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Abstract: We investigate the problem of stabilising the attitude of a 3-D axially symmetric
pendulum. The system is assumed to be actuated by two torques acting on a plane orthogonal
to the symmetry axis. We develop a smooth control law to stabilise the pendulum to the upright
position with a given orientation starting from almost all initial conditions. Our approach
consists in two steps: first, stabilising the kinematic subsystem by using the angular velocity as
a virtual input; second, exploiting the actual inputs to force the angular velocity to follow the
reference designed in the previous step.
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1. INTRODUCTION

The 3-D spherical pendulum is a benchmark mechanical
system providing a simplified model for robotic and space-
craft systems Crouch (1984); Krishnan et al. (1992); Morin
et al. (1994); Tsiotras et al. (1995); Coron and Keräı (1996)
as well as for the human stance Elhasairi and Pechev
(2015). The space of its configurations is characterised by
3 (spatial pendulum) or 2 (planar pendulum) translational
degrees of freedom (DOFs) and by 3 rotational DOFs.
If the pendulum presents a symmetry axis (axially sym-
metric pendulum), a reduced attitude can be considered
that ignores the angle around the symmetry axis. In this
case, only two rotational DOFs are used and it is usually
referred to as 2-D spherical pendulum.

Despite its deceiving simplicity, the 3-D pendulum is
a source of many challenging control problems (see for
instance Chaturvedi et al. (2008, 2009); Mayhew and Teel
(2010) for a glimpse of the recent literature on the topic). A
couple of inputs is sufficient to control the position of a 3-D
spherical pendulum on a plane (see e.g. Bloch et al. (2000))
and even to force the pivot of a 2-D spherical pendulum to
follow a circular path, while keeping its attitude confined
in a cone close to the upright position (see Greco et al.
(2017)).

Stabilising the attitude of a 3-D pendulum (for instance
in the upright position with a given angle around the
symmetry axis) is possible, albeit not always trivial, with
three control inputs. We recall that, while a locally sta-
bilising, time invariant smooth feedback can be defined in
the case of three independent inputs Byrnes and Isidori
(1991), topological obstructions prevent the construction
of a global feedback with the same characteristics Sontag
(1998); Bhat and Bernstein (2000). In Chaturvedi et al.
(2009) it has been shown that three torques allow the

almost global, asymptotic stabilisation of the complete
attitude in the upright equilibrium with a smooth control
law.

The stabilisation becomes tougher when a stronger under-
actuation is present, i.e. only two control inputs are avail-
able. The complete attitude cannot be locally asymptot-
ically stabilised to an equilibrium by any time-invariant
continuous state feedback control law Krishnan et al.
(1992). In the case the two control inputs span a plan or-
thogonal to the symmetry axis, the linearised system about
the upright equilibrium is not even controllable. Therefore,
in Crouch (1984) a discontinuous feedback and in Morin
et al. (1994); Coron and Keräı (1996) time-varying smooth
feedbacks have been proposed to locally stabilise the atti-
tude of a spacecraft, essentially a 3-D pendulum without
gravity, by means of two inputs. In Chaturvedi et al.
(2008) two smooth inputs (torques) are used to almost
globally, asymptotically stabilise a 2-D spherical pendulum
in the upright position. We stress that the reduced atti-
tude only is stabilised here. The full attitude is globally
asymptotically stabilised in Krishnan et al. (1992) via a
discontinuous control law based on sequential manouvers
and in Casagrande et al. (2007); Teel and Sanfelice (2008)
by means of hybrid feedbacks. We remark that in Teel and
Sanfelice (2008) the asymptotic stability is achieved in a
practical sense. In Tsiotras et al. (1995) the dynamics of
an axially symmetric spacecraft is considered. Two torques
are used to stabilise the complete attitude, but the control
law depends on the initial conditions, which have to belong
to a compact annular set of the state space not containing
the target equilibrium. The feedback is smooth except in
the origin, where it is singular.

In this paper we focus on an axially symmetric 3-D pen-
dulum actuated by two torques acting on a plane orthog-
onal to the symmetry axis. We address the problem of
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stabilising the complete attitude in the upright position,
assuming zero angular velocity along the symmetry axis.
Our main result provides the first example (to our knowl-
edge) of a family of smooth feedback laws that almost
globally asymptotically stabilise the system to the target
configuration. The stabilisation problem is tackled in two
steps. First, we define a virtual feedback for the angular
velocity guaranteeing the attitude stabilisation for almost
every initial condition. Second, we look for a couple of
control torques ensuring the convergence of the actual
angular velocity to the virtual feedback. We show that such
a control law almost globally stabilises the full system.
Our approach revolves around a quaternion formalism,
which proves to be well suited for describing the rotation
kinematics.

Notation

The unit 3-sphere, i.e. the set of unit vectors in R4, is
denoted by S3. We denote by SO(3) the group of matrices
R ∈ R3×3 satisfying R−1 = RT and det(R) = 1 (special
orthogonal group). The symbol ∧ denotes the usual cross
product in R3. With each vector w = (w1, w2, w3)T we
associate a skew-symmetric matrix

ŵ =

(
0 −w3 w2

w3 0 −w1

−w2 w1 0

)
.

Recall that ŵx = w ∧ x for any w, x ∈ R3.

2. PROBLEM FORMULATION

We consider here a simplified model of a 3-D pendulum
of mass m, whose pivot is constrained on the horizontal
plane. An inertial frame is centred in the pivot with the
first two axes lying in the horizontal plane and the third
one pointing opposite to the gravity vector. A body fixed
frame is centred in the pivot, with the third axis aligned
with the vector from the pivot to the centre of mass (the
symmetry axis). We denote with Jpiv = diag(J1, J2, J3)
the inertia matrix with respect to the pivot in the body
fixed frame. Due to symmetry, in the following we assume
that J1 = J2 = J and J 6= J3. We use a matrix
rotation R ∈ SO(3) to describe the state of the 3-D
pendulum: R describes the orientation of the body fixed
frame with respect to the inertial frame. The angular
velocity vector in the body fixed frame is represented by
ω = (ω1, ω2, ω3)T ∈ R3.

Assume that the pendulum is actuated by a pair of torques
τ1, τ2 acting on a plane orthogonal to the symmetry axis.
We set τ = (τ1, τ2, 0)T . The dynamics of the pendulum is
given by

Jpivω̇ = (Jpivω) ∧ ω +mg(RT e3) ∧ wcm + τ, (1)

where g is the gravity acceleration, e3 = (0, 0, 1)T , wcm =
le3 is the centre of mass of the pendulum in the body fixed
frame. The rotational kinematics equation is

Ṙ = Rω̂. (2)

From (1) it is easy to see that ω̇3 = 0, which implies that
the system is not completely controllable. Therefore, we
assume that ω3 ≡ 0 and we focus on the dynamics of the

remaining variables. The fact that J1 = J2 and ω3 ≡ 0
implies that (Jpivω) ∧ ω ≡ 0 in (1).

We put (
τ1
τ2

)
= mglP ê3R

T e3 + Ju (3)

where

P =

(
1 0 0
0 1 0

)
(4)

and u = (u1, u2)T are the new control variables. By
using (3), equation (1) reduces to

ω̇1 = u1
ω̇2 = u2 .

(5)

In order to analyse the rotational kinematics (2) it is
convenient to rewrite rotations in terms of quaternions.
Recall that any rotation matrix may be identified with
a rotation axis, represented by a unit vector p, and an
angle α, that is R = exp(α p̂ ). This allows us to define the
associated unit quaternion as

q = (q0, q) ∈ S3

q0 = cos
α

2
, q = (q1, q2, q3) = p sin

α

2
.

Note that the quaternions q and −q identify the same
rotation. The kinematics (2) in the quaternion setting
takes the form Chou (1992)

q̇0 = −1

2
qTω

q̇ =
1

2
q ∧ ω +

1

2
q0ω.

(6)

We remark that the coupled system (5)-(6) is an equivalent
formulation of the one considered in Tsiotras et al. (1995).

We consider the following control problem: define a smooth
feedback law capable of asymptotically steering the fixed
body frame to the inertial frame. This is tantamount to
requiring that the rotation R asymptotically converges to
the identity matrix. In terms of quaternions, the problem
is equivalent to the following:

Problem 1. Let qd = (1, 0, 0, 0). Find a smooth feedback
control (u1, u2) for the system (5)-(6) capable of asymp-
totically steering (ω1, ω2,q) ∈ R2 × S3 to (0, 0,qd).

It is worth noting that a well-known topological obstruc-
tion impedes the global stabilisation of the system to
the equilibrium by means of a smooth feedback. More
precisely, the manifold R2 × S3 turns out to be not con-
tractible as a consequence of the non-contractibility of S3.
Then (Sontag, 1998, Corollary 5.9.13) implies that there
is no globally stabilising feedback. A similar reasoning
applies also to the original system (1)-(2). Thus, in the
following we will focus on the almost global stabilisation
of the system, that is we will look for smooth feedback
laws solving Problem 1 except for a zero measure set of
initial conditions (ω1, ω2,q) ∈ R2 × S3.

Also, note that the components q may be used as a local set
of coordinates to describe the quaternion variables around
(0,qd). In these coordinates the equilibrium becomes the
origin in R5 and the linearised system is simply given by
ω̇1 = u1, ω̇2 = u2, q̇ = 1

2ω and is therefore not controllable
(recall that ω3 = 0). In particular this system does not
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admit a locally stabilising linear feedback control and
system (5)-(6) cannot be exponentially stabilised with a
smooth control. Indeed, for every stabilising feedback, the
linearisation of the closed loop system has necessarily a
singular dynamical matrix.

3. MAIN RESULTS

We divide the stabilisation problem in two steps. First,
we consider the system (6) with ω as a control variable,
and we look for a feedback ωref ensuring that q0 goes to
1 for almost every initial condition. Second, we look for
a feedback u such that the solution ω of the system (5)
converges to ωref and we show that such a control law also
almost globally stabilises the full system (5)-(6).

3.1 Stabilisation of the rotation kinematics

We look for functions ω(q) = (ω1, ω2, 0) of the form

ω = γ1(q)(e3 ∧ q) + γ2(q)(e3 ∧ (e3 ∧ q)), (7)

for some smooth γ1, γ2. Note that in the feedback above,
ω = 0 whenever q is parallel to e3, that is whenever q1 =
q2 = 0. In other words, for any choice of the functions γ1, γ2
the set of unit quaternions Q0 = {q ∈ S3 : q1 = q2 = 0}
is made up of equilibria of the system 1 . We would like to
find γ1, γ2 such that, whenever we start outside Q0, the
trajectory always converges to qd.

The advantage of the form (7) is that the dynamics of q0
and q3 are described by very simple equations in terms of
γ1, γ2. Indeed, setting f(q) = q21 + q22 we have

q̇0 = −1

2
qTω(q)

= −1

2
γ2(q)qT (e3 ∧ (e3 ∧ q))

=
1

2
γ2(q)|e3 ∧ q|2

=
1

2
γ2(q)f(q) (8)

and

q̇3 = eT3 q̇

=
1

2
eT3 (q ∧ ω(q))

=
1

2
γ1(q)eT3 (q ∧ (e3 ∧ q)) +

1

2
γ2(q)eT3 (q ∧ (e3 ∧ (e3 ∧ q)))

=
1

2
γ1(q)|e3 ∧ q|2 −

1

2
γ2(q)qT ê 3

3 q

=
1

2
γ1(q)f(q), (9)

which also imply

ḟ(q) = − d

dt
(q20 + q23)

= −(q0γ2(q) + q3γ1(q))f(q). (10)

We have the following result.

Proposition 1. Assume that γ2 > 0 outside Q0 and that
γ2

1−q0 is a smooth function. Let γ1 = −( γ2
2(1−q0) + µ)q3 for

some µ ≥ 0. Then for every initial condition q /∈ Q0 \
1 The set Q0 \ {qd} corresponds to the configurations which differ
from the target configuration only by a rotation about the symmetry
axis.

{qd} the corresponding trajectory of (6) with the feedback
law (7) converges asymptotically to qd.

Proof. Let us define

V (q) = (1− q0)2.

Since V̇ (q) = −γ2(q)(1 − q0)f(q), if γ2 is chosen to be
positive outsideQ0 we obtain from LaSalle invariance prin-
ciple that any trajectory of the system must necessarily
converge to Q0.

It remains to show that any trajectory starting outside Q0

converges exactly to qd. To this aim, let us consider the
function

W (q) =
1− q0
f(q)

,

which is well defined outside Q0. Since γ2 > 0 outside Q0,
f goes to zero, independently of the choice of γ1. If we
show that Ẇ ≤ 0 on S3 \ Q0, we can conclude that the
function 1 − q0 is dominated by a multiple of f and thus
must also converge to 0. We have

Ẇ =
−q̇0f − (1− q0)ḟ

f2

=
− 1

2γ2f
2 + (1− q0)(q0γ2 + q3γ1)f

f2

=
− 1

2γ2(1− q20 − q23) + (1− q0)(q0γ2 + q3γ1)

f
(11)

which is non-positive if and only if the numerator satisfies

−1

2
γ2(1− q20 − q23) + (1− q0)(q0γ2 + q3γ1)

= −1

2
γ2(1− q0)2 + q3(γ2q3/2 + γ1(1− q0)) ≤ 0.

With the choice of γ1 and γ2 in the hypothesis of the
proposition we have that −γ2(1− q0)2/2 ≤ 0 and

q3(γ2q3/2 + γ1(1− q0)) = −µq23(1− q0) ≤ 0,

hence the thesis.

3.2 Almost global stabilisation of the complete system

Consider now the more general problem of finding a
stabilising feedback control for the complete system (5)-
(6). Let us denote with ωref(q) a stabilising control law (7)
satisfying Proposition 1. For simplicity, let us call G(ω,q)
the right-hand side of (6). In the following, when necessary,
we identify ω ∈ R2 × {0} as an element of R2.

We choose a feedback control law forcing ω(t) to asymp-
totically approximate the function ωref(q(t)). For this pur-

pose we define ω̃ = ω − ωref(q) and we impose ˙̃ω = −Kω̃
for some K > 0.

This corresponds to choosing the feedback control

u(ω,q) = P (ω̇ref(q)−K(ω − ωref(q)))

= P

(
dωref

dq
(q)G(ω,q)−Kω +Kωref(q)

)
(12)

where P is as in (4).

Theorem 2. The feedback control (12) almost globally
stabilises system (5)-(6) to the equilibrium (0,qd).

In order to prove Theorem 2, it is convenient to rewrite
system (5)-(6) in terms of the error variable ω̃:
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˙̃ω = −Kω̃ (13)

q̇ = G̃(ω̃,q) (14)

where G̃(ω̃,q) = G(ω̃ + ωref(q),q). Note that the map
(ω,q) 7→ (ω̃,q) is a diffeomorphism from R2×S3 to itself.

We need some preliminary results. First, we show the
following non-smooth extension of the classical LaSalle
invariance theorem. 2

Proposition 3. Consider the system

ẋ = F (x), (15)

where x belongs to a manifold M and F is Lipschitz
continuous. Let Ω be a compact invariant subset of M,
D be a compact subset of Ω such that both D and Ω \D
are positively invariant. Moreover assume that there exists
a continuous function V : Ω→ R strictly decreasing along
the flow of (15) on Ω \ D. Then for any trajectory x(·)
in Ω \D there exists c ∈ R such that x(·) converges to a
connected component of D ∩ V −1(c).

Proof. Let φ(x0, t) be the trajectory of the system (15)
starting from x0 ∈ Ω\D. Then V (φ(x0, t)) is decreasing by
assumption and, since the continuous function V admits a
minimum in the compact set Ω, V (φ(x0, t)) must converge
to a constant c ∈ R. Since, by the positively invariance
of Ω, the ω−limit set of x0 is connected, it remains to
show that φ(x0, t) necessarily converges to the set D. Let
ε > 0 and define Kε as the compact set formed by the
points of Ω whose distance from D is larger or equal than
ε. From the assumptions on V and by compactness of Kε,
the function V (φ(x, 1))−V (x) ≤ −δ for some δ > 0 and for
x ∈ Kε. Then V (φ(x0, t+1))−V (φ(x0, t)) ≤ −δ, whenever
φ(x0, t) ∈ Kε. But we also know that there exists T > 0
such that V (φ(x0, t)) < c+ δ for any t > T . Hence

c <V (φ(x0, t+ 1)) < V (φ(x0, t)) < c+ δ

⇒ V (φ(x0, t+ 1))− V (φ(x0, t)) > −δ
for any t > T , implying that φ(x0, t) /∈ Kε. Being ε
arbitrary this concludes the proof.

We apply Proposition 3 to the system (13)-(14). We define
Ω = [−1, 1]× [−1, 1]× S3 and D = {0} ×Q0 and

V (ω̃,q) = (1− q0)2 + 3|ω̃|/K.
We have

V̇ = −γ2(1− q0)f(q) + (1− q0)qT ω̃ − 3|ω̃|
≤ −γ2(1− q0)f(q)− |ω̃|

which is well-defined and strictly negative outside {0}×Q0.
It is easy to see that for any c ∈ R there exists at most
two distinct points in D ∩ V −1(c). Then we deduce from
Proposition 3 that any trajectory of the system (13)-(14)
starting in Ω\D asymptotically converges to a single point
of D = {0}×Q0. Since the set Ω defined above is globally
attractive in finite time the result extends to (R2×S3)\D.
Summing up we get the following.

Lemma 4. Any trajectory of the system (13)-(14) asymp-
totically converges to a single point of {0} ×Q0.

It remains to show that almost every trajectory of the
system (13)-(14) converges exactly to (0,qd).

2 for similar results in a much more general context, see e.g. Bacciotti
and Ceragioli (1999); Sanfelice et al. (2007)

The lemma below allows a characterisation of the set of
initial points such that the corresponding trajectories do
not converge to (0,qd).

Lemma 5. Consider the system (13)-(14). In addition to
the hypotheses in Proposition 1 we assume that γ2 is
strictly positive outside qd. Let q∗ = (q∗0 , 0, 0, q

∗
3) ∈ Q0 \

{qd}. Then the linearised system at the equilibrium (0,q∗)
(on the five-dimensional tangent space T(0,q∗)(R2×S3)) is
associated with a Jacobian matrix having two eigenvalues
equal to −K and one eigenvalue equal to 0. The remaining
two eigenvalues have strictly positive real part.

Proof. To simplify the computations we embed R2 × S3

in R6, using the coordinates (ω̃1, ω̃2, q0, q1, q2, q3).

Equation (13) immediately implies the existence of two
eigenvalues of the linearised system equal to −K. The
remaining ones are eigenvalues of the four dimensional
square matrix

∂G̃

∂q
(ω̃,q)|(0,q∗) =

∂G

∂ω
(0,q∗)

dωref

dq
(q∗) +

∂G

∂q
(0,q∗),

where we have used the fact that ωref(q
∗) = 0. A direct

computation shows that the kernel of this matrix is gen-
erated by e1, e4 and therefore contains both q∗ and the
vector tangent to Q0 at q∗. The zero eigenvalue corre-
sponding to the radial direction q∗ must be neglected,
being q∗ orthogonal to the tangent space TS3.

The two remaining eigenvalues of the matrix may be easily
computed as

1

2
(−γ1q∗3 − γ2q∗0)± 1

2
i(−γ2q∗3 + γ1q

∗
0),

and, by replacing the expression of γ1 in Proposition 1, we
have

−γ1q∗3 − γ2q∗0 =
1

2
γ2(1− q∗0) + µ(q∗3)2 > 0 if q∗0 6= 1.

This concludes the proof of the lemma.

The previous result allows us to cast our dynamical model
in the well established framework of normally hyperbolic
invariant manifolds, first developed in Fenichel (1971,
1974, 1977); Hirsch et al. (1970, 1977), which generalises
classical results on hyperbolic equilibrium points. A nor-
mally hyperbolic manifold V is an invariant compact
submanifold of the state space such that the linearised
dynamics around V may be decoupled into three parts: a
stable dynamics and an unstable one, both of which are
transverse to V , and a dynamics tangent to the manifold
V . In addition, it is assumed that, roughly speaking, the
rates of contraction and expansion of the flow respectively
in the direction of the stable and unstable subspaces are
larger than those along V . The latter condition is auto-
matically satisfied if V is made of equilibrium points.

We are now ready to prove our main result.

Proof of Theorem 2. From Lemma 4, in order to charac-
terise the trajectories that do not converge to (0,qd) it is
enough to study the family of all trajectories converging to
the equilibria (0,q∗) with q∗ ∈ Q0 \ qd. For this purpose,
let us fix an arbitrary small ε > 0 and consider the compact
manifold (with boundary)

P ε0 = {(ω̃,q) ∈ {0} ×Q0 | q0 ≤ 1− ε}.
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According to Lemma 5, for the linearised dynamics, the
tangent space at any equilibrium point p ∈ P ε0 splits
into the sum of a two-dimensional stable subspace Esp,
a two-dimensional unstable subspace Eup, and the one-
dimensional space TpP

ε
0 (which coincide with the kernel of

the linearised system). Thus, in the setting of e.g. Hirsch
et al. (1977), P ε0 is a normally hyperbolic invariant mani-
fold. Hence, by classical results, there exists a local invari-
ant manifold Ws

ε tangent to Esp ⊕ TpP ε0 at any p ∈ P ε0 ,
and which is therefore of dimension 3.

An interesting and helpful characterisation ofWs
ε is given,

in a very general setting, in Bates et al. (1998). In that
paper the authors show that for a small enough smooth
tubular neighbourhood N of P ε0 one can write

Ws
ε ={p ∈ N | φt(p) ∈ N , ∀t ≥ 0 and lim

t→∞
φt(p) ∈ P ε0},

where φt(p) is the flow of the system at time t applied to
p. Let us further define the set

Ws

ε = {p ∈ R2 × S3 | lim
t→∞

φt(p) ∈ P ε0}.

Since Ws
ε is a three-dimensional manifold, it has zero

Lebesgue measure. Recall that the flow at a (positive or
negative) time t is a diffeomorphism, hence we deduce
that the set φ−t(Ws

ε ) has zero measure as well. Then

Ws

ε = ∪n≥0φ−n(Ws
ε ) is a countable union of zero measure

sets and thus it has zero measure.

Finally, the set of initial points in R2 × S3 such that the
corresponding trajectories converge to a point of Q0 \ qd
coincides with ∪m≥1W

s

1/m and thus it has zero measure.

4. SIMULATIONS

We show numerical simulations of the system with the
feedback control (12). According to Proposition 1 and
Theorem 2 we choose γ1 = −5q3, γ2 = 2(1−q0) and K = 1.
In order to illustrate the effectiveness of the feedback,
we choose an initial condition close to an equilibrium
of {0} × Q0 different from (0,qd). More precisely we
set ω(0) = (0, 0) and q(0) = (0.8, 0, 0.06, 0.597). Notice
that the use of two control torques acting on a plane
orthogonal to the symmetry axis, impedes a direct rotation
about that axis. Hence, the attitude stabilisation would
require the third axis to first move sensibly away from
the initial configuration before coming back. In Figure 1
the black and grey frames represent the initial and final
body fixed frames, respectively. The evolution of the
axes are represented in different colours. As expected,
simulations show that the trajectory quickly move away
from the unstable equilibrium and slowly approaches the
equilibrium (0,qd). Figures 2 and 3 show how after some
oscillations ω and u quickly converge to 0. Figure 4 shows
the evolution of q0 which is representative of the slow
convergence of the body fixed frame to the inertial frame.

5. CONCLUSION

In this paper we considered the problem of stabilising an
axially symmetric 3-D pendulum to the upright vertical
position with a fixed orientation by means of two torques.
The stabilisation was achieved in two steps. We first
designed a smooth control feedback of the kinematic
subsystem by controlling directly the angular velocity.
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Fig. 1. Evolution of the body fixed frames from the initial
position (black) to the final one (grey). The blue
trace represents the evolution of the vertical axis. The
purple frame represents the target.
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Fig. 2. (a) evolution of ω1 and (b) evolution of ω2

Then, we designed a control feedback for the original
inputs to force the angular velocity to follow the reference
computed in the previous step. We proved that this control
is capable of steering the complete system to the desired
equilibrium. Future works will address the problem of
the stabilisation of the 3-D pendulum by means of two
planar inputs. Second, we aim at analysing the almost
global exponential stabilisation problem with non-smooth
feedback laws.
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