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Abstract: In this paper, we describe a preliminary experiment of citizenship engagement in the context
of marine robotics using imitation learning to train a controller that mimics human behavior. The
experiment has been carried out during the Festival della Comunicazione in Camogli, Italy, in September
2019. In more detail, citizens have been asked to pilot a small, light, and safe autonomous surface vehicle
in front of a crowded public beach with the goal of performing an S-shaped path. The trajectories and
controls performed by non-expert human operators have been recorded with the aim of training an
imitation system that, after collecting a sufficient number of trajectory-control pairs, has been able to
drive the vehicle without human intervention. To learn the human behavior, echo state networks have
been employed as approximating architectures. The resulting controller turned out to be very effective
in successfully performing the considered experiment with a reduced amount of training trajectories by
imitating the human behavior also in unknown situations. The success of this experiment may pave the
way to new research processes where citizens are actively engaged.
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1. INTRODUCTION

In recent years, the development of technology in the field
of autonomous robotic vehicles has faced various legal and
societal issues, related to public acceptance of the diffuse use
of mobile robots operating in not professionally-structured en-
vironments and in the presence of daily activities carried out by
human beings. This has pointed out bottlenecks in robot capa-
bilities of understanding heavily unstructured environments and
situations, where complex dynamics and interactions appear.

In the case of marine and maritime systems, where strate-
gic research is driven by the lighthouse of the autonomous
ship, the possibility of applying control techniques based on
artificial intelligence (AI) has received greater and greater at-
tention from the research community. In this perspective, AI
is used to handle uncertain and heavily-constrained dynamic
systems by providing the ability to adapt to changes in the
environment and to implement efficient decisions. Reinforce-
ment learning techniques have been applied, for instance, to
ship berthing (Amendola et al., 2018), navigation in restricted
waters (Pereira Figueiredo and Pereira Abou Rejaili, 2018), and
steering of under-actuated ships (Tuyen et al., 2017). Owing to
its capability in capturing helmsman behaviour, deep learning
has been proposed to navigate autonomous vessels, and its ap-
plication has been extended to situation awareness and collision
avoidance (Perera, 2018).

However, operations of autonomous marine vehicles are not
yet regulated by the International Maritime Organization, and
several societal barriers continue to slow down the introduc-
tion of unmanned/autonomous robots in civil, commercial, and
consumer domains. This is particularly evident when a closer
interaction with human beings is required. Furthermore, citi-
zens often perceive port, shipyards, and marine technology as
a source of pollution or as a separator between city and sea
rather than as an engine of eco-sustainable technological devel-
opment. Thus, the dissemination of research activities in this
field is fundamental to face the aforementioned issues. To this
purpose, communication has to be regarded as “a strategically-
planned process that starts at the outset of the action and con-
tinues throughout its entire lifetime, aimed at promoting the
action and its results” (Scherer et al., 2018). In the meantime,
the European Community is supporting citizenship engagement
as an effective way to connect citizens, experts, and policy
makers (Figueiredo Nascimento et al., 2016). In this context,
citizenship engagement can pave the way to social acceptance
of autonomous robots interacting with humans beings in their
daily life.

In this paper, we present a preliminary experiment of citizen-
ship engagement in the research process of a robotic marine
vehicle, supported by AI-based approaches. In more detail, we
report the results of an experimental setup placed in front of a
public beach in the village of Camogli, located in North-West
Italy, within the Festival della Comunicazione in September
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Fig. 1. SWAMP at the Festival della Comunicazione, Camogli,
Italy, September 14-15, 2019.

2019. This experiment involved a small, light, and safe au-
tonomous surface vehicle (ASV) named SWAMP (see Fig. 1).
Such vehicle has been designed and constructed in the labora-
tories of the Institute of Marine Engineering of the National
Research Council of Italy (CNR-INM), to meet the require-
ments of accessing extremely shallow waters typical of wet-
lands (Odetti et al., 2018, 2019a). It is equipped with azimuth
pumpjet actuators and soft foam-made hulls. The performed
experiment consists in a situation where citizens actively con-
tribute to data collection by driving and instructing the ASV. In
more detail, volunteers piloted the ASV from a pier near the
beach, with the goal of passing through two gates made up by
four buoys in the same direction, thus describing an S-shaped
path. The trajectories and controls performed by human beings
were recorded with the aim of training an imitation system that,
after collecting a sufficient number of trajectories and controls
pairs, was able to drive the ASV without human intervention. A
challenge was to perform training also exploiting inexperienced
human pilots, such as kids or young students. A high interest
of citizens has been recorded in remotely controlling the robot
since this has been perceived as playing a video game.

The paradigm under which a robot learns how to perform tasks
and complex manoeuvres exploiting examples from a reference
controller, such as a human being, is a well-addressed research
topic in the recent literature (see, e.g., Hussein et al., 2017 and
the references therein). This paradigm is usually referred to as
imitation learning. In its basic form, often called behavioral
cloning, it consists in equipping the robot with an approximat-
ing architecture that is trained in order to replicate the actions
performed by the reference controller. This is obtained through
a classic supervised learning approach, in which the patterns
are the states visited by the robot and the corresponding targets
are the actions performed by the demonstrator, i.e., the human
being. In general, such an approach is not the most efficient one
in terms of performance optimization (Abbeel and Ng, 2004).
However, its intuitive principle is easily understandable by a
general audience, which makes it ideal in a scenario where
citizenship engagement is a goal that is more important than
the optimized execution of tasks.

To learn the human behavior, recurrent neural networks (RNNs)
have been employed as approximating architectures. In more
detail, we have employed the echo state network (ESN) model
(Grigoryeva and Ortega, 2018), in which the weights of the
input and recurrent layers are randomly extracted and not
trained, and only the linear output layer is optimized, according
to the so-called reservoir computing paradigm (Tanaka et al.,
2019). This guarantees a very fast training procedure, which is
an essential requirement due to the very limited available time

to process data and show the results. In fact, these operations
were performed in real time in front of the audience. ESNs
have been already applied to robotic control in the literature,
including marine vehicles and imitation learning (see, e.g.,
Antonelo and Schrauwen, 2015; van der Zant et al., 2004).

Despite its overall simplicity, the combination of behavioral
cloning and ESNs has allowed the trained robot to successfully
perform the considered task, exhibiting a robust behavior and
good generalization capabilities starting from various initial
points.

The rest of this paper is organized as follows. A description of
the SWAMP ASV is provided in Section 2, while the adopted
imitation learning techniques for the purpose of control are
presented in Section 3. Experimental results are reported in
Section 4, and future research perspectives are discussed in
Section 5.

2. THE SWAMP ASV

SWAMP 1 (Shallow Water Autonomous Multipurpose Plat-
form) is a fully electric, portable, lightweight, safe, and highly-
controllable catamaran. It is equipped with azimuth pumpjet
actuators, and it is characterized by a soft-foam, unsinkable hull
structure with high modularity and a flexible hardware/software
architecture. It was designed and constructed from scratch in
the laboratories of CNR-INM to operate in very shallow waters.
These characteristics are crucial for its integration in the collec-
tive ambience of a beach village like Camogli. The soft hull is
suitable for working in coastal areas in the bathing season since
an impact with swimmers is much less dangerous with respect
to the use of classic rigid structures. Moreover, the absence
of protrusive rotating elements enables operating in crowded
scenarios, so that people can approach the vehicle without the
risk of hurts.

SWAMP is 1.25 m long and with a variable breadth between
0.8 m and 1.2 m. It is composed of two hulls that are double-
ended to enhance manoeuvrability. They can be considered as a
single vehicle since each one has its own control and propulsion
units as well as power and communication systems. All the
elements inside the single vehicle are connected via Wi-Fi.
The weight of SWAMP is about 38 kg, with a draft of 0.1
m. The design maximum payload is 25 kg, with a consequent
design maximum draft equal to 0.15 m. The bottom of the hull
is flat and hosts four pumpjet 360 degrees azimuth thrusters
specifically designed for this vehicle (Odetti et al., 2019b).
One of the main peculiar aspects of SWAMP is the use of a
light, soft, and impact-survival flexible structure made up with
a sandwich of flexible, light-weight, closed-cell poly-ethylene
foam, high density poly-ethylene plates, and pultruded bars.
The foam of the hulls is drilled in order to make SWAMP a
completely modular catamaran that is able to host various types
of tools, such as intelligent systems, samplers, and sensors,
together with thrusters. The main advantage of pumpjet motors
is that they are flush with the hull, thus minimizing the risks
of damages due to possible grounding. They are based on the
principle of a vertical axis pump: an impeller sucks water from
below the hull, and therefore both velocity and pressure is
gained. The water is directed to an external volute and is pushed
1 The SWAMP ASV was developed during the Ph.D. of A. Odetti at the
University of Genoa, Italy. Special thanks go to Gi. Bruzzone, G. Camporeale,
M. Giacopelli, and E. Spirandelli of CNR-INM, as well as to M. Altosole of the
University of Naples, Italy, and M. Viviani of the University of Genoa.
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Fig. 2. The reference system for the thrust allocation of the
SWAMP vehicle.

towards outlet nozzles in the 360 degrees steerable casing. The
nozzles accelerate the flow and a jet of water produces thrust
horizontally beneath the flat-bottomed hull.

2.1 SWAMP Dynamic Behavior

SWAMP dynamic behavior can be taken into account using
classic ship manoeuvrability models starting from Newton’s
law. In more detail, the vehicle is considered as a rigid body
with three degrees of freedom equipped with an Earth-fixed
reference system and a vehicle-fixed mobile one, as shown in
Fig. 2. We consider the forward motion along the longitudinal
axis xv and the drift motion along the transverse axis yv, as well
as the yaw, i.e., the rotation ψ around the vertical axis.

The resultant actions (X0, Y0, N0) on SWAMP in the Earth-
fixed coordinate system are difficult to be computed. Thus,
we compute rigid body dynamic equilibrium equations of the
Earth-fixed system into mobile coordinates. This allows to
uniquely identify the position of the ship system, i.e., the
trajectory (given by x, y, ψ) in the Earth-fixed system. More
specifically, we get

X0 = ∆ẍ
Y0 = ∆ÿ
N0 = Izzψ̈

⇒


X = ∆(u̇− vr− xGr2)

Y = ∆(v̇+ur+ xGr2)

N = Izzṙ+∆(v̇+ ru),
(1)

where u, v, and r are the forward, the drift, and the rotational
speeds of the vehicle, respectively, xG is the longitudinal coor-
dinate of the center of gravity in the vehicle-fixed system, and
∆ and Izz are mass constants.

From the equilibrium equations, the global forces X and Y
and the moment N acting on SWAMP in the vehicle-fixed
system can be defined as the sum of external and internal
contributes. The internal forces are the hydrodynamic response
of the hull (denoted by XH , YH , and NH , respectively 2 ), while
the external ones are disturbances (denoted by XD, YD and ND
and consisting in wind, current, and wave forces) and a sum of
thrust-generated forces XT , YT and moments NT . In more detail,
we can write 

X = XH +XT +XD

Y = YH +YT +YD

N = NH +NT +ND.

(2)

2 At low speed, the structure of hydrodynamic forces can be described by a
sum of products of velocity components (i.e., u, v, and r).

The thrust configuration of SWAMP is showcased in Fig. 2.
We have a total amount of 4 thrusters, and denote by T PJ

i
and αi = (0,2π] the thrust intensity and the azimuth angle of
the thruster i, respectively, with i = 1, . . . ,4. The i-th thruster
creates a force component along the x-axis (denoted by XPJ

i )
and another one along the y-axis (denoted by Y PJ

i ), as well
as a resulting moment (denoted by NPJ

i ) around the center of
gravity. The thrust configuration on the vehicle-fixed coordinate
system can be written as follows:(XT

YT
NT

)
=

XPJ
T

Y PJ
T

NPJ
T

=

XPJ
1 +XPJ

2 +XPJ
3 +XPJ

4
Y PJ

1 +Y PJ
2 +Y PJ

3 +Y PJ
4

NPJ
1 +NPJ

2 +NPJ
3 +NPJ

4

 . (3)

The contribution to the external force and torque given by each
pumpjet motor is:

τ
PJ
i =

XPJ
i

Y PJ
i

NPJ
i

=

 cosαi
sinαi

−bPJ
i cosαi + lPJ

i sinαi

T PJ
i , (4)

where lPJ
i and bPJ

i are the distances along the axes xv and yv of
the thrusters’ center from the origin, respectively.

As shown in Odetti et al. (2019b), each pumpjet module is
composed by an azimuth motor and a main motor driving
the pump impeller. The azimuth motor has an absolute en-
coder that allows to control the position with a high precision.
Each α = 360 degrees rotation corresponds to 495412 control
steps. In the basic control architecture of SWAMP, the motor is
driven by assigning an angle in degrees that is then converted
into steps. The main motor drives the pumpjet thruster, and
the amount of thrust is a function of the motor RPM. The
percentage with respect to the maximum 1185 RPM (RPM%)
is considered to assign a thrust intensity value. In more de-
tail, T PJ

i and RPM% are related by a quadratic function, i.e.,
T PJ

i = 1.22×10−3 · (RPM%)
2.

A Logitech F310 joypad was adopted to drive the vehicle. The
joypad levers were mapped as follows:

• the right lever was used to steer the pump-jet angle α ,
which was limited in the interval [−π/2,π/2] linearly
mapped on the [−1,1] output values of the lever;
• the left lever was used for powering pumpjet motors. The

RPM% was used to command the amount of thrust T PJ
i by

mapping [0%,100%] linearly into the [0,1] output values
of the lever.

Both the angle and the thrust were applied only to the two bow
thrusters, while the stern ones were turned off.

3. IMITATION LEARNING CONTROL SCHEME

In order to implement an imitation learning control scheme,
each task demonstration from the human controller has been
recorded at discrete time steps with sampling interval equal to
∆t. In particular, the variables recorded at each time step k are
x(k), y(k), ψ(k), joythrust(k) and joyangle(k), i.e., the position
and angle of the robot and the corresponding given joystick
inputs (i.e., the variables RPM% and α , respectively).

Let us denote the j-th trajectory performed by the demonstrator
as χ j = {(s j(1),a j(1)), . . . ,(s j(K j),a j(K j))}, where s j(k) =
[x j(k),y j(k),ψ j(k)] is the state at the discrete time stage k,
a j(k) = [ joythrust(k), joyangle(k)] is the corresponding set of
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Fig. 3. The ESN for the generation of the joystick controls.

actions given to the robot and K j is the total number of steps
composing the trajectory.

As said, the machine learning model we considered is the ESN.
This model takes as input the current observed state vector s(k)
and generates the corresponding action vector a(k) as

a(k) = B ·ρ(k)T (5)
where · denotes the dot product, B is a (2×N)-dimensional
matrix of output weights, and ρ(k) is a N-dimensional vector
representing the state of the reservoir. Its dynamics is ruled by
the following relationship:

ρ(k) = h(cinWin · s′(k)T+ cresWres ·ρ(k−1)T), (6)
where s′(k) = [s(k),1], Win is the (N× 4)-dimensional matrix
of the input weights, Wres is the (N×N)-dimensional matrix of
the reservoir weights, cin and cres are real coefficients, and h is
a sigmoidal activation function (e.g., the logistic function). Fig-
ure 3 illustrates the considered ESN and its reservoir network
structure.

The main feature of the ESN is that both the inner weights
Win and the reservoir weights Wres are randomly extracted and
kept fixed, while only the output weights B are trained. To this
purpose, from a trajectory χ j obtained by a human controller
we can generate for each step k the corresponding ρ j(k) using
(6) (initialized with ρ j(0) equal to the zero vector) eventually
leading to a set of pattern/target pairs {(ρ j(k),a j(k))}k=1,...,K j .
The collection of all the sets of such pairs for all the available
trajectories corresponds to the training set over which we train
the ESN in a classic pattern/target supervised fashion, i.e.,
by minimizing a mean square error between the output and
the observed joystick controls. Given the linear structure of
the output layer, this can be obtained very quickly by ridge
regression, i.e., the optimal matrix B∗ to use in (5) can obtained
as follows:

B∗ = (RT ·R+λ I)−1RTA, (7)
where R and A collect the pattern/target pairs from all the
available human controller trajectories and λ is a regularization
parameter.

4. EXPERIMENTAL RESULTS

In this section, we present the results of the experiment per-
formed in Camogli during the Festival della Comunicazione
2019. To the best of the authors’ knowledge, this is one of
the first tests combining three main ingredients, i.e., marine
robotics, citizenship engagement, and machine learning. In
more detail, a piloting deck was devised on the Rivo Giorgio
pier, and four buoys were positioned to mimic two gates in the
stretch of sea in front of the pier. The SWAMP ASV was piloted

Fig. 4. The goal of the experiment performed in Camogli.

by citizens using a joypad, with the goal of performing a given
trajectory: pass through the two gates in the same direction, thus
describing an S-shaped path as shown in Fig. 4.

To test the ability of the imitation learning control scheme to
successfully perform the desired task, a preliminary testing
phase was carried out using a simulator of the dynamics of
the vehicle, described by the equations reported in Section 2.
In this case, the ESN controller was trained using trajectories
collected when the authors piloted the vehicle in simulation.
Such a simulation phase was also very useful to calibrate the
controller parameters. In particular, we eventually set N = 500,
cin = 1, cres = 0.1, and λ = 10−3. After this off-line phase,
the real experiment was carried out in Camogli. Not all the
people were skilled enough to reach the goal, yet most of them
succeeded in piloting SWAMP through the gates providing a
wide range of “good” trajectories. In general, we noticed that
most of people did not proportion the thrust amount, but rather
they almost always used the full throttle. At the same time, only
few people drove the vehicle exploiting all the possible angle
positions of the joystick, inputing an almost constant 90 degrees
thrust port or starboard command instead. The vehicle state s
was measured by on-board global navigation satellite system
and inertial measurement unit. In Fig. 5, a set of trajectories is
reported on the left together with joystick inputs on the right.
The above-mentioned driving styles can be easily identified in
the figure. Notice that the 8-shaped path corresponds to the S-
shaped goal task plus the path to get back to the gate starting
line.

The trajectories used to train the AI-based controller were
obtained by recording successful paths, starting a few seconds
before driving through the starting gate, up to a few seconds
after SWAMP passed through the goal gate. In more detail,
a total amount of 16 trajectories, all recorded in one single
morning, were employed to train the ESN controller. The 16
trajectories used for the training are reported in Fig. 6. In the
same picture, three interesting examples of training trajectories
are shown. It can be seen how such training trajectories are very
different in quality. For instance, while in the first two the pilot
went straight to the goal, the last one is quite chaotic. Yet, we
decided to include all trajectories for the training to investigate
robustness of the proposed approach.

After training the ESN parameters, the AI controller was tested
by letting SWAMP perform the task autonomously while peo-
ple were not driving. Fig. 7 reports three example trajectories
performed by the AI controller. The first two trajectories show
that the AI was able to achieve the goal of performing the S-
shaped path and making SWAMP pass through the gates under
standard initial conditions. The last trajectory is remarkable
because the AI controller was activated while SWAMP was
passing through the starting gate in the reverse direction with
respect to the recorded training trajectories. Nevertheless, the
AI drove the vehicle through the second gate successfully.
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Fig. 5. Trajectories of SWAMP during the learning experiment and controls given by the human pilots.

Fig. 6. Three examples of training trajectories. In the background, all the 16 trajectories used for the training are reported.

Fig. 7. Three trajectories performed by SWAMP with the AI piloting the vehicle. In the background, all the 16 trajectories used
for the training are reported.

In general, the AI controller turned out to be very robust in the
execution of the task. The AI correctly executed the required
task all the times it was activated, also recovering from starting
positions that were not seen in the training data. Sometimes,
successful trajectories were accomplished under adverse sea
conditions with waves that were not present during human
demonstrations. On the one hand, this may be due to the
relatively simple task that had to be performed. On the other
hand, it may also be a hint that including “chaotic” training
trajectories was a good choice, because it provided training
data also in zones far from the “correct” path, which is very
useful for recovery. Finally, this behavior also shows that the
ESN structure, despite its simplicity, is able to generalize well
on unseen data.

It is also interesting to notice that the control provided by the
AI was in general smoother than the one made by humans. In
particular, in Fig. 8 a comparison is shown. The human operator
basically drove the robot through constant on-off type thrusts
and set the angles at the maximum excursion. Instead, the AI

used less-nervous and jerky thrust than the human operator, and
also smoother excursion angles. This suggests that the ESN
model was able to avoid overfitting in learning the reference
trajectories, which contributed to the good generalization capa-
bilities that yielded a robust controller.

5. CONCLUSIONS

The preliminary experiment of citizenship engagement in
robotics operations through imitation learning, carried out
within the Festival della Comunicazione 2019 in Camogli, has
been a very interesting and successful experience. Many people
have participated with enthusiasm and have shown interest in
autonomous marine vehicles. The performed experiments al-
lowed to obtain a first practical feedback of public reactions
and participation in a scientific context involving autonomous
robots and AI. In particular, the direct participation of citizens
in robot training by imitation may serve as a practical mean to
build public trust in robots performing autonomous operations
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(a) Human piloting

(b) AI piloting

Fig. 8. A comparison of the controls given by human operator and by the AI-based controller.

in crowded areas, and a clear knowledge and understanding of
the rules under which they operate.

From a technical viewpoint, the robust behavior of the AI con-
troller operating the ASV in crowded areas opens various direc-
tions of research. To this purpose, future work will be aimed at
evaluating effectiveness of the proposed approach using a larger
amount of training and testing data, exploring different network
architectures and more complex imitation learning paradigms,
investigating the issue of selecting appropriate training trajecto-
ries, and exploiting the integration of simulated and real-world
experiments.
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Plöger, P. (2004). Finding good echo state networks to con-
trol an underwater robot using evolutionary computations.
IFAC Proc. Volumes, 37(8), 215–220.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14782


