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Abstract: In this work, we present results on autocratic strategies in infinitely repeated
multiplayer games. Extending the previously developed theory for two-player games, we
formulate necessary conditions for the existence of autocratic strategies in a standard multiplayer
social dilemma game, namely the public goods game. The infinitely repeated game is designed
with a discount factor that reduces the values of the future payoffs. The contribution of this
work is an adaptation of existing theory on autocratic strategies to multiplayer games with
arbitrary action spaces. We first show the existence of an autocratic strategy that uses a finite
set of points from a continuous action space. Then, using a strategy concentrated on two points
of the continuous interval representing the autocrat’s available actions, we show the necessary
conditions for the existence of autocratic strategies in the context of the public goods game.
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1. INTRODUCTION

Social dilemma games model interactions among players
where each one decides whether to sacrifice her own inter-
ests in favor of the greater good. The emergence of such be-
haviors in social sciences (Webster and Sell (2014)) moti-
vates researchers to explore dilemmas and search for mech-
anisms that enable players to follow a particular behavior.
For example, mechanisms that encourage cooperation have
been developed for social dilemma games (Nowak (2007),
Sigmund (2010), Nowak (2013), Hauser et al. (2014)). One
proposed mechanism to establish cooperation, using reci-
procity of the cooperation behavior, was described in Hen-
rich et al. (2001), Nowak and Sigmund (2005). However,
for large populations, these mechanisms fail due to the
difficulty of tracking one’s opponents, or even to influence
them (Hauert and Schuster (1997), Suzuki and Akiyama
(2007)). Another example of a strategy used for sustaining
cooperation in iterated games is the tit-for-tat strategy
(Axelrod and Axelrod (1984)), where a player copies the
action that the opponent adopted in the previous round.

The Iterated Prisoner’s Dilemma (IPD) is a classic exam-
ple of social dilemma games that has a long history of being
exploited for describing a variety of phenomena appearing
in different fields (Chong et al. (2007)). In 2012, a new class
of strategy, called zero-determinant strategies (Press and
Dyson (2012)), was presented in the context of IPD. That
strategy is of an autocratic type since it allows a player to
unilaterally enforce a linear relationship between her own
payoff and the co-players’ payoff. Loosely speaking, the
zero-determinant strategy is a sort of ultimatum strategy
that gives a player a unilateral control over the distribution
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of the payoffs. Of particular interest is a strategy that
allows a focal player to set a generous share of payoff to
the co-players. Another particular case is the equalizer
strategy with which a focal player sets her own payoff
within a feasible range. For other means of exerting control
on games, we refer the reader to surveys such as Marden
and Shamma (2015), Riehl et al. (2018).

Naturally, the discovery of zero-determinant strategies
provoked much research on its properties and possible
applications, mostly for infinitely repeated games with dis-
count factors. Hilbe et al. (2013) studied zero-determinant
strategies in the context of evolutionary game theory. Ichi-
nose and Masuda (2017) investigated the existence of zero-
determinant strategies in the two-player case. Hilbe et al.
(2015) and Hilbe et al. (2014) made an essential step by
extending existing results for multiplayer games. Govaert
and Cao (2019) analyzed zero-determinant strategies in in-
finitely repeated multiplayer games in the context of social
dilemma games. All previously mentioned works on zero-
determinant strategies considered games with finite action
spaces. Thus, the work of McAvoy and Hauert (2015)
is particularly interesting because, inspired by the zero-
determinant strategy, it introduced an autocratic strategy
for iterated games with arbitrary action spaces.

In our work, we extend the result in McAvoy and Hauert
(2015) for multiplayer games and apply it to a social
dilemma game, namely public goods game. Using the
general theorem on the existence of autocratic strategies
(McAvoy and Hauert (2015)), we develop a corollary
that provides conditions on the existence of autocratic
strategies concentrated at n points of the continuous
interval representing the autocrat’s space of available
actions. Exploiting the case for n = 2, i.e., a two-point
autocratic strategy, we derive results that describe the
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existence and the limitations of special types of autocratic
strategies in the context of the public goods game.

The public goods game, as a social dilemma, also belongs
to another important type of games - aggregative games,
where the payoff of a player is affected by some aggregate
behavior of her opponents. Aggregative games are widely
used for control of a behavior of self-interested but coupled
agents (Chen et al. (2014), Barrera and Garcia (2014), Ye
and Hu (2015)). Hence, the developed theory can be used
in the context of control problems by using an autocratic
strategist as a controller for achieving a desirable behavior.

The paper is organized as follows. Section 2 sets the
problem, describes the sequence of the game, and provides
formal definitions of memory-one strategies and social
dilemma games. In Section 3, we provide the extended
theorem on autocratic strategies in repeated multiplayer
games and the corollary that states conditions on n-point
strategies. In Section 4, we provide results on the existence
of autocratic strategies in the public goods game. Section
5 concludes the work, summarizing the results as well as
describing future plans.

2. PROBLEM FORMULATION

2.1 Infinitely repeated N -player game

In this paper, we consider N -player non-cooperative games
in which each player repeatedly chooses an action from an
arbitrary (i.e., discrete or continuous) space of available
actions, basing his choice on the outcomes of previous
rounds. For each player i ∈ {1, . . . , N}, the space of
available actions is a measurable space Si (equipped with
a σ-algebra, hence (Si,F(Si)), in the following referred
simply by Si).

After T rounds, a history hT is generated as a sequence of
action profiles played by players in each round, i.e.

hT :=
(
hT0 , . . . , h

T
T−1

)
, (1)

where hT ∈ HT :=
∏T−1

t=0 S1×· · ·×SN , with HT being the
set of all possible histories that can be generated before

round T , and the vector hTt =
(
x
(t)
1 , . . . , x

(t)
N

)
∈ S1×· · ·×

SN describes the particular action profile generated by the
N players at round t.

We consider a game with a discount factor λ ∈ (0, 1).
Thus, a single round payoff to player i at moment t is

given by λtui

(
x
(t)
i , x

(t)
−i

)
, where x

(t)
−i ∈ S−i =

∏
j 6=i Sj

denotes an action profile chosen by the opponents at round
t. The normalized cumulative payoff to player i after T +1
interactions is given by

πT
i =

1− λ
1− λT+1

T∑
t=0

λtui

(
x
(t)
i , x

(t)
−i

)
. (2)

From this, we easily extrapolate the normalized cumulative
payoff to player i in the infinitely repeated game as

πi = (1− λ)

∞∑
t=0

λtui

(
x
(t)
i , x

(t)
−i

)
. (3)

Following McAvoy and Hauert (2015), we define a strategy
for every player i as a map

σi : H→ ∆(Si) , (4)

where H :=
⊔

T≥0 H
T (with H0 := ∅) being the set of all

possible histories and ∆(Si) being the space of probability
measures, i.e., the simplex, on Si.
In this work, we focus on an important class of strategies,
namely memory-one strategy, that takes into account only
the last played action profile, hence

σi[h
T ] = σi[h

T
T−1] . (5)

The strategy σi is the conditional probability of picking
an action by player i from her space of available actions
Si, given an action profile played in the previous round.
Thus, for a given action profile (xi, x−i), σi[xi, x−i](s),
which denotes the probability that i uses s after (xi, x−i)
is played, satisfies the following∫

s∈Si

σi[xi, x−i](s) ds = 1 . (6)

The initial strategy of player i, used in the first round, is
denoted as

σi[∅](s) = σ0
i (s) . (7)

Remark 1. In Press and Dyson (2012), it was shown that a
longer memory does not give an advantage if a fixed game
(same allowed moves and same payoffs at every iteration)
is indefinitely repeated. Thus, all the results presented in
this paper, can be extended for the case of players with
longer memory strategies.

2.2 Social Dilemma

In this work, we investigate the existence of autocratic
strategies in the public goods game that belongs to the
class of social dilemma games. Below, we provide a few
standing assumptions on N -player social dilemma games
with continuous action space represented by the unit
interval, analogous to those made in Hilbe et al. (2014)
but extended for the case of continuous action spaces.

Assumption 2. For establishing the social dilemma, we
assume

(1) irrespective of the own strategy, players prefer the
other group members to cooperate, i.e., for x−i =
(xj)j 6=i, x

′
−i = (x′j)j 6=i, if

∑
j 6=i xj >

∑
j 6=i x

′
j , then

the following is satisfied

ui(xi, x−i) > ui(xi, x
′
−i) , ∀i ∈ {1, . . . , N} ;

(2) within any mixed group, defectors obtain strictly
higher payoffs than cooperators, i.e., for xi > x′i, the
following must be true

ui(xi, x−i) < ui(x
′
i, x−i) , ∀i ∈ {1, . . . , N} ;

(3) mutual cooperation is favored over mutual defec-
tion, i.e., for (xi, x−i) = (1, . . . , 1) and (x′i, x

′
−i) =

(0, . . . , 0), it holds that

ui(xi, x−i) > ui(x
′
i, x
′
−i) , ∀i ∈ {1, . . . , N} .

Next, we define the public goods game.

Example 3. (Public Goods Game) Each of N players
makes a decision - whether or not to contribute into a pub-
lic pot. Every player i = {1, . . . , N} contributes xi ∈ [0, 1].
Her payoff function is given by

ui(xi, x−i) :=
rc
∑N

k=1 xk
N

− cxi . (8)
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In the public goods game, Assumption 2 leads to the
following conditions on r and c

1 < r < N and c > 0. (9)

In the following section, we explain what an autocratic
strategy is.

3. AUTOCRATIC STRATEGIES

In the remainder of the paper, we denote an action
profile as x = (xi, x−i). Below, we introduce the N -player
extension of autocratic strategies for discounted games
with an arbitrary action space. The original theorem was
developed in McAvoy and Hauert (2015) for the two
players case. The undiscounted case can be recovered by
setting λ = 1.

Theorem 4. Suppose that σi[x] is a memory-one strategy
for player i and let σ0

i be player i’s initial strategy. If,
for some bounded function ψ(·) and fixed α, γ ∈ R,
β = {βj ∈ R|j 6= i}, the equation

αui(x) +
∑
j 6=i

βjuj(x) + γ = ψ(xi)

−λ
∫
s∈Si

ψ(s) dσi[x](s)− (1− λ)

∫
s∈Si

ψ(s) dσ0
i (s) ,

(10)
holds for all x ∈ Si × S−i, then (σi, σ

0
i ) enforce the linear

payoff relationship

απi +
∑
j 6=i

βjπj + γ = 0 (11)

for any strategies of i’s N − 1 opponents.

Here we give the sketch of the proof. Extending the game
to N -player case, we prove theorem by following the steps
of the proof for the 2-player case (see supplementary
material for McAvoy and Hauert (2015)). The proof is a
direct result of the generalization of Akin’s Lemma (Akin
(2015)). The lemma, extended to N -player case, relates
strategies of N players, and the sequence of play to the
initial action of the autocratic strategist.

In fact, the theorem is difficult to apply because the
integral,

∫
s∈Si

ψ(s) dσi[x](s), in general cannot be solved

explicitly. As a result, one is unable to directly find all
possible pairs (σi, σ

0
i ). However, it is possible to show that

under specific conditions, an autocratic strategist can use
(σi, σ

0
i ) concentrated on a finite set of points of Si and

unilaterally enforce (11). In other words, an autocratic
strategist can enforce the linear payoff relationship (11) by
using a finite number of actions from the space of available
actions while all the opponents are employing continuous
action spaces.

Corollary 5. Let α, γ ∈ R, β = {βj ∈ R|j 6= i}, {sk}nk=1 ∈
Si, x−i ∈ S−i, and there exists a bounded function ψ(sk)
defined for all k ∈ {1, . . . , n}. Suppose there exists a pair
(σi, σ

0
i ) such that

σi[xm](sk) := pk(xm) ≥ 0 ,

n∑
q=1

pq(xm) = 1 ,

σ0
i (sk) := p0k ≥ 0 ,

n∑
q=1

p0q = 1 ,

(12)

where xm = (sm, x−i) ∈ Si × S−i, satisfying for all
m ∈ {1, . . . , n}

αui(xm) +
∑
j 6=i

βjuj(xm) + γ + (ψ(sn)− ψ(sm))

−(1− λ)

(∑
k 6=n

(ψ(sn)− ψ(sk))p0k

)
= λ

(∑
k 6=n

(ψ(sn)− ψ(sk))pk(xm)

)
,

(13)

Then, this pair (σi, σ
0
i ) of the autocratic strategist i

enforces
απi +

∑
j 6=i

βjπj + γ = 0 , (14)

for any strategies of i’s N − 1 opponents.

The proof can be found in Appendix A.

Note that we design player i strategy such that for all
x̄i ∈ Si \ {sk}nk=1, the probability of being played is zero,
i.e.,

σi[xm](x̄i) = 0 , σ0
i (x̄i) = 0 . (15)

where xm = (sm, x−i) with m ∈ {1, . . . , n}.
Now, we define an autocratic strategy concentrated only in
two points of the space of available actions, i.e. we want to
define a two-point autocratic strategy specifying the result
of Corollary 5 for the n = 2 case.

Let α, γ ∈ R, β = {βj ∈ R|j 6= i}, s1, s2 ∈ Si. We set
ψ(s1), ψ(s2) as

ψ(s1) = ψ1 ∈ R ,

ψ(s2) = ψ1 +
1

φ
, whereφ ∈ R>0 .

(16)

Then, according to (12), we set the memory-one strategy
of player i as

σi[x1](s1) := p(x1) ,
σi[x1](s2) := 1− p(x1) ,
σi[x2](s1) := p(x2) ,
σi[x2](s2) := 1− p(x2) .

(17)

and the initial strategy as

σ0
i (s1) := p0 ,
σ0
i (s2) := 1− p0 ,

(18)

Then, (13) gives

p(x1) =
1

λ
(φ(αui(x1) +

∑
j 6=i

βjuj(x1) + γ)

−(1− λ)p0 + 1) ,

p(x2) =
1

λ
(φ(αui(x2) +

∑
j 6=i

βjuj(x2) + γ)

−(1− λ)p0) ,

(19)

and the constraints in (12) imply

(1− λ)p0 − 1 ≤ φ(αui(x1) +
∑
j 6=i

βjuj(x1) + γ)

≤ (1− λ)(p0 − 1) ,

(1− λ)p0 ≤ φ(αui(x2) +
∑
j 6=i

βjuj(x2) + γ) ≤ λ

≤ λ+ (1− λ)p0 .

(20)

Hence, (17) and (18) describe (σi, σ
0
i ) pair of the autocratic

strategist i that enforces

απi +
∑
j 6=i

βjπj + γ = 0 , (21)
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for any strategies of i’s N − 1 opponents.

The two-point strategy (17), (18) provides a tool for
studying the existence of autocratic strategies in multi-
player games. We use it for investigating the public goods
game described in Example 3. Further, considering that
xi ∈ [0, 1], we set s1 = 1 and s2 = 0 for an autocratic
strategist.

4. AUTOCRATIC STRATEGIES IN THE PUBLIC
GOODS GAME

4.1 Existence of the autocratic strategies

Firstly, we re-parameterize the current (α,β, γ) setting as
done in Hilbe et al. (2014), obtaining

ρ = −
∑
k 6=i

βk , χ =
α

ρ
,

ωj 6=i = −βj
ρ
, l = − γ

α− ρ
.

(22)

Then, the enforceable payoff relationship takes the follow-
ing form

π−i = χπi + (1− χ)l , (23)
where π−i =

∑
j 6=i ωjπj , χ, l ∈ R, ω = {ωj ∈ R|j 6= i}.

While the probabilities (19) in the autocratic memory-one
strategy (17) become

p(x1) =
1

λ
(φρ(χui(x1)−

∑
j 6=i

ωjuj(x1) + (1− χ)l)

−(1− λ)p0 + 1) ,

p(x2) =
1

λ
(φρ(χui(x2)−

∑
j 6=i

ωjuj(x2) + (1− χ)l)

−(1− λ)p0) .

(24)

In the case of public goods game (Example 3), (24) are

p(x1) =
1

λ

(
φρ

(
χ
rc
(∑

j 6=i xj + 1
)

N
− c

)
−
∑
j 6=i

ωj ·(
rc
(∑

k 6=i xj + 1
)

N
− cxj

)
+ (1− χ)l

)
− (1− λ)p0 + 1

)
,

p(x2) =
1

λ

(
φρ

(
χ
rc
∑

j 6=i xj

N
−
∑
j 6=i

ωj ·(
rc
∑

k 6=i xj

N
− cxj

)
+ (1− χ)l

)
− (1− λ)p0 + 1

)
.

(25)

Below, we provide a criterion for considering the payoff
relation (23) to be enforceable. It is based on the fact that
mapping σi[x] should belong to ∆(Si), i.e. the probabilities
p(s1, x−i), p(s2, x−i) are both in the unit interval.

Definition 6. The linear payoff relationship (23) with
(χ,ω, l) for the infinitely repeated N -players public goods
game with the discount factor λ ∈ (0, 1) is said to be
enforceable if there exists σ0

i → ∆(Si) such that σi(x) is
in ∆(Si).

Applying this definition to the public goods game, we get
the following proposition that states necessary conditions
on ρ, χ,ω, l.

Proposition 7. The existence of the enforceable payoff
relation (χ,ω, l) for the infinitely repeated N -player public

goods game, satisfying Assumption 2, with continuous
action space and discount factor λ ∈ (0, 1), requires the
following necessary conditions

− 1

N − 1
≤ −minω < χ < 1 ,

ρ > 0 ,
0 ≤ l ≤ rc− c .

(26)

The proof can be found in Appendix B.

Note that the lower and upper bounds on l are the
payoffs to a single player if xk = 0 and xk = 1 for all
k ∈ {1, . . . , N}, respectively.

We study conditions on the existence of the four most
studied autocratic strategies that are formulated in Table
1. The proofs of the propositions presented below result
from conditions (12) and are avoided in the paper.

Table 1. The mostly studied autocratic strate-
gies

Autocratic strategy Parameters value

Fair χ = 1
Generous l = rc− c and 0 < χ < 1

Extortionate l = 0 and 0 < χ < 1
Equalizer χ = 0

Proposition 8. In the N -player repeated public goods
game, satisfying Assumption 2, with the continuous action
space and discount factor 0 < λ < 1, the existence of

(1) the fair strategy is not possible;
(2) the generous strategy requires necessary condition

p0 = 1;
(3) the extortionate strategy requires necessary condition

p0 = 0.

For the equalizer strategy, we have χ = 0 and, as a result,
the payoff relation (23) becomes

π−i = l . (27)

Literally, the autocratic strategist i sets the payoff to N−1
opponents. The proposition below provides bounds on the
value of l that player i can unilaterally enforce. Before we
introduce the bounds, we define the indicator function as

1(y) =

{
1 , y ≥ 0 ,

0 , y < 0 .
(28)

Proposition 9. In the N -player repeated public goods
game, satisfying Assumption 2, with continuous action
space and discount factor 0 < λ < 1, the equalizer strategy
that enforces (0,ω, l) does not exist for l not satisfying the
following condition

max
(

0, c
∑
j 6=i

(
ωj −

r

N

)
1
(
ωj −

r

N

))
≤ l

≤ min
(
rc− c, c

∑
j 6=i

( r
N
− ωj

)
1
(
ωj −

r

N

)
+
rc

N

)
.

(29)

Remark 10. In the case of the equalizer strategy (χ = 0),
Proposition 7 sets the following constraint

0 < minω ≤ 1

N − 1
. (30)
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That means the following - in the case of equalizer strategy,
the autocrat cannot exclude any opponent from the payoff
relation (23).

5. CONCLUSION

Extending existing results, we have developed a theory
on autocratic strategies in multiplayer games. Firstly, we
have given the necessary conditions for the existence of
the infinite-dimensional autocratic strategy in multiplayer
games. Next, we have shown that the autocrat is able to
enforce the linear relationship between her payoff and the
co-players’ payoffs using a strategy concentrated at a finite
number of points of the continuous interval. Exploiting the
case of the two-point autocratic strategy, we have focused
on investigating the existence of the autocratic strategy in
general as well as of its special types in the public goods
game, that belongs to the class of social dilemma games.
We have shown that for the existence of the extortionate
strategy, the autocrats should contribute nothing in the
first round, while for the existence of the generous one, it
is the opposite, i.e., the autocrat contributes the highest
possible value. Also, our results have shown that it is
impossible to enforce the fair relationship between players’
payoffs. Finally, we have derived bounds on the value that
the autocrat can assign to its opponents in the equalizer
strategy case. For the future work, we firstly want to derive
sufficient conditions for the existence of the autocratic
strategy in social dilemma games with continuous action
spaces as well as applying the developed theory to games
with non-linear payoff functions. Another direction is
to study the effect of uncertainty on the existence of
autocratic strategies, e.g., the uncertainty, described by
a distribution function, of the discount factor.
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Appendix A. PROOF OF COROLLARY 5

From Theorem 4, for fixed α, γ ∈ R and β = {βj ∈
R|j 6= i}, (10) needs to be satisfied for some bounded
function ψ : {s1, . . . , sn} → R and xm ∈ Si × S−i for all
m ∈ {1, . . . , n}. Thus,
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αui(xm) +
∑
j 6=i

βjuj(xm) + γ = ψ(sm)

−λ
∫
s∈Si

ψ(s) dσi[xm](s)− (1− λ)

∫
s∈Si

ψ(s) dσ0
i (s) .

(A.1)
should hold. Formally, the memory-one strategy, described
in (12) and (15), can be defined for all xi ∈ Si and
x ∈ Si × S−i as

σi[x](xi) :=

n∑
k=1

pk(x)δsk(xi) ,

σ0
i (xi) :=

n∑
k=1

p0kδsk(xi) ,

(A.2)

where δsk is the Dirac measure on Si centered at sk.
Because the design of the memory-one strategy (A.2)
restricts i’s actions to n points and Theorem 4 makes
no assumptions on the action space, we may assume that
Si = {s1, . . . , sn}. Substituting (A.2) in (A.1), we get

ψ(sm)− λ
(∑

k 6=n

ψ(sk)pk(xm) + ψ(sn)
(

1−
∑
k 6=n

pk(xm)
))

−
(

1− λ
)(∑

k 6=n

ψ(sk)p0k + ψ(sn)
(

1−
∑
k 6=n

p0k

))
= αui(xm) +

∑
j 6=i

βjuj(xm) + γ .

(A.3)
Rearranging the terms, we get (13). Also, due to the con-
straints in (12), we ensure that the memory one strategy
belongs to the simplex, as defined in (4). This completes
the proof. �

Appendix B. PROOF OF PROPOSITION 7

Firstly, we consider the following two cases

(1) xi = s1 and x−i = (1, . . . , 1), i.e., all players con-
tribute 1;

(2) xi = s2 and x−i = (0, . . . , 0), i.e., all players con-
tribute 0.

According to (25), the cases give the following

p(x1)

=
1

λ
(φρ((χ− 1)(rc− c) + (1− χ)l)− (1− λ)p0 + 1) ,

(B.1)

p(x2) =
1

λ
(φρ(1− χ)l − (1− λ)p0) . (B.2)

Further, we check under which conditions both (B.1) and
(B.2) stay between [0, 1]. Thus, we study the following
inequalities

0 ≤ φρ((χ−1)(rc−c)+(1−χ)l)−(1−λ)p0+1 ≤ λ, (B.3)

0 ≤ φρ(1− χ)l − (1− λ)p0 ≤ λ . (B.4)

After rearranging terms and multiplying (B.3) by −1, we
get

(1−p0)(1−λ) ≤ φρ(1−χ)(rc−c−l) ≤ 1−(1−λ)p0 , (B.5)

(1− λ)p0 ≤ φρ(1− χ)l ≤ (1− λ)p0 + λ . (B.6)

Combining both inequalities, we get

(1− λ) ≤ φρ(1− χ)(rc− c) ≤ 1 + λ . (B.7)

Considering that 0 < λ < 1, φ > 0 and rc − c > 0 (from
(9)), we can conclude that

0 < ρ(1− χ) . (B.8)

Next, we consider another situation - there is only player
among N players that contributes 0, i.e.,

(1) xi = s1 and x−i = (1, . . . , 1, 0, 1, . . . , 1), i.e., that
player is among i’s opponents (we denote him by j′);

(2) xi = s2 and x−i = (1, . . . , 1), i.e., that player is player
i.

These two cases give us two inequalities, which guarantee
that both p(s1, x−i) and p(s2, x−i) are in [0, 1],

0 ≤ φρ
(
χ
(rc(N − 1)

N
− c
)
−

∑
j 6=i,j 6=j′

ωj

(rc(N − 1)

N
− c
)

−ωj′
rc(N − 1)

N

)
+ (1− χ)l

)
− (1− λ)p0 + 1 ≤ λ ,

0 ≤ φρ
(
χ
rc(N − 1)

N
−
∑
j 6=0

ωj

(rc(N − 1)

N
− c
)

+ (1− χ)l
)

−(1− λ)p0 ≤ λ .
(B.9)

Rearranging terms, using the fact that ωj′ = 1 −∑
j 6=i,j 6=j′ ωj (due to

∑
j 6=i ωj = 1) and multiplying the

first inequality by −1, we get

(1− λ)(1− p0) ≤ φρ
(
− χ

(rc(N − 1)

N
− c
)

+ (1− ωj′)(rc(N − 1)

N
− c
)

+ ωj′
rc(N − 1)

N
− (1− χ)l

)
≤ 1− (1− λ)p0 ,

(1− λ)p0 ≤ φρ
(
χ
rc(N − 1)

N
−
(rc(N − 1)

N
− c
)

+(1− χ)l
)
≤ λ+ (1− λ)p0 .

(B.10)
Combining two inequalities in (B.10), we get

1− λ ≤ φρ(χc+ ωj′c) ≤ 1 + λ . (B.11)

Considering that 0 < λ < 1, φ > 0 and c > 0 (from 3), we
can conclude that

0 < ρ(χ+ ωj′) . (B.12)

Because we do not specify which player j′ is defecting,
(B.12) should hold for all ωj′ = ωj ∈ ω. Next, we sum
(B.8) and (B.12) to get

0 < ρ(1 + ωj) , ∀ωj ∈ ω . (B.13)

Because at least one ωj > 0, one can derive necessary
conditions ρ > 0 and χ < 1 (from (B.8)). From (B.12), we
get for all ωj ∈ ω

χ+ ωj > 0 ,

minω > −χ . (B.14)

Considering that χ < 1 and
∑

j 6=i ωj = 1, one can conclude

− 1

N − 1
≤ −minω < χ < 1 . (B.15)

Finally, considering that p0 ∈ [0, 1] and λ ∈ (0, 1), left
hand-sides of (B.5) and (B.6) become

0 ≤ φρ(1− χ)(rc− c− l) , (B.16)

0 ≤ φρ(1− χ)l . (B.17)

Using that φ, ρ > 0 and χ < 1, we conclude that

0 ≤ l ≤ rc− c . (B.18)

Combining ρ > 0, (B.15) and (B.18) results, we complete
the proof. �
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