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Abstract: Controlling systems with both continuous and discrete actuators using model
predictive control is often impractical, since mixed-integer optimization problems are too
complex to solve sufficiently fast. This paper proposes a parallelizable method to control both
the continuous input and the discrete switching signal for linear switched systems. The method
uses ideas from Bayesian optimization to limit the computation to a predefined number of convex
optimization problems. The recursive feasibility and stability of the method is guaranteed for
initially feasible solutions. Results from simulated experiments show promising performances
and computation times.
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1. INTRODUCTION

Many systems are controlled by a combination of discrete
and continuous actuators. A class of them can be described
by switched linear dynamics without dwell-time where
both the continuous input and the discrete switching
signals are decisions taken by the applied controller. For
very small systems, model predictive control (MPC) can
be applied directly to improve the performance of these
systems under constraints. However, since the system
must be described using both continuous and discrete
variables, the MPC controller must solve a mixed-integer
program every time the control sequence is updated. For
larger systems, the computation of this mixed-integer
program may be unacceptably long compared to the
system specifications.

Switched linear systems can be categorized as either inter-
nally or externally forced. An overview of stability analysis
for different classes of switched linear systems can be found
in Lin and Antsaklis (2009), while Zhu and Antsaklis
(2015) reviews the literature on MPC for switched sys-
tems. The literature on MPC for internally forced systems
focuses mainly on the case where the switching signal
is state dependent (piecewise affine systems) as in, e.g.,
Morari and Bari (2006), or on systems under uncontrolled
switching, as in, e.g., Zhang et al. (2016). This paper
considers externally forced systems, hence systems where
the applied MPC must decide on both the continuous
inputs and the discrete switching signals.

To improve the computation time of MPC for externally
forced switched linear systems, most frameworks focus on
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solving each iteration faster. Often the proposed integer
solvers are iteration based, e.g., Axehill et al. (2014) or
Naik and Bemporad (2017), which limits how fast the
computation can be and increases the computation time
uncertainty. This complicates the implementation of MPC,
since a typical MPC re-computes the input at predefined
time intervals. One way to avoid performing iterative
computations of the discrete variables is using convex
relaxations of the mixed-integer problem. In Sager et al.
(2012) it is shown that continuous variables can be used
to approximate binary variables in the MPC optimization
problem if the timesteps are sufficiently small. In Gau et al.
(2017) this result is used to control a switch linear system
without other input than the switching signal. In Prada
et al. (2009) the switching signals are modelled as switch-
ing times resulting in a non-linear optimization problem
with solely continuous variables. Mendes et al. (2017) de-
crease the number of iterations needed to solve the mixed-
integer problem by distributing the computation between
different agents coupled by auxiliary variables.

Another stream of research, namely that on suboptimal
MPC, acknowledge that it is not always possible to obtain
the optimal solution. This research establishes bounds
and criteria on the suboptimality and the properties of
the implemented control law that ensures stability and
feasibility of the system. Stability and recursive feasibility
of the suboptimal MPC is in, e.g., Lazar and Heemels
(2009) and Pannocchia et al. (2011) established by im-
posing specific improvements in the objective function.
In contrast, Scokaert et al. (1999) ensure stability and
recursive feasibility by improving a known solution which
satisfy stability and feasibility criteria.

In this paper, the proposed method finds better solutions
by remembering the performance at previous timesteps,
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Fig. 1. Schematics of MPC with MDS.

and is thus called MPC with Memory-based Discrete
search (MDS). The method is outlined in Figure 1 with
notation as introduced in the remainder of this paper.
MPC with MDS solves the part of the usual MPC problem,
which is continuous in the variables, for a set of switching
signal sequences. It then implements the first elements of
the sequence with the best performance, if this perfor-
mance is better than that of a stabilizing input sequence
computed based on the previous MPC prediction and a
known conservative control law . If the known stabilizing
input sequence performs better, its solution corresponding
to the current timestep is implemented and the process
starts over.

It is assumed that the performance of a switching sig-
nal sequence at a given time is comparable to the per-
formance of related sequences at the previous timestep.
This assumption is used to choose the switching signal
sequences for which MPC with MDS computes the convex
optimization problem. The ideas are analogous to Bayesian
Optimization where the current knowledge of a function
is used to assess which function evaluation to perform at
the next iteration. See e.g. Jones et al. (1998) or Snoek
et al. (2012) for an introduction. MPC with MDS utilizes
the rolling horizon from MPC to obtain information about
not only current solutions, but also future solutions. In this
fashion, the optimization problems in MPC with MDS has
low complexity and can be solved in parallel.

The remainder of the paper is organized as follows: in
Section 2, the considered system and problem is specified.
In Section 3, MPC with MDS is presented together with
an analysis of stability and recursive feasibility. In Section
4, MPC with MDS is assessed using a simulation and
compared with three other controllers. Finally, Section 5
draws the main conclusions and outlines future research.

2. SYSTEM AND PROBLEM DEFINITION

We consider a discrete time, switched, linear system with-
out dwell-time with the following dynamics:

xt+1 = Aσtxt +Bσtut, (1)

where xt ∈ Rn and ut ∈ Rmσt are the state of
and the input applied to the system at discrete time

t. The switching signal σt ∈ S = I[1:l] is the in-
put at time t, that determines from finite sets, the
dynamic matrices Aσt ∈ A = {A1, A2, ..., Al} and
Bσt ∈ B = {B1, B2, ..., Bl}. I[a;b] denotes the set of
integers {x ∈ I|a ≤ x ≤ b}. The system is controllable
for one or more switching signals.

Definition 1. The basic switching signal is denoted by
γ. It is one switching signal γ ∈ S for which sys-
tem (1) is controllable. The corresponding dynamics
xt+1 = Aγxt + Bγut will be referred to as the basic
dynamics.

The system’s state and inputs are constrained by

xt ∈ X ⊆ Rn ∀ t (2)

ut ∈ Uσt ⊆ Rmσt∀ t. (3)

The set X is convex, closed and contains the origin in its
interior, while each set Uσt is convex and compact. Uγ
contains the origin.

It is assumed that more information about the basic
dynamics is known.

Assumption 1. A control law u = κ(x), called the safe
control law, and a set Xf are known for which the following
is true:

(1) The basic dynamics under the safe control law, i.e.
xt+1 = Aγxt +Bγκ(xt) is asymptotically stable.

(2) Xf ⊆ X, 0 ∈ Xf and Xf is closed.
(3) κ(x) ∈ Uγ ∀x ∈ Xf .
(4) Aγx+Bγκ(x) ∈ Xf ∀x ∈ Xf .

2.1 Problem definition

This paper considers stability to the equilibrium at the
origin, but the results can be generalized to set point
stability.

When system (1) is controlled by an MPC controller, the
controller solves at timestep t the following mixed-integer
program:

min
u0, ..., uN−1
ς0, ..., ςN−1

J(ς,u ,x ) (4)

J(ς,u ,x ) =

N−1∑
k=0

(
xTkQxk + uTkRςkuk

)
+ xTNQNxN (5)

s.t x0 =xt (6)

xk+1 =Aςkxk +Bςkuk ∀ k ∈ I[0;N−1] (7)

xk ∈X, uk ∈ Uςk , ∀ k ∈ I[0;N−1] (8)

xN ∈Xf , (9)

where variables xk ∈ Rn, ςk ∈ I[1:l] and uk ∈ Rmςk
represent the controller’s model of the state, switch-
ing signal and input to the system at prediction time
t + k, respectively. N is the prediction horizon. The
cost matrices R and QN are symmetric and positive def-
inite, while Q is symmetric and at least positive semi-
definite. Bold symbols denote ordered time sequences, e.g.,
a[0;N ] = 〈a0, a1, ...aN 〉, where each element ak is a vec-
tor related to timestep k. When appropriate, the interval
subscript is omitted for a simpler notation.

Assumption 2. The stage cost for the basic
dynamics l(x, u, γ) = xTkQxk + uTkRγuk and the
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Algorithm 1 MPC with MDS

1: Let ς̂(t), û(t) and x̂ (t) be a feasible solution to (4)-(9)
2: while system is to be controlled do
3: Implement σt = ς̂0, ut = û0

4: t = t+ 1
5: Measure xt
6: Compute S(t) using Algorithm 2
7: for all ς ∈ S(t) do
8: if (10)-(14) is feasible do

9: F̃t(ς) = Ft(ς)
10: else
11: F̃t(ς) = M
12: end if
13: Ỹt(ς) = βJ (ς̂+(t− 1),u+(t− 1),x+(t− 1))
14: end for
15: Find F ∗t (ς∗) = minς∈S(t) Ft(ς)

16: if F ∗t (ς∗) ≤ J (ς̂+(t− 1),u+(t− 1),x+(t− 1)) do
17: ς̂(t) = ς∗, û(t) = u∗, x̂ (t) = x ∗

18: else
19: ς̂(t) = ς̂+(t−1), û(t) = û+(t−1), x̂ (t) = x̂+(t−1)
20: end if
21: end while

final cost Vf (x) = xTQNx are such that
Vf (Aγx+ Bγκ(x))− Vf (x) + l(x, κ(x), γ) ≤ 0 ∀x ∈ Xf .

Notice that Assumption 1 and 2 can by satisfied by the
design of κ(x), Xf and Vf (x).

The time it takes to solve (4)-(9) often limits which
switched linear systems can realistically be controlled
with MPC. Most solvers are iteration based, and thus
not suitable for parallel implementations. Furthermore,
current efforts typically do not take the recursive nature
of MPC into account.

3. MEMORY-BASED DISCRETE SEARCH

Instead of solving a slow mixed-integer problem at each
timestep, we suggest to search over the possible sequences
of switching signals based on their previous performance
and only solve the MPC problem for the chosen sequences.
We call the method MPC with Memory-based Discrete
Search (MDS). For given switching signal sequences, the
optimization problem corresponding to each sequence is
continuous in the variables, and hence solvable by fast,
convex optimization solvers. When the set of switching
signals, for which the MPC problem should be solved, de-
pends on the method’s memory of previous performances,
the optimizations can be performed in parallel to decrease
the computation time further.

MPC with MDS searches for good switching signal se-
quences based on previous performance. Since the con-
trolled system’s state changes dynamically, the expected
performance of a given sequence will depend on the pre-
vious performance of sequences that are time-shifted and
similar, not identical to that sequence. MPC with MDS is
thus very suitable for systems that require long prediction
horizons, as more information about a sequence’s potential
performance can be gathered before the dynamic informa-
tion becomes obsolete.

To choose for which set of switching signal sequences
to solve the MPC problem, MPC with MDS uses ideas
from Bayesian optimization to ensure the set contains
both sequences that are expected to perform well, and
sequences that will provide new information. To measure
the performance and information value of a switching sig-
nal sequence, the sequence’s fitness Ft(ς[0;N−1]), expected

fitness F̃t(ς[0;N−1]) and uncertainty value Yt(ς[0;N−1]) are
introduced.

Definition 2. The fitness of switching signal sequence
ς[0;N−1] = {ς0, ..., ςN−1} is

Ft(ς[0;N−1]) = min
u1,...,uN−1

J(ς[0;N−1],u ,x ) (10)

s.t x0 = xt (11)

xk+1 = Aςkxk +Bςkuk ∀ k ∈ I[0;N−1] (12)

xk ∈ X, uk ∈ Uςk , ∀ k ∈ I[0;N−1] (13)

xN ∈ Xf (14)

where the notation corresponds to that of (4)-(9).

Definition 3. The expected fitness for a sequence ς at time
t is denoted by F̃t(ς) and its uncertainty value is denoted

by Ỹt(ς).

Figure 1 presents a schematics of MPC with MDS. The
detailed notation will be provided in the remainder of
this section. At each timestep t, fitness estimates of all
switching signal sequences are used to determine a set
of promising sequences. For each promising sequence, the
fitness is evaluated for the current system state. The best
performance of the promising sequences is then compared
to the performance of a known controller. This controller
knows a switching signal sequence and a corresponding
continuous input sequence which satisfy all constraints and
stabilizes the system. The first switching signal and con-
tinuous input corresponding to the sequence that performs
the best are implemented on the system and the process
starts over at the next timestep.

How the promising sequences are chosen does not affect
the stability of a system controlled by MPC with MDS.
Therefore, the stability and recursive feasibility of the
proposed method are proven in Section 3.1 before the
selection method is presented in Section 3.2.

3.1 Stability and feasibility

To guarantee stability and recursive feasibility of the MPC
problem, MPC with MDS compares the performance of
the potential sequences with the performance of a control
law, which is known to satisfy all constraints. This section
outlines how this is done, and proves that the implemented
inputs will stabilize the system.

The algorithm knows a feasible solution at time t, but
needs to access the performance of the potential sequences
at time t+1. It is thus necessary to define how the solution
at time t is shifted in time and to prove that the shifted
solution is indeed feasible.

Definition 4. The sequences ς+[0;N−1] = {ς[1;N−1], γ},
u+

[0;N−1] = {u [1;N−1], κ(xN )} and

x+
[0;N ] = {x [1;N ], AγxN + Bγκ(xN )} are said to be the

shifted sequences of ς[0;N−1], u [0;N−1] and x [0;N ].
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The outer framework of MPC with MDS can be seen in
Algorithm 1. The method is initialized with a feasible
solution to the mixed-integer problem (4)-(9) for the initial
state. In the algorithm the best solution that is known to
the controller at a given time is marked with a hat. The
first elements of the best known switching signal sequence
and continuous input sequence are implemented as is usu-
ally done with MPC. Hereafter MPC with MDS decides on
the set of potential sequences. How the method computes
S(t) in line 6 will be detailed in Section 3.2. For feasible
sequences, the expected fitness is updated to be the actual
fitness, while infeasible sequences’ expected fitnesses are
penalized with a large number M . The uncertainty value
is in both cases updated to be a factor, β > 0, times the
objective function value of the best known solution. This
ensures that the uncertainty values are of reasonable size
compared to the fitness values. If the best of the potential
sequences is better than the best known solution, that
potential sequence becomes the new best solution known
by the controller.

Lemma 1. For any switching signal sequence ς̂[0;N−1] that
has a feasible solution to (10)-(14) at time t, the shifted
sequence ς̂+[0;N−1] will have a feasible solution to (10)-(14)

at time t+ 1.

Proof. Lemma 1 follows directly from constraint (14) and
Assumption 1.

With the outer framework of MPC with MDS fully defined,
we now analyse the stability of a system under Algorithm 1
using standard techniques, see, e.g., Mayne et al. (2000).

Theorem 2. If a feasible solution to (4)-(9) exists for
System (1) at time k = k0, then the system under
Algorithm 1 converges to the origin.

Proof. To ensure stability, first recursive constraint sat-
isfaction must be established. Recursive Feasibility: If
(10)-(14) is infeasible at any time t for all ς ∈ S(t)
the sequences from t − 1 are shifted and applied by
Algorithm 1. The recursive feasibility of the shifted se-
quences is given by Lemma 1. Stability: Sufficient criteria
for stability of System (1) subject to Algorithm 1 are
A) J(ς̂(t + 1), û(t + 1), x̂ (t + 1)) < J(ς̂(t), û(t), x̂ (t))
∀ t ∈ {t|J(ς̂(t), û(t), x̂ (t)) > 0} and
B) J(ς̂(t + 1), û(t + 1), x̂ (t + 1)) = 0
∀ t ∈ {t|J(ς̂(t), û(t), x̂ (t)) = 0}, because
J(ς̂(t), û(t), x̂ (t)) = 0 only at the origin and σt = ς̂0,
ut = û0 ∀ t. Due to Line 16 in Algorithm 1 and Assump-
tion 1, J(ς̂(t+1), û(t+1), x̂ (t+1)) ≤ J

(
ς̂+(t), û+(t), x̂+(t)

)
∀ t.

Using the notation of Assumption 2, criterion A) thus
corresponds to Vf (Aγ x̂N (t) + Bγκ(x̂N (t))) − Vf (x̂N (t)) +
l(γ, κ(x̂N (t)), x̂N (t)) − l(ς̂0(t), û0(t), x̂0(t)) < 0. The time-
argument is omitted for the rest of the proof. Due to
convexity l(ς̂0, û0, x̂0) > 0 except at the origin, where
l(ς̂0, û0, x̂0) = 0. Both criteria A) and B) are thus fulfilled
if Vf (Aγ x̂N +Bγκ(x̂N ))− Vf (x̂N ) + l(γ, κ(x̂N ), x̂N ) ≤ 0 ∀ t
which is ensured by Assumption 2.

Notice that the strategy used to update S(t) has no
influence on the feasibility and stability properties of
Algorithm 1. It only affects the quality of the solution and
the computation time. Notice furthermore that infeasible
solutions and suboptimal solutions to (10)-(14) do not
impact the stability and feasibility of MPC with MDS.

Algorithm 2 Deciding S(t)

1: for all ς ∈ Ω do
2: F̃t(ς) = αF̃t−1(a(ς)) + 1−α

oς

∑
ψ∈Nς

F̃t−1(ψ)

3: Ỹt(ς) = αỸt−1(a(ς)) + 1−α
oς

∑
ψ∈Nς

Ỹt−1(ψ)

4: end for
5: S(t) = ∅
6: while S(t) is not full do

7: S(t) = S(t) ∪ arg min
ς∈Ω\S(t)

F̃t(ς)

8: S(t) = S(t) ∪ arg min
ς∈Ω\S(t)

F̃t(ς)− Ỹt(ς)

9: S(t) = S(t) ∪ arg max
ς∈Ω\S(t)

Ỹt(ς)

10: S(t) = S(t) ∪ {ψ} where ψ ∈ Ω \ S(t)
11: end while
12: return S(t)

3.2 Sequence selection

Several methods can be used to select the set of potential
sequences. MPC with MDS estimates, like in Bayesian
optimization, whether a sequence is likely to be either
the best solution (exploitation) or bring new information
(exploration). The set of potential sequences is assembled
to reflect a trade-off between exploitation and exploration.
In the following it is assumed that N and size l of S
are sufficiently small, that saving and sorting information
on each lN switching signal is realistic. If l and N are
large, sampling methods and parallelization can be used
to represent the switching signals.

When the fitness and uncertainty value of a sequence is
estimated, only information from the previous timestep is
used. It is thus necessary to establish what switching signal
sequences from the previous time t− 1 will have influence
at a given sequence at time t. For this, we define neighbour
sequences and implemented ancestors.

Definition 5. Two switching signal sequences ςa and ςb are
neighbours, if they differ at only one timestep except for
the last timestep, that is
ςa ∈ {ς|ςi = ςbi ∀ i ∈ I[0;N−2] \ {j}, where j ∈ I[0;N−2]}.
Switching signal sequence ςa has oςa neighbours.

Definition 6. A switching sequence ς’s implemented an-
cestor a(ς) at time t is a switching sequence whose
first element is applied to the system at time t − 1,
and whose remaining elements are identical with the
first N − 2 elements in the sequence in question, i.e.
switching signal sequence ς has implemented ancestor
a(ς) = {ψ|σt−1 = ψ0 , ψ[1;N−1] = ς[0;N−2]}.

A switching sequence’s neighbours can be precomputed
and does not vary over time, while the implemented an-
cestor will vary depending on the switching signal im-
plemented at the previous timestep. However, a set of
potential ancestors of a switching signal sequence can be
precomputed and the correct implemented ancestor can be
found online. This reduces computation time.

Algorithm 2 shows how MPC with MDS computes ex-
pected fitness and uncertainty value for the switching
signal sequences and uses simple optimization over these
values to decide the set of potential sequences. Before
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Algorithm 1 is started, F̃t(ς) and Ỹt(ς) must be given
initial values. We recommend a positive factor times the
optimal function value of the initially known solution, to
ensure correct scaling.

The expected fitness F̃t(ς) and uncertainty value Ỹt(ς) are
updated for all sequences in Ω at all times t. Ω contains all
possible switching signal sequences, even those for which
(10)-(14) may be infeasible at time t. When the values
are updated, the impact of the implemented ancestor is
weighted to the impact of the average of the neighbour
sequences by 0 < α < 1. Notice that the expected
fitness and uncertainty value could be easily computed in
parallel. The selection of the set of potential sequences
could also be parallelized, if a centralized step ensures
the uniqueness of each potential sequence in the set by
replacing duplicates with random sequences. This will lead
to increased exploration.

4. IMPLEMENTATION EXAMPLE

To illustrate the performance of the proposed method,
simulation experiments are conducted where MPC with
MBS has been implemented on a small switched linear sys-
tem and the performance of MPC with MBS is compared
to three benchmark controllers. In the following, first the
benchmark algorithms are introduced, then the system is
given, and finally the results are shown.

4.1 Benchmark controllers

The performance of MPC with MDS is compared to three
other controllers, named Optimal, Random and Safe. All
controllers are implemented in serial, since the authors
do not have access to parallel computing yet. MPC with
MDS and the Random controller are however prepared
for parallel implementation as mentioned in the end of
Section 3. The experiments are implemented in Matlab
using Yalmip, Löfberg (2004), and Gurobi.

MPC with MDS: follows Algorithm 1 and 2 with the
selection of the potential sequences prepared for paral-
lelization as mentioned in the end of Section 3.2. (10)-(14)
is solved using Gurobi’s barrier method limited to 150 it-
erations. The experiment is repeated 10 times to illustrate
the effect of the random selections used in Algorithm 2.

Optimal controller: solves the optimal mixed-integer
MPC problem (4)-(9) at each time t. To obtain a convex
continuous approximation of the mixed-integer program,
the switching signals are represented by binary variables.

Safe controller: solves (4)-(9) for the system’s initial
state and uses the solution as switching signal and con-
tinuous input the first 9 timesteps. Hereafter the basic
switching signal and the safe control law is implemented,
i.e. σt = γ and ut = κ(xt) ∀ t ≥ 10.

Random controller: selects the set of potential se-
quences randomly instead of using Algorithm 2 but follows
otherwise Algorithm 1. (10)-(14) is solved using Gurobi’s
barrier method with a limitation of 150 iterations. The
experiment is repeated 10 times.

4.2 System

The system used to illustrate the performance has initial

state x0 = [−7 −2]
T

and dynamics

xt+1 = Aσxt +Bσut where σ ∈ [0, 1, 2, 3],

A0 = A2 =

[
0.9 0.1
0 1.1

]
, B0 = B2 =

[
0
1

]
, A1 =

[
1 0
0 1.1

]
,

B1 =

[
0.1
0

]
, A3 =

[
1 0.3
0 1

]
and B3 =

[
0.1 0
0 0.1

]
.

It is known that the unconstrained system is stable when
σt = 0 and ut = [−0.1 −0.2]xt for all t.

The system is subject to state constraint Hsxt ≤ hs ∀ t,
and input constraints Hσxt ≤ hσ ∀ t, with

Hs =


1 0
−1 0
0 1
0 −1

0.1 0.2

 , hs =


10
10
5
5
1

 , H3 =


1 1
−1 0
1 0
0 1
0 −1

 , h3 =


3
−1
3
−1
3


H0 =

[
1
−1

]
, h0 =

[
0.25
0.25

]
, H1 =

[
1
−1

]
, h1 =

[
2
2

]
,

H2 =

[
1
−1

]
, and h2 =

[
5

−0.05

]
.

Notice that the continuous input under switching signal 2
is bounded away from zero and that the continuous input
under switching signal 4 has a different dimension.

Between timestep t = 50 and t = 100 the system is subject
to a constant disturbance

xt+1 = Aσxt +Bσκ(xt)−
[
0.1
0

]
∀ 50 ≤ t ≤ 98. (15)

The controllers have no information about this distur-
bance, besides the measured state, and thus do not guar-
antee state constraint satisfaction. The disturbance is how-
ever so small that the Optimal controller remains feasible.

Both MPC with MDS, the Optimal and the Random
controller are implemented with prediction horizon N =
10 and the following cost

J(ς,u ,x ) =

N−1∑
k=1

(
xTkQxk + uTkRςkuk

)
+ xTNQNxN , (16)

where R0 = 1, R1 = R2 = 0.001, R3 =

[
0.1 0
0 1

]
,

Q =

[
0.1 0
0 0.1

]
and QN =

[
1 0
0 1

]
. The terminal set is

Xf = {x|xTNQNxN ≤ 0.2}. Satisfaction of Assumption 1
part 1) and 2) is immediately clear, and satisfaction of
Assumption 1 part 3) and 4) and Assumption 2 can be
shown using the S procedure.

4.3 Results

The four controllers performed as expected in the con-
ducted experiments. In Figure 2 the realized cost,
xTt Qxt + uTt Rσtut, is shown accumulated over time. As
expected the Optimal controller is over time the cheapest
controller, while the Safe controller is the most expensive.
Furthermore, the Optimal controller only accumulates a
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Fig. 2. The accumulated cost of the applied inputs and
realized states under the different controllers.

little more cost when the system is disturbed between
t = 50 and t = 100 while the Safe controller is costly.
MPC with MDS performs well compared to both Safe
and Random controllers. MPC with MDS performs sig-
nificantly better than the Safe controller when the system
is disturbed. The safe input was chosen by MPC with MDS
mainly when the system was close to the reference value.
During the disturbance (50 ≤ t ≤ 98), a better solution
was found at 94,4% of the timesteps.

In the experiment, the maximum computation time for
one iteration of the Optimal controller was 0.6032 s. MPC
with MDS was implemented in serial, with a maximum
computation time of 1.6575 s. However, the strength of
MPC with MDS is its parallelizability. Computing the
parts of the algorithm that must be serial took maximum
0.0189 s and the longest time it took to solve (10)-(14)
was 0.3669 s. Computing Algorithm 2 in serial is time
consuming due to the large amount of data. Updating the
estimated fitness and uncertainty value took 0.4389 s in
serial. The computation for each switching signal sequence
is independent, and therefore easily parallelizable. It is
expected that a parallel implementation of MPC with
MDS reaches computation times comparable to that of
the Optimal controller on this small system.

5. CONCLUSIONS AND FUTURE WORK

We have shown how ideas from Bayesian optimization can
be used to parallelize the computations performed by MPC
on switched linear systems. The presented method, MPC
with Memory-based Discrete search (MDS) guarantees
recursive feasibility and stability of the system. It finds
‘good enough’ inputs fast. The solution is not optimal, but
the performance improvements compared to implementing
a known safe input makes it an interesting method for
many applications. It is expected that stability of MPC
with MDS can be established for a broader class of
systems, which is a promising future research.

In MPC with MDS, the computational complexity is
decreased by reducing the mixed-integer MPC problem
to a prespecified number of convex optimization problems.
The results indicate that this decreases computation times,
if the algorithm is implemented in parallel. How many
parallel agents and how large a set of potential sequences
to choose will be highly problem dependent and is another
interesting line of future research. It is expected that,
with sufficient parallelization, the computation time will
increase less than that of a mixed-integer MPC when the
system size increases.
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