
Platoon control of connected autonomous
vehicles: A distributed reinforcement

learning method by consensus

Bo Liu ∗ Zhengtao Ding ∗ Chen Lv ∗∗

∗Department of Electrical and Electronic Engineering, University of
Manchester, Manchester M13 9PL, UK (emails:

bo.liu-2@manchester.ac.uk, zhengtao.ding@manchester.ac.uk)
∗∗ C. Lv is with School of Mechanical and Aerospace Engineering,

Nanyang Technological University, 639798, Singapore (E-mail:
lyuchen@ntu.edu.sg)

Abstract: This paper proposes a distributed reinforcement learning method based on deep
Q-network and the consensus algorithm to deal with the multi-vehicle platoon control problem,
which contains the two processes of local training and global consensus. The platooning
problem is decomposed into many single-vehicle tasks based on deep Q-network, where each
vehicle accumulates its experience data samples by interacting with its front and back vehicles.
After initialization, all vehicles’ Q-networks are first locally optimized based on their own
experience simultaneously. The consensus algorithm is then used to make all vehicles in a
decentralized platoon approach each other, where the communication is only required among
directly connected vehicles. At last, the simulation study shows that the Q-networks of all
vehicles reach consensus first and then converge to the optimum in union using the proposed
distributed deep Q-networks algorithm, and all vehicles learn to form the required platoon and
move forward with a roughly equal separation.

Keywords: Distributed training, Reinforcement learning, Platoon, Consensus

1. INTRODUCTION

With the rapid growth of vehicle ownership in the past
few decades, the transportation infrastructure is under
increasing pressure, which is more likely to cause road con-
gestion and traffic accident. Traffic efficiency and safety,
therefore, become an important demand in road trans-
portation, especially for connected vehicles in future smart
cities Lu et al. (2014); Zhang et al. (2018). The platooning
of autonomous connected vehicles is a promising solution
to improve traffic capacity and transportation efficiency,
the main objective of which is to control a fleet of vehicles
to keep a given separation distance while moving forward.

In recent years, researchers have proposed many advanced
control strategies based on the multi-agent consensus
framework for platoon control Lu et al. (2014); Zhang and
Orosz (2016). Zheng et al. (2016) designed the distributed
model predictive control algorithm for vehicle platoons
over unidirectional graphs, and an equality-based terminal
constraint is used to enforce all vehicles to converge to
each other in the predictive horizon, which is proved
to be asymptotically stable. Ploeg et al. (2013) applied
the H-infinity controller to cooperative adaptive cruise
control of vehicles with linear dynamics to improve road
throughput, and the proposed method is experimentally
validated using a platoon of three passenger vehicles to
illustrate its practical feasibility. The H-infinity controller
for platooning is extended to undirected topologies with
robustness analysis in Zheng et al. (2017).

However, these methods require a specific vehicle dynam-
ics model, and the longitudinal dynamics of a vehicle is
inherently nonlinear and quite complex Liang et al. (2019),
which is usually simplified to a linear vehicle model based
on some assumptions Li et al. (2015). This simplified linear
model is suitable for theoretic analysis but may not be
applicable for real-life practice. In this paper, reinforce-
ment learning is employed to achieve the control strategy
for platooning without the requirement for the dynamics
model of the vehicles. Deep Q-Network (DQN) Mnih et al.
(2015) is a representative reinforcement learning method,
which can reach human-level performance on many video
games Mnih et al. (2013) with the combination of Q-
learning and neural networks. DQN is designed for the
single-agent architecture, which is not directly appropriate
for this multi-vehicle platooning problem. This platooning
of connected vehicles is a kind of multi-agent system prob-
lem Knorn et al. (2015) and can be solved more efficiently
in a parallel manner.

Nair et al. (2015) proposed to train the agents using the
reinforcement learning method in a distributed manner,
where each agent interacts with its copy of the environ-
ment to fill the experience relay memory and computes
the gradient of the DQN loss. These gradients are asyn-
chronously sent to a central parameter server to update
the central copy of the model, and the updated parameters
are then sent back to each agent at fixed steps. Mnih et al.
(2016) provided a parallel framework for both on-policy
and off-policy reinforcement learning algorithms, where

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15450

multiple agents interact with the same environment and
optimize the neural network controllers asynchronously
to decorrelate all agents’ experience samples into a more
stationary process, which shows better results and requires
less computational resources. Horgan et al. (2018) pro-
posed a distributed architecture for deep reinforcement
learning, which decouples acting from learning, that is,
multiple actors interact with their copies of the environ-
ment but share the same neural network and experience
replay memory, while the single learner updates the neural
network based on the shared memory using prioritized
experience replay Schaul et al. (2015).

The above parallel reinforcement learning frameworks are
all based on the parameter server framework, where a
central node is required to collect and summarizes other
agents’ information. This framework would lead to two
main problems; one is the heavy communication burden
on the central node, the other one is the collection or
sharing of the experience samples may not be available
because of the privacy-related issues and the limitation
of communication bandwidth. In this paper, we propose
a distributed training framework for deep Q-networks to
deal with the multi-vehicle platooning problem, and the
main contributions can be summarized as follows:

1) The dynamics model of a vehicle is not required for this
platoon problem, and each vehicle only need to obtain the
positions of its front and back vehicles for modeling and
decision;

2) The proposed method is suitable for the decentralized
platoon without a central node, which avoids the possible
communication traffic jam;

3) The Q-network parameters of all vehicles, other than
their experience data samples, are shared during the mod-
eling process, which greatly benefits the privacy protection
and alleviate the communication burden.

2. PROBLEM FORMULATION AND METHOD

2.1 Platooning of connected vehicles

We consider a platoon of automated connected vehicles on
a road, including a leading vehicle and multiple following
vehicles, the aim of which is to form a vehicle fleet with the
same separation distance among all vehicles while moving
forward. As mentioned before, the model-based control
strategies are not suitable for this platooning problem in
practice, because the detailed nonlinear vehicle dynamics
are quite complex and hard to obtain. The reinforcement
learning method is thus considered, which does not require
the dynamical model of the vehicles.

In this platoon scenario, all the follower vehicles form a
multi-agent system (MAS) Yang et al. (2016) to complete
the task of platooning cooperatively. Furthermore, each
vehicle can be taken as an independent vehicle with the
same task of reaching the midpoint of its front and back
vehicles. It is obvious that the vehicles will form a platoon
if all the vehicles reach the midpoint of their front and
back vehicles. In this way, this multi-vehicle platooning
problem is decomposed into many similar single-vehicle
reinforcement learning problems. That is, each vehicle
takes its front and back vehicles as the environment to

learn the task of keeping the same distance to its front
and back vehicles based on its experience by interacting
with them. More specifically, the vehicle gets a reward or
penalty from the environment based on its action which
transfers the vehicle from a state to another state. After
repeating the process for some learning iterations, the
vehicle learns to take appropriate actions to achieve the
desired state with high reward.

It is reasonable that the learning process of a vehicle will
speed up if the vehicle can learn from other vehicles’ expe-
rience as all the vehicles are facing the same reinforcement
learning problem. A simple and direct idea is to share their
experience data samples among all vehicles in the platoon
to learn faster. However, the collection or sharing of the
experience samples may not be available. The reason is not
only about the limitation of communication bandwidth for
the platoon but also the concerns on privacy-related issues,
especially for the driving behavior data.

Therefore, the problem is that it is better for each vehicle
to learn from all vehicles’ experience data, not just its local
data, but it is infeasible for a vehicle to share its data with
any other vehicles or a server center.

2.2 Deep Q-network

In the single-vehicle reinforcement learning scenario, the
vehicle accumulates its experience samples by interacting
with its front and back vehicles, to learn the optimal policy
for keeping the same separation distance to its front and
back vehicles in discrete steps.

An experience data sample of the vehicle at step t is
defined by a tuple (st, at, rt+1, st+1). More specifically, st
is the current state in the environment, at is the selected
action from the possible actions according to its policy π,
while st+1 and rt+1 are the next state and the received
reward, respectively. The true value of the action at in
the state st is Rt =

∑∞
i=0 γ

irt+i, which is the total
accumulated reward from step t, with γ ∈ (0, 1] being the
discount factor to trade off the immediate reward and the
later rewards.

As the true value of the action a in state s is hard to
compute during the actual learning process, a main work
for reinforcement learning is to estimate the value of all
actions at different states under the policy π. that is

Qπ(s, a) = E[Rt|st = s, at = a]. (1)

The optimal value is Q∗(s, a) = maxπQπ(s, a), based on
which, the agent can easily obtain the optimal strategy
by choosing the action with maximal value in each state.
Q-learning is a popular method for estimating the optimal
action values by updating a table recording all the Q(s, a),
while most problems in practice contain too many or
infinite states, and this makes it impossible to learn all
action values in all states separately.

The neural network is a good approximate method to
represent a parameterized action value function Q(s, a; θ)
because of its excellent fitting capacity Gurney (2014).
The parameter θ of the value function is updated by
minimizing a loss function at each step t using gradient
descent methods, which is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15451

l(e, θ) =
1

2
[y −Q(st, at; θ)]

2, (2)

where y = rt+1 + γmax
at+1

Q(st+1, at+1; θ) is the tar-

get action value of the Q(st, at; θ), and the tuple e =
(st, at, rt+1, st+1) is an experience sample for minimizing
the loss function l(e, θ).

Instead of using the current parameter θ, the deep Q-
network Mnih et al. (2015) computes the target action
values based on an outdated parameter, i.e., the target
network parameter θ−, which keeps fixed over certain
steps. The target value is then computed by

y = rt+1 + γmax
at+1

Q(st+1, at+1; θ−). (3)

Except for the use of the target Q-network with parameter
θ− , another important ingredient of the deep Q-network is
the use of experience replay, where the agent’s experience
sample e = (st, at, rt+1, st+1) of each step are stored in
an experience replay memory dataset D = {e1, e2, ...eN},
and the training samples are randomly selected from this
dataset to compute the loss of the Q-network.

The target Q-network reduces the correlation between
action values and target values, while the experience
replay disrupts the correlation of the observation samples
sequence. By the combination of these two techniques, the
deep Q-network can greatly improve the performance of
the reinforcement learning algorithms Mnih et al. (2015);
Van Hasselt et al. (2016).

3. DISTRIBUTED REINFORCEMENT LEARNING
FRAMEWORK

3.1 Consensus algorithm

There have been many parallel algorithms designed for
agents connected in a centralized communication graph.
For example, the master-slave graph Li et al. (2014), where
a server (master) is connected with several working agents
(slave). Although this communication structure is simple
and effective, the massive communication burden on the
master is a prime shortcoming of this graph since that
all working agents are required to communicate with the
server at every step Suresh et al. (2017). This issue may
be especially serious if the communication system is with
high latency or low bandwidth. To circumvent the possible
communication jam on the master, the decentralized com-
munication graph is designed, where no center is required
and each agent only shares its information with neighbors.

Assuming that the decentralized communication topology
is an undirected graph G = (V, E). Specifically, V =
{1, 2, ...N} and E ⊂ V × V denotes the sets of agents and
edges, where the communication between any two agents
i and j is only allowed if the edge (i, j) ∈ E . The N × N
connectivity matrix W = [wij] is further formalized to
describe the connection strength of the N agents over
the graph, where the value of wij means the degree of
influence of agent i and agent j. Besides, wij > 0 only when
(i, j) ∈ E or i = j, and wij = 0 represent the disconnection
of agent i and j Olfati-Saber and Murray (2004).

The undirected topology is concerned in this paper, and
the weighted connectivity matrix W of which should

satisfy some conditions to ensure the consensus of all
agents. That is, (i) wij ∈ [0, 1), ∀(i, j), (ii) wij = wji,

∀(i, j), (iii)
∑N
j=1 wij = 1, ∀i.

Supposing that the model of agent i is denoted by a row
vector θi, the update rule of consensus algorithm for this
agent is described by

θ′i =

N∑
j=1

wijθj . (4)

where θ′i denotes the updated model parameter of θi with
a single consensus communication.

The update for the model parameters of all agents using
the consensus algorithm is then defined as

θ′ = C(θ,W) = Wθ. (5)

where the matrices θ = [θ1, θ2...θN]T and θ′[θ′1, θ
′
2...θ

′
N]T

represent all agents’ model parameters before and after the
consensus update, respectively. θi is the ith row of θ, with
N being the number of agents in the graph, .

The consensus algorithm makes all agents approach the

mean value θ = 1
N

∑N
i=1 θi only with the communication

among connected agents by repetitively calculating the
local average of the neighbors using (5).

3.2 Distributed deep Q-networks

Some researchers have proposed the asynchronous train-
ing framework for multi-agent reinforcement learning al-
gorithms Mnih et al. (2016); Ong et al. (2015), where
each agent asynchronously updates the Q-network on the
central agent based on the experience samples on inter-
acting with the environment. In this paper, we consider
the scenario that multiple agents are connected in a com-
munication topology without a central node, and each
agent is only allowed to communicate with its neighbors. In
addition, any agent’s experience samples cannot be shared
among agents due to the limitation of communication
bandwidth and the privacy-preserving issues.

We now propose the distributed reinforcement learning
framework for platoon vehicles, the aim of which is to
train the Q-networks on all vehicles’ combined experience
without the sharing of experience data samples. First,
the Q-networks of all vehicles are initialized, and each
vehicle interacts with the environment (its front and back
vehicles) to accumulate the experience samples in its
replay memory. When the replay memory is filled with
experience samples, each vehicle starts to train its Q-
network, and the replay memory would be updated by
replacing the old samples with the new samples. Unlike
the single-vehicle situation, the training process of each
vehicle in a platoon has been modified and changed to a
two-phase procedure. In the first phase, each vehicle trains
its Q-network based on its own replay memory, while these
vehicles communicate with their connected neighbors in
the second phase to globally update their Q-networks with
the consensus communication.

By this means, each vehicle can learn other vehicles’
experience without any of the vehicles having to reveal
their experience data samples to other vehicles. Moreover,
By running different vehicles in parallel, each vehicle can

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15452

learn other vehicles’ experience samples simultaneously,
which also reduces the correlation of experience samples
generated by a single vehicle and improves its performance.
For the multi-vehicle platoon scenario, all vehicles are
initialized with the same Q-network and have their own
replay memory. The pseudo-code for the distributed train-
ing method for deep Q-networks is summarized in Table 1.

Table 1. The process of distributed deep Q-
networks

Algorithm 1: Distributed training for deep Q-networks

Inputs: The structure of the Q-network, the number of
vehicles N , and the weighted connectivity matrix W of the
communication topology.
Outputs: The optimal Q-network parameter θ∗.
1: Initialize the Q-network parameter θi and the correspond-
ing target network parameter θ−i of each vehicle i.
2: Each vehicle i interacts with its front and back vehicles and
records the experience sample ie = (sit, a

i
t, r

i
t+1, s

i
t+1) in its

replay memory dataset iD.
3: Train the Q-network parameter θi based on the randomly
selected samples from the replay memory dataset iD, and
update its corresponding target network parameter θ−i after
each T steps.
4: Globally update the Q-network parameter θi of all vehicles
over the graph using the consensus algorithm.
5: Back to step 2 with the updated θi.
6: Check the termination criterion (such as a given number of
iterations).
7: Return the optimal Q-network parameter θ∗.

4. SIMULATION AND DISCUSSION

4.1 Platoon control using distributed Q-networks

One of the most important parts for reinforcement learning
is the design of reward based on the current state and
action. Here, we first consider the single vehicle scenario,
where its environment consists of its front and back
vehicles. The vehicle’s current state contains its current
position, velocity, and the positions of its front and back
vehicles, that is

ist = (ipt,
i vt,

i+1 pt,
i−1 pt,). (6)

where ist is the current state of the ith vehicle, ipt and ivt
are the position and velocity of the ith vehicle at tth step,
respectively.

The reward is defined as follows, which consists of three
terms. The first term of irt+1 is to punish the distance
between the ith vehicle position ipt+1 and the midpoint
of the front and back vehicles, the second and third terms
are used to punish the gap between the current velocity
ivt+1 and v0 and the accelerated velocity, respectively.

irt+1 =− |i+1pt+1/2 +i−1 pt+1/2−i pt+1|
− α1|ivt+1 − v0| − α2|at|,

(7)

where irt+1 is the corresponding reward from the environ-
ment based on action at in state ist, v0 is the user-defined
constant velocity of the leader vehicle. α1 and α2 are two
tunable parameters to balance different rewards.

The task of the single vehicle is to learn how to keep the
same separation distance to its front and back vehicles
while moving forward, based on the reward calculated by
(7) from the environment. Also, the vehicle would receive
another positive reward if it fulfills the task or gets a
negative punishment if it collides with its neighbors.

For this multi-vehicle platooning problem, there are two
typical communication topologies as shown in Figure 1,
where Figure 1(a) and Figure 1(b) can be taken as a
master-slave and a decentralized graph, respectively. As
discussed in section 3.1, the decentralized graph is more
suitable for real-life practice.

Besides that no central node and no sharing of experience
samples among vehicles are required for this distributed
training framework, another superiority is the flexibil-
ity and expansibility of the decentralized communication
topology. That is, the maximum communication burden
on each vehicle will not rise with the increase in the
number of vehicles over the platoon, and the effectiveness
of this platoon is unaffected in switching communication
topology Jiang et al. (2012) and the situation that any
new vehicle participate in or leaves this platoon, on the
condition that the communication platoon always has a
spanning tree.

(a)

(b)

Vehicle 0Vehicle 1Vehicle 2Vehicle 3Vehicle 4Vehicle 5Vehicle 6

Fig. 1. Two typical communication topologies for platoon-
ing.

The proposed distributed training algorithm is suitable for
any decentralized communication topology with a span-
ning tree. In this platooning simulation study, we take
the topology in Figure 1(b) as an example, where the
leader vehicle (indexed by 0) and six follower vehicles
(indexed from 1 to 6) are connected over the platoon. In
this platoon, the leader vehicle is moving at a constant
speed, and each follower vehicle can only obtain its front
and back vehicles’ position. Furthermore, local commu-
nication on Q-networks is only required among directly
connected neighbors. It is worth noting that we suppose
there is a virtual back vehicle for vehicle 6, the position
of which equals the position of vehicle 0 minus 7 times
the given space between two neighboring vehicles. The
whole simulation study is implemented in Tensorflow using
python.

4.2 Simulation results

After initialized randomly from a normal distribution, the
Q-network of each vehicle is locally optimized based on its
own empirical risk, and then the consensus algorithm is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15453

used to globally update all vehicles’ Q-networks. As the
actual Q value changes dramatically over iterations, we
use the moving Q value Q(t) to evaluate the performance
of each vehicle in this simulation, which is calculated by
the following equation

Q(t) =

{
q̂(t) t = 1

0.99Q(t− 1) + 0.01q̂(t) t > 1,
(8)

where q̂(t) = Q(st, at, θ) is the value of action based on
the current Q-network.

Figure 2 shows the decrease in Q-network loss of all
the vehicles, where each point is the mean value of 100
iterations. All vehicles take random actions to accumulate
their experience replay memory and do not update their
Q-networks in the first 3000 iterations, the loss of which
is thus omitted in the figure. We can find from the
partially magnified figure that all vehicles’ loss decrease
dramatically and converge to each other in the first 200
training iterations, and then converge to the optimal model
in union.

20 40 60 80 100 120 140 160 180 200

iterations(×100)

0

200

400

600

800

1000

lo
ss

vehicle-1
vehicle-2
vehicle-3
vehicle-4
vehicle-5
vehicle-6

31 32 33 34 35
0

1000

2000

3000

Fig. 2. The loss of each vehicle.

Figure 3 details the curves of all vehicles’ moving Q
value. In the first 3000 iterations, all vehicles interact
with their front and back vehicles with random action to
accumulate their experience data samples. In this stage, all
the vehicles do not update their Q-networks, and thus the
moving Q values randomly fluctuate around their initial
values, which are based on their initial parameters of Q-
networks. After 3000 iterations, all the vehicles start to
learn and update their Q-networks, and their moving Q
values converge to each other in a few hundred iterations
and decrease dramatically in union. In this stage, all
vehicles have not learned how to reach the midpoint of
their front and back vehicles, and thus receive negative
rewards. The moving Q values stop dropping and start to
increase around 4500 iterations. After that, these vehicles
learn how to form a platoon and the corresponding moving
Q values begin to increase and reach convergence.

Figure 4 describes the performance of all vehicles’ rel-
ative positions in the last episode. The positions of all
vehicles are first randomly initialized in order, and they
learn to form the required platoon while updating their
Q-networks. After 3000 iterations, all vehicles form the
platoon and move forward with the same separation dis-
tance between the front and back vehicles, and there is
no vehicle collision during this process. It is clear from

Fig. 3. The moving Q value of each vehicle.

0 1000 2000 3000 4000 5000
iterations

0

100

200

300

400

500

600

700

R
el

at
iv

e
po

si
tio

n(
m

)

vehicle
 -1

vehicle
 -2

vehicle
 -3

vehicle
 -4

vehicle
 -5

vehicle
 -6

Fig. 4. The relative position of each vehicle.

the figure that there are still some fluctuations after the
vehicles form a stable platoon, and the reasons may be
multifaceted for this phenomenon.

First, there is a small possibility for each vehicle to choose
an action randomly other than taking the best action be-
cause of the exploration strategy, which is a very important
part of reinforcement learning. Second, DQN is designed
for those problems with discrete and limited actions, while
the actions of this platooning control problem are original
continuous and unlimited, which makes DQN not directly
suitable. In this simulation, we transfer the continuous
actions into limited actions using discretization with equal
space, which makes it impossible for the vehicles to always
choose the best action. Third, the environment for each
vehicle, i.e. its front and back vehicles, is varying, and all
vehicles are with strong coupling, which means that the
destabilization of any vehicle will affect all the vehicles
in this platoon. Although the simulation results are with
some fluctuations, vehicles can form the required platoon
and move at roughly equal space, which is suitable for
practice and more in line with the actual human driving
situation. In practical application, the dynamics of the ve-
hicles are not required, and there is no limit on the number
of vehicles over an arbitrary communication topology with
a spanning tree. Each vehicle only needs to obtain its front
and back vehicles’ positions to learn how to control the
accelerator for this platooning problem.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15454

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed training framework
for deep Q-networks to deal with the platoon control
problem using a reinforcement learning method. Multiple
follower vehicles and a leader vehicle are connected over a
decentralized platoon. This multi-vehicle platooning prob-
lem is decomposed into many small single vehicle tasks,
where each vehicle takes its front and back vehicles as
the reinforcement learning environment and learns to keep
the same space to them. All the vehicles only need to
communicate and obtain the positions of its front and
back vehicles in this platoon and the sharing of experience
samples is not allowed because of privacy concerns and
communication bandwidth limitation, which is more suit-
able for the practical situation. After the optimization of
every vehicles’ Q-networks based on their own experience
samples, the consensus algorithm is designed to allow all
vehicles to converge to each other. In this way, we change
the learning process of Q-network into a two-phase update
process, where the Q-network of each vehicle is locally
optimized based on its own experience first, and the Q-
networks of all vehicles are then globally updated using
the consensus algorithm.

At last, the simulation study shows that the Q-networks
of all vehicles reach consensus in 200 training iterations
and converge to the optimal model around 4500 iterations.
After randomly initialized in the last learning episode, all
the vehicles learn to form the required platoon in 3000
iterations and move forward at roughly equally separation
distance.

REFERENCES

Gurney, K. (2014). An introduction to neural networks.
CRC press.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G.,
Hessel, M., Van Hasselt, H., and Silver, D. (2018).
Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933.

Jiang, H., Bi, Q., and Zheng, S. (2012). Impulsive consen-
sus in directed networks of identical nonlinear oscillators
with switching topologies. Communications in Nonlin-
ear Science and Numerical Simulation, 17(1), 378–387.

Knorn, S., Chen, Z., and Middleton, R.H. (2015).
Overview: Collective control of multiagent systems.
IEEE Transactions on Control of Network Systems,
3(4), 334–347.

Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E.J., and Su, B.Y.
(2014). Scaling distributed machine learning with the
parameter server. In OSDI, volume 14, 583–598.

Li, S.E., Zheng, Y., Li, K., and Wang, J. (2015). An
overview of vehicular platoon control under the four-
component framework. In 2015 IEEE Intelligent Vehi-
cles Symposium (IV), 286–291. IEEE.

Liang, Z., Chen, J., and Wang, Y. (2019). Equivalent
acceleration imitation for single wheel of manned lunar
rover by varying torque on earth. IEEE/ASME Transac-
tions on Mechatronics, 1–1. doi:10.1109/TMECH.2019.
2953330.

Lu, N., Cheng, N., Zhang, N., Shen, X., and Mark, J.W.
(2014). Connected vehicles: Solutions and challenges.
IEEE internet of things journal, 1(4), 289–299.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, 1928–
1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon,
R., De Maria, A., Panneershelvam, V., Suleyman, M.,
Beattie, C., Petersen, S., et al. (2015). Massively parallel
methods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296.

Olfati-Saber, R. and Murray, R.M. (2004). Consensus
problems in networks of agents with switching topology
and time-delays. IEEE Trans. Automat. Contr., 49(9),
1520–1533.

Ong, H.Y., Chavez, K., and Hong, A. (2015). Distributed
deep q-learning. arXiv preprint arXiv:1508.04186.

Ploeg, J., Shukla, D.P., van de Wouw, N., and Nijmeijer,
H. (2013). Controller synthesis for string stability of
vehicle platoons. IEEE Transactions on Intelligent
Transportation Systems, 15(2), 854–865.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D.
(2015). Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Suresh, A.T., Yu, F.X., Kumar, S., and McMahan, H.B.
(2017). Distributed mean estimation with limited com-
munication. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 3329–
3337. JMLR. org.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep
reinforcement learning with double q-learning. In Thir-
tieth AAAI Conference on Artificial Intelligence.

Yang, S., Liu, Q., and Wang, J. (2016). A multi-agent
system with a proportional-integral protocol for dis-
tributed constrained optimization. IEEE Transactions
on Automatic Control, 62(7), 3461–3467.

Zhang, H., Zhang, Q., Liu, J., and Guo, H. (2018). Fault
detection and repairing for intelligent connected vehicles
based on dynamic bayesian network model. IEEE
Internet of Things Journal, 5(4), 2431–2440.

Zhang, L. and Orosz, G. (2016). Motif-based design for
connected vehicle systems in presence of heterogeneous
connectivity structures and time delays. IEEE Trans-
actions on Intelligent Transportation Systems, 17(6),
1638–1651.

Zheng, Y., Li, S.E., Li, K., Borrelli, F., and Hedrick, J.K.
(2016). Distributed model predictive control for het-
erogeneous vehicle platoons under unidirectional topolo-
gies. IEEE Transactions on Control Systems Technol-
ogy, 25(3), 899–910.

Zheng, Y., Li, S.E., Li, K., and Ren, W. (2017). Platooning
of connected vehicles with undirected topologies: Ro-
bustness analysis and distributed h-infinity controller
synthesis. IEEE Transactions on Intelligent Transporta-
tion Systems, 19(5), 1353–1364.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15455

