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Abstract: Various models describing a plug flow through a pipe are used for model-based
control design in industrial processes. This contribution presents a feedforward controller based
on a new modeling approach for plug flow through a pipe. The latter model combines the
advantages of partial differential and delay differential equation approaches. This structure
allows to derive the desired control input by an inverse calculation of the partial differential
equation part of the model. Moreover, the stability of the used model is proven by a spectrum
analysis of the involved system operators. Finally, the presented approach is studied in
simulation and experimentally test results are provided.
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1. INTRODUCTION

Plug flow models are widely used in industrial environ-
ments, like solar desalination plants (Santos et al., 2011),
district heating grids (Jie et al., 2012), cooling loops of
large gas engines (Bachler et al., 2017a), and Diesel ox-
idation catalysts (Lepreux, 2009). Therein different so-
phisticated control strategies are used. For instance the
output temperature is controlled by an adaptive control
law, based on a discretized thermal partial differential
equation (PDE) or a delay differential equation (DDE)
model. Lemos (2006) presents a significant example for
this type of work. Moreover, Lepreux et al. (2008) intro-
duces an open-loop control concept by an inversion of the
inlet-to-outlet temperature transfer function for a Diesel
oxidation catalyst. The current contribution presents a
different view on these latter results from a state-space
perspective. As the above cited references it is based on
the standard PDE thermal pipe model, which includes
the transport phenomena in combination with the heat
exchange between fluid and wall respectively wall and
ambient. It relies on a reformulation of this model as
an interconnection of a pure delay system and another
PDE model proposed in Bachler et al. (2017a) and Wurm
et al. (2020). In accordance with these references the latter
model is called delay partial differential equation (DPDE)
model. The specific structure of the DPDE allows for a
backward calculation, which makes a simple calculation of
the feedforward law possible. In contrast to the control
law presented by Lepreux et al. (2008) no convolution
operations have to be performed. Moreover, the DPDE
model allows an extension for variable flow rates.

The remaining part of the contribution is structured
as follows: The standard pipe model is introduced in
Section 2. The main results concerning the control design
are collected in Section 3. This includes the derivation of
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Fig. 1. Sketch of pipe test rig and used variables.

the DPDE model and the corresponding inverse model
in Section 3.1, the well-posedness and stability analysis
in Section 3.2, and the numerical implementation of the
control design in Section 3.3. Finally, simulation studies
and experimental results are presented in Section 4.

2. MODELING

The thermal behavior of a plug flow in a long pipe can
be described in various ways. For instance PDE models
are used if spatial distributed temperature information is
required. In contrast DDE or ordinary differential equation
(ODE) models are used when small calculation times are
needed. Within this section the common PDE model is
presented. Fig. 1 depicts the considered pipe of length l
with inner and outer radii Rm and Rw. The temperatures
of the medium, the wall, and the ambient are denoted
by Tm, Tw, and T∞, respectively. The inflow temperature
Tm,in is adjusted by a heater which is controlled by the
input voltage V . The velocity of the medium is denoted by
vm while the heat flux between medium, wall and ambient
is q̇. For the modeling an (i) incompressible medium with
(ii) a radially constant temperature and velocity profile
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due to turbulent flow regime is assumed. Furthermore,
thanks to a sufficiently large (iii) constant medium velocity
(iv) the thermal conduction in flow direction is neglected

for both, the wall and the medium, and (v) all material
parameters are assumed to be constant w.r.t. both space
and time. For the modeling the pipe depicted in Fig. 1
can be split up into a medium and a wall part, which are
treated separately in the next subsections.

2.1 Medium

Taking into account Assumption (ii), a constant temper-
ature profile over the cross section of the medium can be
assumed. Assumption (iv) leads to the well known one-
dimensional transport equation describing the fluid flow
in z-direction:

Amcp,mρm(vm∂zTm(z, t) + ∂tTm(z, t))

= −Umq̇(Rm, z, t) (1a)

with the specific heat capacity cp,m, the density ρm, the
cross-section area Am, and the inner circumference Um of
the pipe. The heat flux q̇(Rm, z, t) from the medium into
the wall can described by

−q̇(Rm, z, t) = αmw (Tw(z, t)− Tm(z, t)) (1b)

with the heat transfer coefficient αmw between medium
and wall (cf. Baehr and Stephan, 2011). The initial con-
dition and the corresponding inflow boundary condition
are

Tm(0, t) = Tm,in(t), Tm(z, 0) = Tm,0(z), (1c)

respectively, with the input temperature Tm,in and the
initial temperature profile z 7→ Tm,0(z).

2.2 Wall

Neglecting the heat flux in axial direction in view of
Assumption (iii) the temperature distribution within the
jacket can be described by

Awρwcp,w∂tTw(z, t)

= Umq̇(Rm, z, t)− Uwq̇(Rw, z, t) (2a)

with the heat flux q̇(Rm, z, t) between medium and wall
according to (1b) and the heat flux q̇(Rw, z, t) between
wall and ambient given by

−q̇(Rw, z, t) = −αwa (Tw(z, t)− T∞(t)) . (2b)

In above equations αwa denotes the heat transfer coeffi-
cient between wall and ambient, Aw the cross-sectional
area, and Uw the circumference of the wall. The initial
condition is

Tw(z, 0) = Tw,0(z). (2c)

2.3 Overall PDE model

An overall one-dimensional model can be obtained by (1)
and (2), which results in the one-dimensional PDE system

vm∂zTm(z, t)+∂tTm(z, t)=h1(Tw(z, t)−Tm(z, t)) (3a)

∂tTw(z, t)=h2(Tm(z, t)−Tw(z, t))

−h3(Tw(z, t)−T∞(t))
(3b)

with boundary condition

Tm(0, t) = Tm,in(t) (3c)

and the initial conditions

Tm(z, 0) = Tm,0(z), Tw(z, 0) = Tw,0(z). (3d)

The physical parameters are collected in the coefficients

h1 =
Um

Am

αmw

ρmcp,m
, h2 =

Um

Aw

αmw

ρwcp,w
, h3 =

Uw

Aw

αwa

ρwcp,w
.

As illustrated in Fig. 1 a flow heater is installed at the inlet
of the pipe to reach a desired input temperature evolution

T̂m,in. The power of the heater can be controlled by the
input voltage V . In a first step, the inlet temperature
is assumed to be perfectly adjusted by the heater. The
control strategy for the heater is not further emphasized
in the following considerations.

3. FEEDFORWARD CONTROL

In this section an open-loop control approach for tracking
a desired outflow temperature is presented. Based on the
model equations (3) the corresponding input temperature
trajectory t 7→ Tm,in(t) has to be determined. However,
the associated inverse model, which is constituted by (3)
with boundary condition at z = l instead of 0 and initial
conditions (3d) is easily shown to be ill posed. As a
consequence this inverse model has to be formulated in a
different way: This is achieved by separating the transport
delay from the model equations (3). According to Sec. 3.2
the remaining delay free model (cf. Bachler et al., 2017b;
Wurm et al., 2020), which is called DPDE model in the
sequel, can than be easily inverted by interchanging the
role of the input and the output. In order to numerically
compute the open-loop control signal an approximation of
the introduced inverse DPDE model is used. 1

3.1 Derivation of the DPDE model

Evaluating the medium part (3a) of the overall PDE model
on its characteristic curves (cf. Courant and Hilbert, 1962;
John, 1991)

Γ : ξ 7→ (z, t) = (z(ξ), t(ξ)) , ξ ∈ R
defined by

dz

dξ
(ξ) = 1,

dt

dξ
(ξ) =

1

vm
(4)

yields

dTm
dξ

(z(ξ), t(ξ))=
h1
vm

(Tw(z(ξ), t(ξ))−Tm(z(ξ), t(ξ))) .

For z ∈ [0, l], z(0) = 0, and t(l) = t̄ one obtains from (4)
z = ξ and

t(z) = t̄− τ(l − z) = ϕ(z, t̄), τ(z) =
z

vm
,

which can be interpreted as a space dependent time delay.
Note that in the following t̄ is replaced by t for convenience.

Introducing the delayed temperature

T del
• (z, t) = T•(z, t− τ(l − z)) = T•(z, ϕ(z, t))

1 As already stated within the introduction the proposed approach
can be seen as a state-space interpretation of the results presented
in Lepreux et al. (2008). Note that apart from the differences in the
formulation and the completely different numerical implementation
the model is extended by the ambient temperature in the current
contribution.
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and its derivatives

∂tT
del
• (z, t) = ∂ϕT•(z, ϕ(z, t))

∂zT
del
• (z, t) = ∂zT•(z, ϕ(z, t)) +

1

vm
∂ϕT•(z, ϕ(z, t)),

where • may be replaced by m, w,∞, the one-dimensional
model (3) can be rewritten to

vm∂zT
del
m (z, t) = h1

(
T del
w (z, t)− T del

m (z, t)
)

(5a)

∂tT
del
w (z, t) = h2

(
T del
m (z, t)− T del

w (z, t)
)

+ h3
(
T del
∞ (z, t)− T del

w (z, t)
)
.

(5b)

Note that a variable flow rate leads to an time dependent
delay, which has to be considered when calculating the
derivatives of the delayed temperatures (cf. Wurm et al.,
2020).

Solving (5a) for T del
w and substituting the result into (5b)

reveals

∂tzT
del
m (z, t) +

h1
vm

∂tT
del
m (z, t) +

h1h3
vm

T del
m (z, t)

+ (h2 + h3)∂zT
del
m (z, t) =

h1h3
vm

T del
∞ (z, t)

(6a)

with the boundary condition

T del
m (0, t) = T del

m,in (t) = Tm,in(t− τ(l)) (6b)

and the output equation

Tm,out(t) = T del
m (l, t) = T del

m,out(t). (6c)

According to Bachler et al. (2017b) and Wurm et al. (2020)
the latter model is called DPDE model.

For the control design the inverse of the above DPDE
model is employed, which is obtained by interchanging the
meaning of the inflow boundary condition (6b) and the
output equation (6c). As a consequence the inverse DPDE
model is given by (6a) with the boundary condition

T del
m (l, t) = T del

m,out (t) = Tm,out(t) (7a)

and the output equation

Tm,in(t− τ(l)) = T del
m (0, t) = T del

m,in(t). (7b)

To compute the feedforward control (6a) and (7) are solved
for a prescribed predicted outflow temperature

T pred
m,out(t) = T del

m,out(t+ τ(l)) = Tm,out(t+ τ(l)).

Finally, the corresponding inflow temperature Tm,in(t) =

T pred
m,in (t) can be read off from (7b). Note that the prediction

of the reference trajectory is needed in order to compensate
for the delay occurring in (7b).

3.2 Stability of the (inverse) DPDE model

For applicability of the proposed control design stability
of the inverse DPDE model is required. Note that the
stability properties of the original (6) and the inverse
model (6a), (7) coincide and can be shown in the same
way. Thus, within this section only the stability of the
original model (6) is investigated.

To cancel the pure time derivative of the medium temper-
ature in (6a), the transformation

T del
m (z, t) = e−

h1
vm

zT̄ del
m (z, t)

is introduced. Hence, (6a) changes to

∂tzT̄
del
m (z, t) + (h2 + h3)∂zT̄

del
m (z, t)

− h1h2
vm

T̄ del
m (z, t) = d(z)T del

∞ (z, t) (8)

with the spatial coefficient d(z) = exp
(
h1

vm
z
)
h1h3

vm
. An

integration of (8) w.r.t. z leads to

∂tT̄
del
m (z, t)−∂tT̄ del

m (0, t)+(h2 + h3)
(
T̄ del
m (z, t)−T̄ del

m (0, t)
)

− h1h2
vm

z∫
0

T̄ del
m (ζ, t) dζ =

z∫
0

d(ζ)T del
∞ (ζ, t) dζ.

The state x(·, t) = T̄ del
m (·, t) − T̄ del

m,in(t) ∈ X = L2[0, l]
is introduced, where L2 denotes the space of square-
integrable functions. This way the latter equation can be
rewritten in the form

dtx(·, t) = Ax(·, t) + Bu(·, t) (9a)

with the system bounded operator A : X → X

Ax̄ = −(h2 + h3)x̄+
h1h2
vm
V(x̄), x̄ ∈ X (9b)

and the bounded input operator B : R2 → X

(Bu(t)) (z) =
h1h2
vm

zT̄ del
m,in(t)+

z∫
0

d(ζ)T del
∞ (ζ, t) dζ.

(9c)

Additionally, the Volterra operator in (9b) is defined by
V(x̄)(z) =

∫ z
0
x̄(ζ) dζ. The ambient temperature T del

∞ and

the boundary value T̄ del
m,in are considered as inputs and are

collected in u ∈ R2.

Since A is bounded it is the infinitesimal generator of the
uniformly continuous C0-semigroup as described in (Pazy,
1983, Theorem 1.2). As a consequence, the spectrum σ of
the system operator completely determines the stability
properties of the generated semigroup (see Engel, 1999,
Theorem I.3.14).

At first the injectivity of sI − A, s ∈ C, is checked by
solving

(sI −A)x̄ = 0,

i.e.

(s+ h2 + h3)x̄(z)− h1h2
vm

z∫
0

x̄(ζ) dζ = 0. (10)

A spatial differentiation of (10) reveals

(s+ h2 + h3)∂zx̄(z)− h1h2
vm

x̄(z) = 0. (11)

One can easily see that the cases (a) s = −h2−h3 and (b)
s 6= −h2 − h3 have to be studied separately.

(a) For the case that s = −h2 − h3 (11) implies

−h1h2
vm

x̄(z) = 0

and therefore, x̄ = 0.

(b) Assuming s 6= −h2−h2 one can solve (11) to obtain

x̄(z) = x̄(0) exp

(
h1h2

vm(s+ h2 + h3)
z

)
, (12)

which again yields the trivial solution x̄(z) = 0 after
applying the boundary value x̄(0) = 0 complying with
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(10). Consequently, sI −A is injective independently of s.
Thus, there are no eigenvalues and the point spectrum σp
of the system operator is empty:

σp(A) = ∅.

In a second step surjectivity of sI − A is examined by
analyzing (sI −A)x̄ = ȳ, i.e.,

(s+ h2 + h3)x̄(z)− h1h2
vm

z∫
0

x̄(ζ) dζ = ȳ(z). (13)

(a) In the case s = −h2 − h3 spatial differentiation of
(13) delivers

x̄(z) = − vm
h1h2

∂z ȳ(z).

As a consequence, the range of sI − A equals H1[0, l] ⊂
L2[0, l], where H1[0, l] denotes the Sobolev space of
(weakly) differentiable functions in L2[0, l]: The operator
sI −A is not surjective for s = −h2 − h3 but has a dense
image. Thus, s = −h2−h3 belongs to continuous spectrum
of A (Curtain and Zwart, 1995).

(b) Again, assuming s 6= −h2−h3 by evaluating a spatial
differentiation of (13) leads to

∂zx̄(z)− h1h2
vm(s+ h2 + h3)

x̄(z) =
∂z ȳ(z)

s+ h2 + h3

with initial conditions x̄(0) = ȳ(0). Using the standard
variation of constants solution for this inhomogeneous
ODE together with the initial condition, a simple inte-
gration by parts reveals the solution of the latter equation
and, therefore, of (13):

x̄(z) =
ȳ(z)

ν
− h1h2
vmν2

z∫
0

e
h1h2
vmν

(z−ζ)ȳ(ζ) dζ.

Therein, ν = s + h2 + h3 6= 0. Since the right-hand side
of the above solution defines a bounded linear map on
L2[0, l], sI −A is surjective for all s 6= −h2 − h3.

Summarizing the above analysis, the spectrum of A con-
sists of the continuous spectrum only (Curtain and Zwart,
1995):

σc(A) = {−h2 − h3}.
Thus the following theorem holds.

Theorem 1. The operator A defined in (9b) generates an
uniformly continuous and exponentially stable semigroup
(Engel, 1999, Theorem I.3.14) satisfying

‖eAt‖ ≤ C e−µt, ∀µ < h2 + h3

and an appropriate positive constant C, depending on µ.
Moreover, B is continuous the solution

x(·, t) = eAtx(·, 0) +

t∫
0

eA(t−τ)Bu(·, τ) dτ

is well defined and bounded for bounded inputs.

Proof. Since A is bounded it generates a uniformly con-
tinuous semigroup satisfying the spectrum determined
growth condition. By the above analysis and the bounded-
ness of B the result is an immediate consequence of (Engel,
1999, Theorem I.3.4).

3.3 Numerical Implementation

In order to calculate the open-loop inflow temperature
Tm,in from a predicted prescribed output temperature

T pred
m,out the DPDE model is discretized w.r.t. the spatial

variable. This is achieved by means of the finite difference
method (FDM), i.e., by approximating the spatial deriva-
tives by the difference (T•,i(t) := T del

• (zi, t)):(
∂zT

del
•
)

(zi, t) ≈
T•,i(t)− T•,i−1(t)

∆z
, i = 1, . . . , n.

Therein, n specifies the number of n + 1 equidistant
sampling points z0, ..., zn with the distance ∆z = l/n. As
a consequence the DPDE model (6) can be approximated
by a system of n ODEs:

dt (Tm,i−1(t)− k1Tm,i(t)) = k2 (Tm,i(t)− Tm,i−1(t))

+ k3 (T∞,i(t) + Tm,i(t)) (14)

with the constants

k1 =
vm + h1∆z

vm
, k2 = h2 + h3, k3 =

h1h3∆z

vm
.

In order to derive the feedforward signal, the DPDE
approximation (14) can be represented by the matrix
equation

dtTm(t) = Am Tm(t) + bm,1dtTm,out(t)

+ bm,2Tm,out(t) + DmT∞(t)
(15)

with the corresponding system matrix Am ∈ Rn×n, input
vectors bm,1, bm,2 ∈ Rn, and disturbance matrix Dm ∈
Rn×n. The delayed temperatures are collected in

T•(t) = (T•,0(t), T•,2(t), . . . , T•,n−1(t))
T
.

In order to obtain a continuous input temperature

T pred
m,in (t) = Tm,0(t) = Tm,in(t) = T del

m,in(t+ τ(l)),

the prescribed output temperature T pred
m,out has to be at least

continuous. To obtain a smooth transition the prescribed
outflow temperature is defined by the trajectory:

T pred
m,out(t) =


Tm,out,S, t ≤ tS
3 (t−tS)2

∆t2 − 2 (t−tS)3
∆t3 , tS < t < tE

Tm,out,E, t ≥ tE.
(16)

The planned trajectory starts at time tS from the initial
output temperature Tm,out,S and ends at the final output
temperature Tm,out,E at time tE. Therein, the transition
time is denoted by ∆t = tE − tS.

Note that in case of variable flow the previously described
steps can be applied in a similar way.

4. SIMULATION STUDY AND EXPERIMENTAL
VALIDATION

In this section the feedforward control approach is ver-
ified in simulation studies and validated experimentally
on the test rig depicted in Fig. 2. This test rig was
specifically designed for validation of various numerical
approximations of the DPDE model proposed in Wurm
et al. (2020). An extended version of this test rig is used
to show the applicability of the presented feedforward
control approach. All further investigations consider the
medium to be water. The pipe under consideration has
a total length of 5.54 m, an inner diameter of 16.2 mm
and an outer diameter of 22 mm. At nine measurement
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T9 ṁ
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Heater 1

Fig. 2. Pipe test rig used for validation of the control strategy.

Table 1. Used parameters for studies.

Parameter Value Unit

ρw 7856 kg

m3

cp,w 500 J
kgK

ρm 997.04 kg

m3

cp,m 4179 J
kgK

l 5.54 m

αmw 3032.16 W

m2 K

αwa 67.22 W

m2 K

points, which are distributed over the entire length (cf.
Fig. 2), the medium and wall temperatures are captured
by PT100 and thermocouples, respectively. Additionally,
the ambient temperature is measured by another ther-
mocouple while the volume flow rate through the pipe is
tracked by applying the principle of differential pressure.
The heater has a total power of 9 kW and is controlled
by pulse width modulation (PWM) triggering a thyristor
relay. The medium temperature before the heater is also
captured by a PT100 sensor. The signal processing and
control of the heater PWM signal is done by an Arduino
Mega complemented with appropriate sensor boards. The
required heat transfer coefficients αmw and αwa of the pipe
are determined by a least squares identification algorithm
based on the measured medium temperature at the in- and
outlet. The simulation study and validation are performed
in Python. Tab. 1 presents the used physical parameters
for the DPDE model (6) and for the benchmark model (3).

4.1 Simulation study

For the simulation study the following scenario is con-
sidered: a polynomial temperature trajectory as defined
in (16) is prescribed at the output z = l of the pipe.
It starts at 13 ◦C and ends at 65 ◦C after a transition
time of 150 s. The medium velocity is set to 0.8 m

s and an
ambient temperature of 25 ◦C is assumed. For the scenario
the discretized feedforward controller (15) is used with
n = 4. The derived control law from (15) is feed to a by
the FDM discretized one-dimensional PDE model (3) with
an high resolution of 201 sampling points. The results of
these simulation are presented in Fig. 3. One can easily see
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0.800
0.825

v m

[ m s

]

Fig. 3. Simulation results of presented feedforward control
approach.

that the desired output temperature is perfectly tracked
by the feedforward controller.

4.2 Measurement study

For the measurement study a polynomial transition of the
form (16) is planned for the desired pipe outlet temper-

ature T pred
m,out. A transition from 20 ◦C to 35 ◦C in 150 s

is intended. To this end, the desired input temperature

T pred
m,in is calculated by applying (15) with n = 4. Moreover,

a constant ambient temperature of 26 ◦C and a constant

velocity of 0.42 m
s is assumed to derive T pred

m,in (t) = Tm,in(t).
In order to track the desired input temperature a propor-
tional–integral–derivative (PID) controller combined with
a Smith predictor (Smith, 1957) is implemented at the
Arduino board. The Smith predictor is based on a simple
linear heater model, approximating the heater dynamics
for a certain velocity and ambient temperature. As Fig. 4
illustrates, the desired input temperature cannot be per-
fectly pursued by the heater controller. This is mainly
caused by the simple heater model used for the Smith
predictor. Nevertheless, it can be seen that the measured
outlet temperature nearly meets the desired one.
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Fig. 4. Measuremnt data compared against desired values
at the pipe out- and inlet.

5. CONCLUSION AND OUTLOOK

The contribution presents a feedforward control approach
for a plug flow through a pipe based on distributed pa-
rameter model. This is achieved by separating the delay
imposed by the transport process from the remaining
dynamics. This separation allows for a straight-forward
computation of the inflow temperature from a given de-
sired output temperature of the pipe. Applicability of
the presented approach is shown by means of simulation
studies and experimental results. Moreover, the feasibility
of the presented control approach is proven by a spectrum
analysis of the involved system operators.

As discussed in Section 4.2 the overall control structure
comprises a subordinated temperature controller, which is
not emphasized within the current contribution. However,
as Fig. 4 shows, the desired input temperature cannot be
exactly tracked by the present heater controller. Therefore,
a more sophisticated control strategy for the heater has
to be developed. This can be achieved by combining the
presented approach with the ideas proposed in Laroche
et al. (2000) and Lynch and Rudolph (2002) for a heated
rod. Moreover, the extension to the variable flow case
will be addressed in forthcoming research. Furthermore,
in order to improve existing control strategies, the ap-
plication of the presented algorithm to cooling loop net-
works and catalysts will be elaborated on. In addition,
the underlying DPDE model shall be used for observers
aimed to estimate the spatially distributed temperature
profile. Such observers are of particular interest in catalyst
control applications. Finally, the model may serve as the
basis for the development of diagnosis and fault detection
algorithms in the spirit of Fischer and Deutscher (2018).
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Rohrströmungen. at-Automatisierungstechnik, 65(8).

Baehr, H.D. and Stephan, K. (2011). Heat and Mass
Transfer. Springer Science + Business Media.

Courant, R. and Hilbert, D. (1962). Methods of Mathe-
matical Physics II. Methods of Mathematical Physics.
Interscience Publishers.

Curtain, R.F. and Zwart, H. (1995). An Introduction to
Infinite-Dimensional Linear Systems Theory. Springer
New York.

Engel, K.J. (1999). One-Parameter Semigroups for Linear
Evolution Equations (Graduate Texts in Mathematics).
Springer New York.

Fischer, F. and Deutscher, J. (2018). Modulating function
based fault detection for parabolic systems with poly-
nomial faults. In IFAC-PapersOnLine, volume 51.

Jie, P., Tian, Z., Yuan, S., and Zhu, N. (2012). Mod-
eling the dynamic characteristics of a district heating
network. Energy, 39(1), 126–134.

John, F. (1991). Partial Differential Equations. Applied
Mathematical Sciences. Springer New York.

Laroche, B., Martin, P., and Rouchon, P. (2000). Motion
planning for the heat equation. International Journal of
Robust Nonlinear Control, 10, 629–643.

Lemos, J.M. (2006). Adaptive control of distributed
collector solar fields. International Journal of System
Science, 37(8), 523–533.

Lepreux, O. (2009). Model-based Temperature Control of a

Diesel Oxidation Catalyst. Ph.D. thesis, École Natinale
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