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Abstract: Rumor spreads fast in social networks and may produce significant damages to
the society. Blocking users in online social networks is normally used as a technical measure
to control information spread. In this work, we provide a non-linear formulation to minimize
rumor spread in linear threshold networks by blocking a subset of nodes in the network.
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1. INTRODUCTION

The prevalence of online social media has been witnessed
in the past decades where people are more and more
likely to exchange ideas, share information, and even adopt
innovations or new products. Thus a rich body of the
research has been devoted to analyzing the propagation
of information, opinion, social behavior, and innovation.
To model such propagation, Kempe et al. (2003) firstly
proposed two main discrete diffusion models, namely the
Linear Threshold Model (LTM) and the Independent Cas-
cade Model (ICM). Both models consist in directed graphs
denoted by G(V,E), where each node represents a user or
an individual and has two alternative states at a given time
step, namely active (if it has adopted the innovation) and
inactive (if it has not adopted the innovation). Initially,
all the nodes are inactive. At time step t = 0, a subset of
nodes S ⊆ V is activated in order to start the diffusion
process, other nodes stay inactive.

We know that rumors spread very fast in social networks
and could produce significant damages to the society. For
instance, the rumor “Two explosions in White House and
Obama is injured” occurred in April 23, 2013 caused 10
billion USD losses before the rumor was clarified. There-
fore, the problem of containing or controlling rumor spread
which we focus on in this paper is nonnegligible. Rumor
control strategies can be divided into two categories: net-
work disruption strategies and counterbalance strategies.

Counterbalance strategies aim to reduce the diffusion of
rumors by spreading correct information. The works in (He
et al., 2012; Yang et al., 2020; Zhang et al., 2015) address
the problem of minimizing rumor spread by spreading
correct information under different extensions of the LTM.
In both (He et al., 2012) and (Zhang et al., 2015), it
is assumed that their diffusion model is progressive, i.e.,
an individual activated by a type of information cannot
switch to any other ones. However, Yang et al. (2020) allow
individuals who activated by rumor first to reconsider their
belief which fits better with real individual behaviors.

Network disruption strategies aim to disconnect the inac-
tive nodes from active nodes and can be carried out by
removing (or blocking) some critical nodes or links from
the underlying network to suppress the rumor spread.

The blocking of a link is understood as deleting the link.
Kimura et al. (2009) used the natural greedy algorith-
m by removing links to find approximate solutions for
minimizing the spread of undesirable entities under the
ICM and LTM respectively. Yan et al. (2019b) studied the
same problem under the ICM. Two different problems to
minimize rumor spread are formalized for threshold models
in (Kuhlman et al., 2013) by blocking some links with
heterogenous costs.

Blocking users in online social networks may refer to
denying access to some users such that they cannot see and
spread rumor. From the network perspective, the blocking
of a node is normally understood as deleting or removing
this node and all the connections related with this node
from the underlying network such that the rumor cannot
pass from it and to other nodes any more. This point of
view is considered in works (Wang et al., 2013; Yan et al.,
2019a). Wang et al. (2013) use the option of blocking a
subset of nodes (so called blockers) to minimize rumor
spread and a natural greedy approach is presented. In
(Yan et al., 2019a), Yan et al. propose a heuristic to find
the top-k blockers for general networks and a dynamic
programming for tree networks under the framework of
the ICM.

We notice that the removal (or block) of nodes involves the
removal (or block) of links. However, the solutions to the
problem of removing links cannot be directly applied to the
problem of removing nodes. Furthermore, in population
networks, it is more reasonable and of interest to adopt the
option of blocking nodes than blocking links. Therefore, in
this work, we adopt the option of blocking nodes to contain
rumor spread.

In this paper, we consider the Linear Threshold model
to describe the rumor spread in social networks. From

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2880



the network perspective, in order to identify the set of
nodes to be blocked, instead of removing the selected
nodes from the network, we increase their thresholds to
a value greater than 1. Since, in the LTM it is assumed
that the sum of influence weight from one’s in-neighbors
is 1, any node with threshold that is above 1 will never
be activated. We define the top-k blockers problem. Based
on the blocked linear threshold network, we present a non-
linear programming formulation to find the top-k blockers
to minimize the rumor spread.

2. LINEAR THRESHOLD NETWORK

First, we introduce the Linear Threshold model to describe
the information propagation in social networks.

A linear threshold network NLT is a 4-tuple (V,E, θ, w)
where V = {1, 2, ..., n} is the set of nodes in the network
and E ⊆ V × V is a set of directed arcs, i.e, (i, j) ∈ E
when there is an arc from node i to another distinct node
j. Function θ : V → (0, 1] is a mapping that assigns a
threshold value θi ∈ (0, 1] to each node i ∈ V . Function
w : V × V → (0, 1] is a mapping that assigns an influence
weight wij ∈ (0, 1] to each arc (i, j) ∈ E such that wij = 0
if (i, j) /∈ E and

∑

i∈V wij = 1 for all j ∈ V .

Let Θ = Diag([θ1, θ2, · · · , θn]) be the threshold matrix
whose diagonal elements are the thresholds of the nodes
and all other elements are equal to 0. The weighted
adjacency matrix W ∈ [0, 1]n×n of network G is defined as
follows,

W (i, j) =

{

wij , if i 6= j ∧ (i, j) ∈ E

0, otherwise,

W (j, j) =







1, if
∑

i6=j

wij = 0

0, otherwise.

Each node in a network represents an individual or agent
and the thresholds θi represent the different tendencies
of nodes to adopt the innovation when their neighbors do
(Kempe et al., 2003). We define the in-neighbor set of node
i ∈ V as Ni = {j|(j, i) ∈ E}. Arc (i, j) in a network
denotes that node j can be influenced by node i.

Let φ0 be the seed set which represents a set of agents
that are initially activated at step t = 0. The activation
from the seed set propagates in the network step by step.
We denote φt the set of nodes which are activated at step
t. The set of nodes active at step t, i.e., those that have
been activated at step t or at an earlier one, is denoted by
Φt =

⋃t

k=0
φk. By definition, we have Φ0 = φ0.

At each step t = 1, 2, . . . , an inactive node i becomes active
if the total influence weight of its neighbors active at step
t− 1 is at least θi, i.e.,

i ∈ φt ⇐⇒
∑

j∈Ni∩Φt−1

wji ≥ θi (∀i ∈ V \ Φt−1) . (1)

The evolution propagates until no more individuals adopt
the innovation and the network reaches a steady state.
Then we define the set of final adopters as Φ∗(NLT , φ0) =
⋃∞

k=0
φk.

We can compute the set of final adopters by simulating
the evolution process from step 0 to the end at which
no more nodes can be activated, i.e., Algorithm 1, with
computation complexity O(nd) where d is the average
degree of the underlying network.

Algorithm 1 Computing Φ∗(NLT , φ0)

1: Input: A linear threshold networkNLT = (V,E, θ, w),
a seed set φ0 ⊆ V .

2: Output: The set of final adopters Φ∗(NLT , φ0).
3: Let Φ = φ0, Φc = V \ φ0, Φold = ∅.
4: Let k = 0.
5: while φk 6= ∅ do
6: Let k = k + 1, φk = ∅.
7: Let Φold = Φ.
8: for v ∈ Φc do
9: if

∑

u∈Φold∩Nv
wuv ≥ θv then

10: φk = φk ∪ {v}.
11: end if
12: end for
13: Let Φ = Φ ∪ φk.
14: Let Φc = Φc \ φk.
15: end while
16: Let Φ∗(NLT , φ0) = Φ.

2.1 Properties of linear threshold network

Instead of simulating the evolution process of the network
to compute the set of final adopters, in this part we show
a linear algebraic way based on the notion of cohesiveness.

In (Acemoglu et al., 2011), Acemoglu et al. presented a
definition of cohesive set for un-weighted linear threshold
networks, we generalize the definition to weighted network-
s in the following.

Definition 2.1. A subset X ⊆ V is called a cohesive set if
for all i ∈ X it holds:

∑

j∈X∩Ni

wji > 1− θi (2)

Note that for a cohesive set X , if φ0 ∩X = ∅, then ∀t ≥ 0,
φt ∩X = ∅. In other words, if no individual in X belongs
to the seed set, then no individual in X will adopt the
innovation at the following steps. The union of cohesive
sets is also cohesive.

Lemma 2.1. (Acemoglu et al., 2011) Given a linear thresh-
old network NLT = (V,E, θ, w) with seed set φ0 ⊆ V , let
M ⊆ V \ φ0 be the maximal cohesive set contained in
V \ φ0. The final adopter set is:

Φ∗(NLT , φ0) = V \M (3)

Definition 2.2. Given a set X ⊆ V , its characteristic
vector x ∈ {0, 1}n is such that xi = 1 if i ∈ X , otherwise
xi = 0, i.e.,

xi =

{

1, if node i ∈ X

0, otherwise.

The sufficient and necessary condition for a cohesive set
proposed in (Rosa and Giua, 2013) can also be generalized
to weighted networks.

Lemma 2.2. A set X ⊆ V is cohesive if and only if its
characteristic vector x satisfies

xTW (·, i) ≥ 1− θi (∀i ∈ X). (4)
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and W (·, i) is the i-th column of the weighted adjacency
matrix W .

Lemma 2.1 gives a direct way to compute the set of final
adopters that does not require to determine the evolution
of the network. Then based on Lemma 2.1 and 2.2, a linear
characterization of the set of final adopters is proposed
shown in Proposition 2.1.

Proposition 2.1. (Rosa and Giua, 2013) Given a linear
threshold network NLT = (V,E, θ, w) with n nodes, let
φ0 ⊆ V be a seed set with characteristic vector y.
The maximal cohesive set M contained in V \ φ0 has a
characteristic vector x∗ that is the solution of the following
ILP:

max
x

1T · x (ILP − 1)

s.t. 1− x ≥ y

[I −Θ−WT ]x ≤ 0

x ∈ {0, 1}n.

where I is a n×n identity matrix. The set of final adopters
is Φ∗(NLT , φ0) = {i ∈ V |x∗

i = 0}.

Note that the operators ≤ and ≥ are intended component-
wise for vectors.

2.2 Network evolution with blocking of nodes

The set of blocked nodes is called as blocker set in
literature and denoted by Sb ⊆ V \ φ0. We then discuss
the effect of blocking of nodes on the network evolution.

Algorithm 2 Computing Φ∗(NLT , φ0, Sb)

1: Input: A linear threshold networkNLT = (V,E, θ, w),
a seed set φ0 ⊆ V , a blocker set Sb ⊆ V \ φ0.

2: Output: The set of final adopters with blocker set Sb:
Φ∗(NLT , φ0, Sb).

3: Let θ
′

i = 0 for any node i ∈ V .

4: Define a blocked linear threshold network N
′

LT =

(V,E, θ
′

, w).
5: for i ∈ V do
6: if i ∈ Sb then
7: θ

′

i = θi + 1.
8: else
9: θ

′

i = θi.
10: end if
11: end for
12: Compute Φ∗(N

′

LT , φ0) by Algorithm 1.

13: Let Φ∗(NLT , φ0, Sb) = Φ∗(N
′

LT , φ0).

Given a linear threshold network NLT = (V,E, θ, w), a
seed set φ0 ⊆ V , and a blocker set Sb ⊆ V \ φ0, we
denote the set of final adopters with blocker set Sb by
Φ∗(NLT , φ0, Sb) and it can be computed by Algorithm 2.
Line 5 – 11 shows the procedure to generate a blocked
linear threshold network N

′

LT = (V,E, θ
′

, w) where θ
′

is a

mapping that assigns a threshold value θ
′

i for each node
i ∈ V such that

θ
′

i =

{

θi + 1, if i ∈ Sb

θi, else.

A linear threshold network NLT with blocker set Sb

generates a blocked linear threshold network N
′

LT which

is a special linear threshold network with some thresholds
larger than 1. Nodes with θ

′

i > 1 in N
′

LT are blocked

nodes. The activation rule of a node in N
′

LT is the same as
in the standard LTM NLT . We know from the definition
of the LTM that the sum of influence weight from one’s
in-neighbors is 1. According to Equation (1), nodes with

θ
′

i > 1 can never be activated, which is consistent with
the aim of blocking a node to prevent the node from being
activated and in turn influencing its out-neighbors. In the
following, we give an example to show how the blocking of
nodes influences the network evolution.

We discuss a property of a blocked node in the following
which implies that any blocked node is cohesive itself and
therefore can never be activated by others.

Proposition 2.2. Given a linear threshold network NLT =
(V,E, θ, w) and a seed set φ0 ⊆ V , any node in a blocker

set Sb ⊆ V \φ0 is cohesive in network N
′

LT = (V,E, θ
′

, w).

Proof. For any node i ∈ Sb, we have θ
′

i > 1. Therefore, it

always holds that
∑

j∈X∩N in

i

wj,i > 1 − θ
′

i where X denotes

any subset contained in V , which implies that i is cohesive
in network N

′

LT . 2

3. PROBLEM STATEMENT

Containing rumor spread can be attained by controlling
some critical nodes such that the influence of the rumor
seeds can be minimized. Here we focus on blocking a set
of nodes of the network and consider what we call top-k
blockers problem.

Problem 3.1. (Top-k blockers problem) Given a diffu-
sion model represented by n nodes with seed set φ0 ⊆ V ,
let k be a positive integer. Find a set of at most k nodes
denoted by Sb ⊆ V \φ0 to be blocked such that the number
of final adopters |Φ∗(φ0, Sb)| is minimized, i.e.,

min
Sb

|Φ∗(φ0, Sb)|

s.t. |Sb| ≤ k (a)

Sb ⊆ V \ φ0 (b)

4. OPTIMAL SOLUTION

Based on the notion of cohesiveness in N
′

LT , we can
search for the top-k blockers in linear threshold network
by solving a mathematical programming.

4.1 Non-linear formulation

Let b ∈ {0, 1}n be the characteristic vector of Sb where
bi = 1 denotes that node i ∈ V is blocked and 0 not
blocked, i.e.,

bi =

{

1, if node i is blocked

0, otherwise.

Given LTM NLT and a blocker set Sb ⊆ V \ φ0 with
characteristic vector b, then the threshold of each node
i ∈ V in N

′

LT can be written as

θ
′

i = θi + bi.
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Since networks NLT and N
′

LT have the same set of nodes
V and edges E, and influence weights w, we can use the
same notations A and W to denote the adjacency matrix
and weighted adjacency matrix for N

′

LT . Then we have the
following sufficient and necessary condition for a cohesive
set in N

′

LT .

Corollary 4.1. Given a linear threshold network NLT =
(V,E, θ, w), a seed set φ0, and a blocker set Sb ⊆ V \ φ0

with characteristic vector b, a set is cohesive in network
N

′

LT = (V,E, θ
′

, w) if and only if its characteristic vector
x satisfies

xTW (·, i) ≥ 1− (θi + bi) (∀i ∈ X). (5)

Let Θ
′

= Diag([θ
′

1, θ
′

2, · · · , θ
′

n]) denote the threshold ma-

trix in network N
′

LT and can be written as:

Θ
′

= Θ+B,

where B = Diag(b) is a n × n matrix (called blocker
matrix ) whose diagonal element B(i, i) equals to bi and
other elements are zero.

Based on Corollary 4.1, we can formalize the top-k blockers
problem under linear threshold network as a non-linear
programming.

Proposition 4.1. Given a linear threshold network NLT =
(V,E, θ, w) with n nodes, let y be the characteristic vector
of the seed set φ0 ⊆ V and k ∈ R+ a constant. Consider
the following non-linear programming (NLP) with binary
variable vectors x and b:

max
x,b

1T · x (NLP )

s.t. 1− x ≥ y (a)

x ≥ b (b)

1T · b ≤ k (c)

[I − (Θ +B)−WT ] · x ≤ 0 (d)

x, b ∈ {0, 1}n (f)

where I is an identity matrix, and let x∗, b∗ ∈ {0, 1}n

be the global optimal solution of (NLP). Then the set of
nodes S∗

b = {i ∈ V |b∗i = 1} is the optimal blocker set of
the top-k blockers problem and the corresponding set of
final adopters is Φ∗(NLT , φ0, S

∗
b ) = Φ∗(N

′

LT , φ0) = {i ∈
V |x∗

i = 0}.

Proof. Constraint (b) ensures that each blocked node
must be also cohesive. Constraints (a) and (b) imply
that b ≤ x ≤ 1 − y which indicates that the blocker
set Sb and the seed set φ0 are disjoint. Constraint (c)
ensures that a set Sb whose characteristic vector is b is
an admissible solution to the problem. Constraints (a)
and (d) and the objective function ensure that the set
M with characteristic vector x is the maximal cohesive
set contained in V \ φ0 in N

′

LT = (V,E, θ
′

, w), hence

Φ∗(N
′

LT , φ0) has characteristic vector 1 − x thanks to
Lemma 2.1. Finally, the objective function ensures that the
set S∗

b with characteristic vector b∗ is an optimal solution
to the problem. 2

5. CONCLUSION

Blocking users is normally used as a technical measure to
control information spread in online social networks. We

first present the effect of blocking of nodes on network
evolution and then define the top-k blockers problem. To
discover the top-k blockers, we provide a non-linear formu-
lation of this problem based on the notion of cohesiveness
in linear threshold networks.
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