Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

On-Line Synthesis of Permissive
Supervisors for Partially Observed Discrete

Event Systems under scLTL Constraints

*

Ami Sakakibara*** Toshimitsu Ushio *

* Graduate School of Engineering Science, Osaka University, 1-3
Machikaneyama, Toyonaka, Osaka, 560-8531, Japan (e-mail:
sakakibara@hopf.sys.es.osaka-u.ac.jp; ushio@sys.es.osaka-u.ac.jp)
** JSPS Research Fellow

Abstract: We consider a supervisory control problem of a discrete event system (DES) under
partial observation, where a control specification is given by a fragment of linear temporal logic.
We design an on-line supervisor that dynamically computes its control action with the complete
information of the product automaton of the DES and an acceptor for the specification. The
concepts of controllability and observability are defined by means of a ranking function defined
on the product automaton, which decreases its value if an accepting state of the product
automaton is being approached. The proposed on-line control scheme leverages the ranking
function and a permissiveness function, which represents a time-varying permissiveness level.
As aresult, the on-line supervisor achieves the specification, being aware of the tradeoff between
its permissiveness and acceptance of the specification, if the product automaton is controllable

and observable.

Keywords: On-line supervisory control, discrete event systems, partial observation, linear

temporal logic, ranking function, automata.

1. INTRODUCTION

The supervisory control theory for discrete event systems
(DESs) has been widely studied since its initiation in
Ramadge and Wonham (1987). Supervisor synthesis turns
out to be computationally hard when the controlled sys-
tem is large or has much complex aspects. Researchers
have overcome this difficulty by designing supervisors on-
line. Chung et al. (1992, 1993, 1994) proposed a method
to generate limited lookahead trees on-the-fly instead of
constructing a complete supervisor; their methods have
been extended to the settings of partial observation (Hadj-
Alouane et al., 1996) or time-varying DESs (Grigorov and
Rudie, 2006). Another extension is to design on-line super-
visors for partially observed DESs, where the supervisor
modifies appropriate control actions precomputed in the
case of full observation (Heymann and Lin, 1994; Prosser
et al., 1998).

In the supervisory control framework, control requirements
are typically given by formal languages, i.e., subsets of
event sequences generated by the system. Practically, we
need to translate desired behavior of the system into
formal languages, which is a hard task. For this reason,
linear temporal logic (LTL) is paid much attention to
as a formal specification language for control problems,
thanks to its rich expressiveness (Belta et al., 2017; Tu-
mova and Dimarogonas, 2016; Jiang and Kumar, 2006).
It is practically acceptable to restrict the specification

* This work was supported by JST ERATO Grant Number JPM-
JER1603, Japan, and JSPS KAKENHI Grant Number JP19J13487,
Japan.

Copyright lies with the authors

language to a fragment of LTL like syntactically co-safe
LTL (scLTL), for which synthesis problems can be solved
in much less complexity than for the case of the general
LTL (Kupferman and Y. Vardi, 2001).

In Sakakibara and Ushio (2020), we consider a supervisory
control problem of a DES under an scLTL constraint. We
propose an on-line control scheme, where we leverage a
ranking function that enables us to find desirable behavior
with respect to the scLTL specification. The concept
of ranking functions is similar with that of Lyapunov
functions, which play a great role in determining control
strategies. The key idea is that, if the rank decreases along
a trajectory, we regard it as good. Ranking functions are
useful in solving games played on a graph and reachability
analysis of automata, which sometimes give solutions to
LTL-related problems. We define a ranking function on
the product automaton of the DES and the specification
automaton so that its value decreases if an accepting
state of the product automaton is being approached. To
implement the tradeoff between supervisor permissiveness
and specification acceptance, we additionally introduce
a permissiveness function that provides a time-varying
permissiveness level. If we have a higher permissive level,
the supervisor may enable events that do not necessarily
lead to the achievement of the specification. By referring to
the permissiveness level together with the ranking function
at each step of the on-line control process, the supervisor
computes more permissive control patterns.

This paper extends the on-line supervisory control scheme
proposed in Sakakibara and Ushio (2020) to the setting of
partial observation. After each observation, the supervisor

2160

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

dynamically computes its control action with the informa-
tion of the fully observed product automaton, on which the
ranking function is defined. Furthermore, we characterize
the concepts of controllability and observability by means
of the ranking function. The supervisor forces the DES to
satisfy the scLTL specification if the product automaton
is controllable and observable.

The rest of this paper is organized as follows. Section
2 gives fundamental definitions and notations. Section 3
formulates a supervisory control problem for scLTL spec-
ifications. Section 4 briefly explains the ranking function
and its related properties. Section 5 proposes our on-line
control scheme. Section 6 demonstrates the scheme with a
simple example. Finally, Section 7 concludes the paper.

2. PRELIMINARIES

For a set T, we denote by |T| its cardinality. T* (resp., T%)
represents a set of finite (resp., infinite) sequences over T'.
For a finite or infinite sequence 7 over T, let 7[j] be the
(j + 1)-st element of 7. For any j,k € N with j < k, we
denote by 7[j...k] the sequence 7[j]7[j + 1]...7[k]. We
write 7/ < 7 if 7/ is a prefix of 7. For a finite sequence
7 € T*, ||| stands for the length of 7.

2.1 Discrete Event Systems

A discrete event system (DES) is a tuple
G=((X,%,6,x0),AP, L),
where X is the set of states, ¥ is the set of events, a partial
function § : X x ¥ — X is the transition function, g € X
is the initial state, AP is the set of atomic propositions,
and L : X — 247 is the labeling function. G is said to be
finite if X, ¥, and AP are all finite. We write §(z, o)! if
a transition from x with o is defined. For each = € X,
let ¥(z) = {0 € ¥ : §(x,0)!}. We denote by a triple
(z,0,2') a transition from z € X to 2’ = §(x, o) for some
o € X(z). Moreover, the transition function is extended to
a sequence of inputs: for ¢ € ¥ and s € ¥*, §(x,¢e) = x
and §(z, so) = 6(d(x, s),0).

Let L(G) = {s € ¥* : §(xo,s)!} be the set of all finite
event sequences generated by (. An infinite sequence
p € X(XX)¥ is called a run if, for any j € N, p[2(j +
1)] € d(p[2]], p[27 + 1]). A finite sequence h € X (X X)*
is called a history if h € X or, for h with ||h|| > 3,
h[2(j+1)] € 8(h[24], h[2j+1]) for any j € {0, 1,..., 1M=2},
The set of runs (resp., histories) starting from the initial
state xg is defined as Runs(G) (resp., His(G)). DES G is
said to be deadlock-free if, for any s € L(G), there exists
o € 3 such that §(zg, so)!.

The event set is partitioned into disjoint subsets ¥ = 3. U
Yue, where 3. (resp., ¥,.) is the set of controllable (resp.,
uncontrollable) events. We define ¥.(z) = ¥(x) N 3, and
Yuc(z) = X(z) N Xy for each x € X. We have another
partition of the event set ¥ = X, U X, with the set X,
(resp., Xy,0) of observable (resp., unobservable) events. Let
P . ¥* — ¥ be a natural projection defined inductively
as follows:

Ple) =¢,
Jo ifoeX,,

Vs € 2% Vo € %, P(s0) = {P(S .

2161

We also define the inverse P! : 2% — 2% as P~Y(T) =
{s € ¥* :t € T, P(s) = t}. The observable behavior of the
DES Gis given by P(L(G)) = {s =P(t) € &% : t € L(G)}.

For the set AP, a letter v € 24 stands for a subset of
atomic propositions. A word is a finite or infinite string
of letters. Each run in Runs(G) generates a sequence of
letters, namely a word over 247 obtained by the labeling
function. We extend the labeling function to express such
words: for run p, L(p) = L(p[0])L(p[2]) The extension
for histories is defined similarly.

2.2 Syntactically Co-Safe Linear Temporal Logic

Linear temporal logic (LTL) is useful to describe quali-
tative control specifications. In this paper, we focus on
syntactically co-safe LTL (scLTL), a subclass of LTL.
Formally, an scLTL formula ¢ over the set AP of atomic
propositions is defined as

pu=true |a|-a |1 A2 | o1 Ve | O |pUps,
where a € AP, ¢, @1, ps are scLTL formulas. In addition,
we usually use a temporal operator <, which is defined by
O = trueUep.

The semantics of scLTL is defined over an infinite word
(Baier and Katoen, 2008). Intuitively, O is true if ¢ holds
on the word from the next step and ¢ Ugs if ¢1 keeps to
be satisfied until o turns true at some step. For an scLTL
formula ¢ over AP and an infinite word w € (247)¥, we
write w = ¢ if w satisfies p. For a DES G and an scLTL
formula ¢, we say G satisfies ¢, denoted by G | ¢, if
L(p) = ¢ for all p € Runs(G).

Although scLTL formulas are evaluated over infinite
words, it is known that we only need to check whether an
input word has a good prefix of the formula. Any scLTL
formula can be translated into a corresponding determin-
istic finite automaton (DFA), which is an acceptor for
the good prefixes (Kupferman and Y. Vardi, 2001). For
an scLTL formula ¢, let A, = ((Xa,%X4,04,240),F4)
be its corresponding DFA, where X 4 is the set of states,
¥ 4 = 247 is the input alphabet, a total function §4 : X 4 x
¥4 — X4 is the transition function, x40 € X4 is the
initial state, and F4 C X 4 is the set of accepting states.
For any w € (247)%, we have

whk e < € 2P) w 2 wAda(rag,w) € Fa.

(1)
3. FORMULATION

In this paper, we formulate a supervisory control problem
with scLTL specifications. A controller, called a supervisor,
enables some controllable events at each state (Ramadge
and Wonham, 1987). For each state x € X, we define
I(z) = {y C Z(z) : Tuc(z) C v}, where v € T'(z) is
called a control pattern at x. Let I' = (J, . I'(z) be the
set of all control patterns. The supervisor determines a
control pattern after each observation. Formally, we define
a supervisor under partial observation P as a mapping
S:PL(G)) —T.

Definition 1. (Supervised behavior). Let S be a super-
visor under partial observation P for a DES G =

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

((X,%,6,20), AP, L). The closed-loop behavior of the DES
G under the control by S, denoted by S/G, is given by

e € L(S/G), and
Vs € L(S/G),s0 € L(S/G)

< so € L(G) No € S(P(s)).
Runs(S/G) = {zgo121 ... € Runs(G) : 01 € S(¢)

/\V] 2].,O-jJrl € S(P(Uldg .. O'J))}

Problem 2. Given a finite deadlock-free DES G = ((X, %, 0,
xo), AP, L) and an scLTL formula ¢ over AP, synthesize
a supervisor S under partial observation P such that

S/G E .

To solve Problem 2, we design an on-line supervisor, which
dynamically computes a control pattern after observing
an event occurrence. Our control scheme is divided into
two stages; we first execute the preprocessing off-line,
and then move on to the on-line control stage, where
it stops controlling the DES after detecting a history
corresponding to a good prefix of the scLTL specification.

4. RANKING FUNCTION

The specification given by an scLTL formula ¢ is trans-
lated into the equivalent DFA A,. Then, we obtain the
product automaton P of the DES G and the DFA A,
which is computed as follows.

P=G® A, = ((Xp,Xp,0p,7pp), Fp),

where Xp = X x X4 is the set of states, Xp = X is
the set of events, dp : Xp x ¥p — Xp is the transition
function, zpo = (z0,04(x 4,0, L(x0))) is the initial state,
and Fp = X X F4 is the set of accepting states. For
each x = (xg,24) € Xp and 0 € Xp, dp(z,0) =
(6(zG,0),04(za, L(6(2zc,0)))) and we define Jo(z) = z¢
and Ja(x) = x4. The two kinds of event partitions
are inherited from the DES: Yp, = X, X¥pyc = Zue,
Ypo =2, and Xp o = Xyo. Note that L(P) = L(G) and
P(L(P)) = P(L(G)).

Since the product automaton captures the behavior of the
DES and the DFA at the same time, our goal turns out
to reach an accepting state of the product automaton.
For that purpose, we introduce a ranking function with
the existence of uncontrollable transitions (Sakakibara and
Ushio, 2020), which decreases its value if an accepting state
is being approached.

Definition 3. Let P = ((Xp,Xp,0p,xpo), Fp) be a prod-
uct automaton. A function £ : Xp — N is a ranking
function for P if

Vo € Xp o € Zpyc(z),
&(z) > min {{(0p(z,0)) + Ip, (z), a},

where a > |Xp| — |Fp| and Ir, : Xp — {0,1} is an
indicator function such that Ip,(x) = 1 if and only if
x ¢ Fp.

In Sakakibara and Ushio (2020), we propose an algorithm
to compute a ranking function for the product automaton.
Here, we show important results related to the ranking
function ¢ with the upper bound a = |Xp| — |Fp| + 1.

Proposition 4. For any x € Xp, x € Fp if and only if
§(x) = 0.

Proposition 5. For any © € Xp,
(r) <a = IseXp,dp(x,s) € Fp.
Proposition 6. For any z € Xp,
0<{(z) <a
— {0 € Xp(x): {(x) > £(0p(z,0))} # 0.
Proposition 7. For any z € Xp \ Fp,

Epuc(r) € {o € Bp(x) : {(z) > £(0p(2,0))}

Proposition 6 ensures that a lower-ranked successor always
exists. Moreover, as mentioned in Proposition 7, each
successor associated with an uncontrollable event has a
lower rank than that of the current state.

In general, the existence of supervisors under partial obser-
vation depends on the controllability and observability of
the specification language. Although these properties are
defined by means of languages in the conventional super-
visory control theory (Cassandras and Lafortune, 2008),
here we characterize them with the ranking function.

Definition 8. The product automaton P is said to be
controllable (with respect to &) if {(xpy) < a.

Definition 9. The product automaton P is said to be
observable (with respect to & and P) if

Vs, s’ € L(P), Vo € ¥p,
P(s) = P(s") AN&(dp(xpo,s) > E(0p(zpp,50))
Ns'a e L(P)
= £(0p(zpo,8") > E(0p(zp0,8'0)).

If the context is clear, we simply say P is controllable or
observable without referring to £ and P. The observability
condition requires that, if an event is defined after different
sequences with the same observation, then all of the
transitions triggered by the event agree with each other
in a sense of whether the product automaton gets closer
to accepting states or not.

We characterize transitions of the product automaton with
respect to the ranking function. Let (z,0,2') € Xp X Xp x
Xp be a transition defined in the product automaton.

o (z,0,2') is legal (with respect to &) if £(x) > &(a).

o (z,0,2') is neutral (with respect to &) if &(z) <
&) < a.

o (z,0,2') is illegal (with respect to §) if £(2') = a.

It is possible to lead the product automaton to reach an
accepting state if we always choose legal transitions. On
the other hand, however, we are likely to obtain more
permissive supervisors if we allow not only legal transitions
but also neutral ones to be enabled. Permissiveness is
one of the most important concepts in the supervisory
control theory, where we often aim to design a supervisor
that enables as many events as possible Cassandras and
Lafortune (2008).

5. ON-LINE SUPERVISORY CONTROL UNDER
PARTIAL OBSERVATION

In this section, we explain the on-line supervisory control
scheme for Problem 2, given the product automaton P
and the ranking function £. Notice that we have a tradeoff
between permissiveness of the supervisor and achievement

2162

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

of the specification. The supervisor becomes more per-
missive if it enables events triggering neutral transitions.
However, infinitely many occurrences of neutral transitions
results in livelock, i.e., the product automaton may stay
within states z with 0 < &(x) < « while it always holds
the possibility of reaching an accepting state but actually
suspends going there.

To take the tradeoff into consideration, we introduce
a criterion for how many neutral transitions we allow
to be enabled. More precisely, the supervisor we design
determines its control action on-line, being aware of a time-
varying permissiveness level, which is referred to together
with the ranking function to improve permissiveness of
supervisors. Here, we introduce a function that quantifies
the permissiveness level.

Definition 10. A permissiveness function is a function 7 :
N — R that satisfies the following three conditions.

(1) n(0) <«
(2) (k) > (ke + 1) for any k € N;
(3) n(k) =0 for some k € N.

That is, the permissiveness level decreases as time goes by
and will eventually be exhausted.

With partially observed information, the supervisor can-
not know which state the product automaton is currently
in. We define the unobservable reach (Hadj-Alouane et al.,
1996) from a state x € Xp under an event subset ¥’ C Xp
as follows.

URs/(z) ={2' € Xp :u € (Buo NY)*, 2" = ép(z,u)}.
For a subset X’ C Xp, let URE/(X/) = UmEX' URZ/(CC)
The set of next states after each observation is defined
recursively as follows: for s, € P(L(P)) and o, € X,

NS(e) = {zpo},
NS(s,0,) = {2’ = ép(z,0,) € Xp : © € URs, (NS(s,))}

The key idea of our on-line control scheme is made up of
the following two rules. First, we always enable events that
trigger legal transitions no matter which state the DES
is in or how much the permissiveness level currently is.
Second, it is possible to allow neutral transitions if we have
enough permissiveness level. These concepts are realized
by two different control actions given by, for each x € Xp
and k € N,

Aeg(x) ={c € Ep:Is € 3, 0p(z,8)! Adp(z, so)!

NE(Sp(x,5)) > &(dp(x,50))},

Aper(z, k) ={c € p : Vs € X7,

dp(z,s0)! = €(6p(x,so)) <n(k)}.

Applying Ajeq(x) results in occurrences of only legal tran-

sitions within URy, (z) while the supervisor enables events

in Aper(x), which potentially trigger neutral transitions, if

the permissiveness level is high. The supervisor refers to

the permissiveness function to determine whether such ad-

ditional events are currently acceptable. From Proposition
6, we have the following proposition.

Proposition 11. If the product automaton is controllable,
then for any z € Xp \ Fp, we have jeq(z) # 0.

Proposition 12. Assume that the product automaton is
controllable and observable. Then, for any = € Xp \ Fp,
we have

Vo € Jeg(x), Vs € X,

uo’

op(x, 8)IN0p(x, s0)! = &(0p(x,s)) > &(dp(x, s0)).

Proof. Let x € Xp \ Fp. From Proposition 11, then,
Yieg(x) # 0. Suppose that, for some o € §j¢4(x), we have
ds e 37 op(x, s)! Adp(z,s0)! 2)
NE(Gp(z,5)) < £(0p(x,50)).
From the definition of 4;¢4(z), the event o satisfies
3s" € ¥ 0p(z, s) A dp(x,s'o)! 3)
NEGp(x,5)) > EGp(w, 50)).
Let t, € L(P) such that dp(xpg,t;). Then, we have
P(L(tys)) = P(L(tys")) but for the event o both Egs. (2)
and (3) hold, which contradicts the assumption that the
product automaton is observable.

In the on-line control scheme, the supervisor keeps the set
NS(s,) of states where the product automaton is estimated
to be based on the observation s, € P(L(P)). After
observing an observable event o, € %,, the supervisor
updates the set to NS(s,0,) and computes a control
pattern to be applied for the control of URsg(NS(s,0,)).
Ijhen, based on the idea mentioned above, the supervisor
S computes a control pattern satisfying, for each s, €

P(L(P)),
8(50) = A1eg(NS(50)) U Aper(NS(s0), 150, (4)

where
Yieg(NS(s0)) = U Yieg (@),
z€NS(s,)
S (NS(s)) = () per @):
2zE€NS(s,)

From Proposition 11, we have the following proposition.

Proposition 13. If the product automaton is controllable,
then for any s, € P(L(P)), F1eq(NS(s0)) # 0.

Proposition 1. Assume that the product automaton is
controllable and observable. Then, for any s, € P(L(P))
and any x € NS(s,),

Va' e UREP (iE),VO’ € ’?leg(NS(SO)) \’?leg(x), _'5P(xlv J)('5)

Proof. We prove the proposition by contradiction. Let
S € P(L(P)). By the controllability of P and Proposition
13, we have J4(NS(s,)) # 0. Suppose that, for some
' € URg,(x), there exists 0 € H1eq(NS(s5)) \ Yieg()
with dp (2, 0)!. This means that for some y € NS(s,) with
y # x, we have 0 € Jieq(y) and dp(2’, 0)!. Equivalently,
both of the following conditions hold for some o:

1) 3, € P (s0), 2 = 0p(zpo,ts) ATu € X5, Sp(x,uo)!.
2) Jt, € P (s0),y = Sp(rpo,ty) A3sy, € X5, 5p(y,5,)!
A6p(y, syo)! AEWOP(Y, sy)) > §(8p (Y, 5y0)).
In the above conditions, we have P(t,u) = P(tz)e = S,
and P(t,ys) = P(ty)e = So. To sum up, we have
3t t, € L(P), P(t,) =P(t,) Ntyo € L(P)

zr Yy T
NEWGP(y,ty)) > E0p(y,t,0)) Ntyo € L(P).
On the other hand, however, it holds that £(dp(x,t))) <
E(0p(z,tlo)) because o ¢ Hieq(x). We now have the
contradiction to the observability condition of the product
automaton.

2163

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Algorithm 1 An on-line supervisory control algorithm
for a DES G under an scLLTL constraint ¢, given the prod-
uct automaton P = ((Xp,Xp,dp,zpo), Fp), a ranking
function € : Xp — N, and a permissiveness function 7

1: if P is controllable and observable then

2: NS%{CL’R(]},k(*O

3: while NS g Fp do

4: Vi 0,9, +— O, UR <+ O, NS" + 0

5: for all z € NS do

6: LEGEXPAND(2, v, J&, UR, NS’)

7 for all o € Ep’c \ (’yk @] :)’Ic) do

8: URy <+ 0,NS! «+ (), st « false

9: for all x € NS do

10: REEXPAND(z, v, U {o},URy, NS/, n(k),
st)

11: if st then

12: break

13: if —st then

14: Y e U {0}

15: UR+ URUUR,

16: NS' < NS'"UNS/

17: 0, < observe(G, i)

18: NS« {2/ e NS :x € UR,2' =dp(x,0,)}

19: k+—k+1

20: else

21: There is no supervisor for G that guarantees ¢

under partial observation.

1: function LEGEXPAND(x € Xp,~,5, UR,NS’)
2: if 2 ¢ UR then

3: UR + URU{x}

4: for all 0 € ¥p(z) do

5: if £(z) > £(0p(z,0)) then

6: v+ ~yU{o}

7: if o € 3, then

8: LEGEXPAND(ép(2,0),7,7,UR, NS’)
9: else
10: NSI(*NS/U{&D(IL',U)}
11: else if £(0p(z,0)) = a then
12: ¥+ yU{c}

1: function REEXPAND(z,~v,UR, NS’ 1, st)
2: if x ¢ UR A —st then
3: UR + URU {z}
4: for all c e yNEp(x) do
5: if £(0p(x,0)) < ni then
6: if 0 € 3, then
7: REEXPAND(6p(z,0),v,UR, NS’ 1y, st)
8: else

9: NS"« NS'"U{ép(z,0)}
10: else

11: st < true

From Proposition 14, we have the following lemma.

Lemma 15. If the product automaton is controllable and
observable, we have, for any s, € P(L(P)),

YV € NS(SO), UR%eg(NS(so))(x) = UR;Yleg(x)(x)'

Corollary 16. If the product automaton is observable,
then for any s, € P(L(P)),

Vx € NS(s,), £(2") < ().

max
=’ €UR5, (Ns(so)) (2)

5.1 On-line Control Algorithm

Main part. The on-line supervisory control scheme is
described in Algorithm 1. The supervisor keeps the sets
NS of next states after the observation so far, which is ini-
tialized with {zpo}. At each step k, the on-line supervisor
computes a control pattern v, that will be applied to N.S,
the corresponding unobservable reach U R, and the set N.S’
of new next states after potential occurrences of observ-
able events. The functions LEGEXPAND and REEXPAND
compute Jieg(NS) and Aper(NS), respectively (but for
now we skip the detailed explanations). After computed,
the control pattern i is issued to the DES G, which
executes one of the enabled events. The new observation
is represented by the function observe(G,7y), according to
which the supervisor updates information related to the
memory NS and time step k and then determines the next
control action.

Subfunctions. In the main part of Algorithm 1, we first
compute Jeq(NS) by the function LEGEXPAND. Then,
by the function REEXPAND, we additionally examine
whether other controllable events can be added to the
next control pattern. The functions LEGEXPAND and
REEXPAND expands states in NS in a depth-first-search
mannar until an observable event is detected.

The function LEGEXPAND expands an input state x € Xp
and updates 7,75, UR, and NS’ if necessary. When a legal
transition with an event ¢ is detected during the search,
the event is added to ~y. After the call of LEGEXPAND
in Algorithm 1, we have 4;.4(N.S) and the unobservable
reach of NS under the control pattern J.q(NS). We
move on to the other function REEXPAND, which examines
each controllable event o, that has not been in 4;4(N.S).
Unlike LEGEXPAND, we have a global boolean variable
st, initialized with false. It is necessary to examine all
states that may be visited if 0., the currently examined
controllable event, is added to . If we find the event o,
cannot be in Ay, (INS), then the variable st turns to be
true.

5.2 Correctness of Algorithm 1

The on-line supervisor refers to the current rank &(x)
and the current permissiveness level n(k) to take into
consideration the tradeoff between permissiveness and
acceptance of the specification. More precisely, the more
permissiveness level we have, the more neutral transitions
we allow to be enabled. Since the permissiveness level
decreases with the elapse of time, the supervisor enables
fewer events as time goes by. In the following, we show the
correctness of Algorithm 1.

Lemma 17. If the product automaton is controllable, then

for any s, € P(L(P)), S(s,) # 0.

Proof. By Eq. (4), for any s, € P(L(P)), we have S(s,) 2
Y1eg(NS(s,)), which is always nonempty as mentioned in
Proposition 13.

Lemma 18. For any s, € P(L(P)) and any z €
URs(NS(s,)), we have S(s,) € T'(Jg(x)).

2164

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Proof. From Proposition 7, we have §1.4(z) € I'(Ja(z))
for any x € Xp. Then, by Eq. (4) and the definition of
Y1eg(NS(s5)), the lemma holds.

Proposition 19. Assume that the product automaton P is
observable. For any z € Xp with 0 < {(x) < «, there
exists k € N such that, for any [> k, 4per(z,1) = 0.

Proof. Note that, for each z € Xp and k € N,
[{o€Zp():£(@p@a’,0)) <n(k)}.

z’€URs ()

’AYper(xa k) =

By the second and third conditions of Definition 10, on
the other hand, there exists & € N such that, for all [> k,
n(l) = 0. Since the ranking function £ returns nonnegative
values, {0 € Xp : £(dp(z,0)) < 0} = 0 for any = € Xp.
That is, we have Yper (2, 1) = (), cyry () @ = 0 for all { > k.

Lemma 20. Assume that the product automaton P is
observable. In the while loop of Algorithm 1, neutral
transitions of the product automaton occur only finitely
often.

Proof. We prove the lemma by contradiction. Suppose
that neutral transitions occur infinitely often. That is,
there exists s € ¥ such that
Vk e N3l > k, ©
£(0p(rpo,s[0...1)) < E(Bp(zposl0...1+1). O
Let op41 := s[l+1] for some [€ N that satisfies the
above inequality, ;41 = dp(xpo,s[0...1]), and t; :=
P(s[0...1]). Then, we have

141 € S(t1) = A1eg (NS(t1)) U Aper (NS(t0), [[1]])-
Since transition (z;, 0741, x;+1) is neutral, it holds that

141 € per (NS(t2), [Ite]])- (7)
By Eq. (6), therefore, there exist infinitely many [€ N
satisfying Eq. (7), which contradicts Proposition 19.

Lemma 21. Assume that P is controllable and observable.
In Algorithm 1, an accepting state of the product automa-
ton is eventually reached under the control by the on-line
supervisor S.

Proof. Recall that n(0) < a and that e is nonincreasing,
as mentioned in Definition 10. By the controllability of
P, we have £(xpo) < «. Since the on-line supervisor

S never allows illegal transitions, we have, for any s €
L(S/Q), €(6p(xpo,s)) < «. By Proposition 5, then, it
is always possible to lead the product automaton to an
accepting state by some appropriate event sequence. From
Lemma 20, while the on-line computation is running,
the supervisor S observes neutral transitions only finitely
often. Let k € N be the step index such that n(k) = 0.
Then, for any observation s, € P(L(P)) with ||s,|| > k, we
have S(5,) = A1e4(NS(8,)). In other words, the supervisor

S chooses only legal transitions after time step k. Since
the rank always decreases during each legal transition,
eventually a state ranked as 0, namely, an accepting state
is reached.

Theorem 22. S/G | ¢ if P is controllable and observable.

Proof. From Lemma 21, the on-line supervisor forces the
plant DES G to generate event sequences with which
the product automaton eventually reaches an accepting
state. Note that, when an accepting state of the product

NO=
AR

0.{b ,{c
{b}) {e}

(e} {a}
Vo Yo\
4/\)

" o=

Fig. 1. (Left) The DES G., discussed in Section 6, where
Yo = {01,02,03} and ¥,, = {u1,us,us,uqs}. (Right)
The DFA A,,__ translated from ¢.,, where F4 = {y;}.

0,{b}, {cK

Pew

automaton is reached, then the corresponding word is
accepted by the DFA A,. By Eq. (1), any run that has
the corresponding history as a prefix satisfies the scLTL
formula .

6. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the proposed method with
a simple example. Consider a DES G, depicted in the left
of Fig. 1, where X = {xg, 21, 22,23, 24}; Xp = {01,02,03}
and Y,, = {ui,us,us,us}; AP = {a,b,c}; L(zg) =
L(xy4) = 0, L(z1) = {a}, L(x2) = {b}, and L(z3) = {c}.
We assume that all events are controllable and the initial
state is z¢. For the DES G, we impose an scL.TL formula
Yex = Ca A —aUb A —~aUc as a control specification. ¢,
requires to eventually go to a state labeled with a after
visiting both b-states and c-states. We use a tool Spot ! to
translate ., into a DFA, which is shown in the right of
Fig. 1.

Let n(k) = max{—k+5,0}. Then, at the initial step of the
on-line control scheme, the unobservable reach from N.S =
{zpo = (z0,y0)} is computed as shown in Fig. 2. After
the call of LEGEXPAND, we have UR = {(x0,v0), (z2,93)},
NS = {(x3,92)}, and 70 = Fieg((%0, Y0)) = {u2,02}. Since
the current permissiveness level is n(0) = 5, the function
REEXPAND adds us3, 01, 03 t0 9. The sets UR and NS’ are
also updated with the related states. We do not expand
the state (z1,y5) any more because its rank hits the upper
bound.

Assume that observe(G..,vy) = o1, according to which
the supervisor updates NS to {(zo, %0), (24, %0)} and ends
up obtaining vy; = o after the computation at the next
step. Then, assume that the event o0, is observed again,
i.e., observe(Gey,v1) = 01. Although we start from the
same set NS = {(zo,y0), (x4,%0)} as the previous step,
we have a different result. Since 1(2) = 3, the function
REEXPAND does not add to the current control pattern
Y2 events triggering neutral transitions to states ranked
as 3. At the end of the computation for ¥ = 2, we have
Y2 = {UQ,OQ} and NS/ = {(Ig,yg)}.

Similarly, after observing o, = observe(Gez,¥2), only legal
transitions are enabled because all states reachable from
(z3,y2) have a rank lower than n(3) = 2. At the end of
the computation at step 3, we have NS’ C Fp. No matter
which event is observed, then, the supervisor stops the
control.

1 https://spot.lrde.epita.fr/

2165

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

@)

Fig. 2. The computation tree of the unobservable reach
at the initial step (k = 0), where circle and rectangle
nodes represent states in UR and NS’, respectively,
bold arrows are transitions triggered by an observable
event, and legal transitions are colored by red. A node
label of the form (i, j) stands for state (x;,y;) € Xp.
The rank of each state is shown by an additional label
of the form ().

7. CONCLUSION

We propose a novel on-line supervisory control scheme of
partially observed DESs to achieve a control specification
given by scLTL formulas. We introduce the controllability
and observability based on the ranking function, which
derives a sufficient condition for the existence of the on-
line supervisor. In the on-line computation, the supervisor
computes the unobservable reach after each observation
and refers to the ranking function together with the per-
missiveness function. Depending on the permissiveness
level at each step, the supervisor improves its permissive-
ness if possible. It is future work to extend the proposed
scheme to cases of general or quantitative LTL and to
establish a verification method of the observability.

REFERENCES

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT Press.

Belta, C., Yordanov, B., and Aydin Gol, E. (2017). For-
mal Methods for Discrete-Time Dynamical Systems.
Springer International Publishing.

Cassandras, G.C. and Lafortune, S. (2008). Introduction
to Discrete Event Systems. Springer US, 2 edition.

Chung, S.L., Lafortune, S., and Lin, F. (1992). Limited
lookahead policies in supervisory control of discrete
event systems. IEFEFE Trans. Autom. Control, 37(12),
1921-1935.

Chung, S.L., Lafortune, S., and Lin, F. (1993). Recursive
computation of limited lookahead supervisory controls
for discrete event systems. Discret. Fvent Dyn. Syst.
Theory Appl., 3(1), 71-100.

Chung, S.L., Lafortune, S., and Lin, F. (1994). Supervisory
control using variable lookahead policies. Discret. Event
Dyn. Syst. Theory Appl., 4(3), 237-268.

Grigorov, L. and Rudie, K. (2006). Near-optimal on-
line control of dynamic discrete-event systems. Dis-
cret. Event Dyn. Syst. Theory Appl., 16(4), 419-449.

Hadj-Alouane, N.B., Lafortune, S., and Lin, F. (1996).
Centralized and distributed algorithms for on-line syn-
thesis of maximal control policies under partial obser-
vation. Discret. Event Dyn. Syst. Theory Appl., 6(4),
379-427.

Heymann, M. and Lin, F. (1994). On-line control of
partially observed discrete event systems. Discret. Event
Dyn. Syst. Theory Appl., 4(3), 221-236.

Jiang, S. and Kumar, R. (2006). Supervisory control
of discrete event systems with CTL* temporal logic
specifications. SIAM J. Control Optim., 44(6), 2079—
2103.

Kupferman, O. and Y. Vardi, M. (2001). Model checking
of safety properties. Formal Methods in System Design,
19(3), 291-314.

Prosser, J.H., Kam, M., and Kwatny, H.G. (1998). Online
supervisor synthesis for partially observed discrete-event
systems. IEEE Trans. Autom. Control, 43(11), 1630
1634.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM J.
Control Optim., 25(1), 475-498.

Sakakibara, A. and Ushio, T. (2020). On-line permissive
supervisory control of discrete event systems for scLTL
specifications. IEEE Control Systems Letters, 4(3), 530
535.

Tumova, J. and Dimarogonas, D.V. (2016). Multi-agent
planning under local LTL specifications and event-based
synchronization. Automatica, 70, 239-248.

Appendix A. COMPUTATION OF RANKING
FUNCTION

Here, we briefly explain the results in Sakakibara and
Ushio (2020), where we propose an algorithm to compute
a ranking function given the product automaton P of
the DES and the DFA. We obtain a ranking function by
Algorithm A.2.

Algorithm A.2 Computation of a ranking function

Input: A product automaton P = ((Xp,Xp,dp,zpo),
Fp

Outpu)t: A ranking function £ : Xp —» N

a < |Xp|—|Fp|+1

: for all x € Xp do
§(x) <0

while 3z € Xp s.t. &(z) < up, (€(z),z) do

§(x) = up,(§(2), 7)

AN R e

As initialization, we set &(z) = 0 for each x € Xp and
a = |Xp|—|Fp|+ 1. Then, we go on to update the values
of € by using functions £ : Xp — Nand up,, : NxXp — N,
defined as follows. For each x € Xp,
min {(dp(z,0)) i Tpye(z) =0,
o€EXp.c
op(,

agﬁcf(p(z,0))

For any r € N and x € Xp,
1 if Fp A
upa(r,x)z{r+ ifx ¢ FpAr<a,

r otherwise.
To sum up, the current rank is incremented if the current
state is not accepting with at least one uncontrollable
event defined and the rank has not hit the upper bound;
otherwise the rank does not change.

§(z) =

otherwise.

2166

