and fed into impedance
control. The online computation can be finished within a
few milliseconds on a modern computer, therefore it is very
suitable for real implementation. Based on this method, a
coordination strategy is designed for multi-robot manipu-
lation tasks to avoid conflict in unexpected situations, e.g.
during obstacle avoidance. Experiments demonstrate that
the proposed control strategy can successfully suppress
internal forces with minimal communication effort and
only local sensing.
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