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Abstract

The chemical process industry makes increasingly use of a diversity of data collectors, that should be properly in-
tegrated to build effective solutions for process monitoring, control and optimization. Concerning the assessment of
products properties, one of the most common scenarios involve the collection of data from plant laboratories that pro-
vide more accurate measurements at lower rates, together with more frequent measurements or predictions of lower
quality. Soft sensors and online analyzers are examples of viable alternatives for acquiring more frequent and updated
information, although with a higher uncertainty. All of these data collectors have informative value and should be con-
sidered when it comes to estimate key product attributes. This is the goal of fusion methods, whose importance grows
together with the increase in the number of sensors and data sources available. In this article, two fusion schemes
that address prevailing characteristics of industrial data are proposed and compared: one version of the classic tracked
Bayesian fusion scheme (TBF) and a novel modification of the track-to-track algorithm, designated as bias-corrected
track-to-track fusion (BCTTF). The proposed methodologies are able to cope with the multirate nature of data and
irregularly sampled measurements that present different uncertainty levels. An application to a real industrial case
study shows that BCTTF presents better prediction performance, higher alarm identification sensitivity and leads to a
smoother estimated signal.
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1. Introduction

Soft sensors and online analyzers (OAs) are effec-
tive tools for timely and frequent process monitoring
[1]. Soft sensors, also known as inferential sensors,
virtual online analyzers and observer-based sensors, are
predictive models (mechanistic, data-driven or hybrid)
that provide information on a process or a relevant key
performance indicator (KPI) [2]. These KPIs are of-
ten variables that cannot be directly measured (e.g. con-
centrations and quality attributes) [3]. Furthermore,
these quality variables difficult to estimate online, re-
quire complex lab analysis that often introduce signif-
icant time delays [4]. By combining information from
different sources, the quality and timeliness of state esti-
mation can be improved, improving process monitoring,
control and operational decision-making [5, 6, 7]. Soft
sensors require regular maintenance as its prediction ac-
curacy tend to degrade over time due to various factors,
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such as changes of process conditions, process drifting
and equipment degradation [8].

In the literature, two types of approaches have been
adopted more intensively to address the multi-sensor
data fusion problem: Bayesian inference and state es-
timation. The former approach models the behavior of
each sensor with a Gaussian probability density func-
tion (PDF) and combines the individual sensor PDF into
a joint PDF. A likelihood function is then established
based on the joint PDF, and its parameters are estimated
using data. This state estimate corresponds to the max-
imum a posteriori (MAP) estimate [9]. As an exam-
ple, Wang and Chiang have applied Bayesian inference
based methods to improve the monitoring of industrial
distillation column [10, 11].

The second approach, state estimation, is based on
Kalman filtering [12], known as track-to-track fusion
(TTF) [13]. The Kalman filter also has a Bayesian ori-
gin, but the specificity of TTF algorithms is high, jus-
tifying a separate treatment. More specifically, TTF
makes use of a Kalman filter to track each sensor and
fusing the sensors’ state estimates into a new state es-
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timate generated from a static linear estimation equa-
tion [14]. Gao and Harris [5] reviewed some measure-
ment fusion approaches and proposed a modified track-
to-track fusion (MTF) that guaranteed the optimality
of the estimate. On the oter hand, Haque et al. [15]
proposed a Monte Carlo Bayesian inference approach
to improve floor localization in indoor positioning sys-
tems. This method processes the signal strengths of Wi-
Fi measurements and fuse them with barometric altime-
try through a Kalman filter scheme.

Previous works have essentially considered the com-
monly used linear, time-invariant, discrete-time model
to make state predictions. In this work, state predic-
tions will be given by a stochastic partial least squares
(PLS) model which presents some challenges, particu-
larly for estimating the noise variance-covariance ma-
trix [16]. The key contribution is a new fusion scheme
for handling multirate and irregularly sampled data,
that weights the quality of the different measurement
sources while computing the fused estimates. This
problem has been getting more attention recently, with
researchers proposing different approaches to deal with
asynchronous sensors including smoothing [17], com-
bining KF with a neural network [18] and discrete-time
linear modeling [19, 1].

The proposed methodologies were tested using real
data from a refining unit of a two trayed distillation
columns from a Dow production facility. Process mea-
surements include pressures, temperatures and flow
rates across the columns, as well as reflux ratio and on-
line analyzer readings from upstream reactors. Qual-
ity variables are concentrations of impurity components.
These responses are determined every hour by an online
analyzer and a soft sensor. Furthermore, every 12 hours
a new sample is collected for laboratory analysis [20].

This article is organized as follows. In the next sec-
tion, the proposed fusion methodologies are described
in detail. Then, in the third section we present the re-
sults obtained by the application of the fusion schemes
to real plant data, where different sources of information
are available for the relevant response variables: online
analyzer, gas chromatography and soft sensor. The main
conclusions are summarized in the final section of this
paper.

2. Materials and Methods

In this section, the algorithms for the classical tracked
Bayesian fusion and for the proposed bias-corrected
track-to-track fusion methodologies are presented.

2.1. Tracked Bayesian fusion

Measurements can be fused to track model predic-
tions using Kalman filters. When two or more sensor
measurements are available, it is common practice ei-
ther to concatenate all measurements into a vector of
observations for the Kalman filter update step, or alter-
natively, to combine the measurements using minimum
mean square error estimation [5]. The latter approach
is followed in this work, but instead of minimum mean
square error approach, the estimate is obtained through
Bayesian fusion. Given the multirate nature of the prob-
lem, Bayesian fusion takes place at sparser time inter-
vals while measurements are inputted directly into the
Kalman filter when data collected from the more fre-
quent sensor becomes available. (See Figure 1).

KF - Prediction KF - Update

Bayesian Fusion
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Figure 1: A schematic representation of the TBF process. As in-
puts, the Kalman filter prediction step takes process variables (Xk )
and the previous estimated state (ŷk−1|k−1). Measurements from sen-
sors (z1,z2), once fused (ỹk ) update the Kalman filter’s prediction
ŷk |k−1), yielding the new estimated state (ŷk |k ).

It is often the case in the chemical industry that a de-
tailed description of the process is not available because
the phenomena is not well understood or due to diffi-
culties in estimating the model parameters. This leads
to the impossibility to build first principle models with
the necessary rigor and robustness to be applied in prac-
tice. On the other hand, machine learning and statistical
methods can help to model the system behavior using
data from the processes’ normal operating conditions. A
candidate data-driven modeling technique for this task
is partial least squares (PLS), given its simplicity, ro-
bustness and effectiveness in handling highly correlated
datasets [21].

2.2. Bias-corrected track-to-track fusion

As previously discussed, sensors may have different
sampling rates with different associated uncertainties.
Furthermore, there is usually one measurement source
that assumes the role of the "reference source", "golden
standard" or "ground truth". It is important to incorpo-
rate this knowledge in the fusion algorithm, as well as
the different measurement uncertainties involved. This
is the main goal of the new devised fusion framework,
called bias-corrected track-to-track fusion (BCTTF).
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This approach is able to correct for systematic bi-
ases that often occur in the more frequent sensors, while
still outputting reliable predictions of the response vari-
able. The rationale behind this method is that since it
is known that one sensor is much more reliable and less
biased than the others (the reference sensor), this sen-
sor’s measurements should be used to correct any bias
the more frequent sensors may have. In industrial prac-
tice, the sources acting as golden standard devices are
located in the laboratories where they are operated un-
der strict conditions and according to the best metrology
practices [22]. Their quality is continuously monitored
and compared against metrological standards in order
to detect and immediately correct any malfunction, in-
cluding measurement bias. Under these circumstances,
it is reasonable to assume or consider them to be bias
free data sources. In order to accommodate this correc-
tion scheme, the Kalman filter update step is modified
in order to include a bias correction term, θ, yielding,

ŷmk |k = ŷk |k−1 +K
m
k

(
zmk −H

mŷk |k−1 − θ
m)

, (1)

where

θm =

{
E [zF − zNF] , if m = Frequent sensor (F)
0, if m = Non-frequent sensor (NF) ,

(2)
with E[.] being the expected value, zF is the measure-
ment from the frequent sensor and zNF is the measure-
ment from the non-frequent sensor.

The assumption that laboratory measurements are the
most accurate makes them the benchmark to estimate
the process noise variance matrix, computed as variance
of the difference between laboratory measurements and
PLS predictions.

Estimation of the laboratory noise variance matrix,
R̂NF, is subjected to prior knowledge from laboratory
technicians. Thus, computing R̂NF follows a simple
model for the heteroscedastic behavior of measurement
noise. Note that R̂NF can be used both by TBF and
BCTTF in the Kalman filter update step. It is also used
in the TBF’s Bayesian fusion step to estimate the NF
noise standard deviation.

Regarding the more frequent sensor, we propose the
use of the wavelet transform as non-linear filters that
separate noise from the true underlying signal. Then,
the variance of the noise component of the signal is used
as an estimate of R̂F. These variances are computed in
a dyadic moving window.

One way to improve TBF, is to integrate some infor-
mation connected to the systematic bias of the frequent

sensor. This can be achieved by adding a squared bias
term, θ2, to the variance of the noise from this sensor,
leading to an estimated variance that is different from
the one computed with bias correction and that reflects
the decreasing reliability of their outcomes. In this con-
text, the bias is not corrected, but is consistently incor-
porated in the TBF framework. Furthermore, the com-
putations of Q̂, R̂NF and R̂F quantify the quality of the
sensor measurements, constituting by itself an interest-
ing element of analysis, as can be verified on the Results
section.

Finally, the proposed track-to-track fusion algorithm
fuses the state estimates, ŷ1

k |k
and ŷ2

k |k
, each one of them

associated with a sensor type, into a new optimal state
estimate ŷk |k that is the input to the Kalman filter in
the next stage [5, 1]. The multirate challenge is tackled
within this methodology by bypassing this fusion center
when only the more frequent sensor is available. In this
case, no fusion takes place and the algorithm proceeds
by making a prediction using information only from the
soft sensor and updating it with the more frequent mea-
surements. Furthermore, it is assumed that a frequent
measurement is always available with the non-frequent
one. A scheme of the present framework is presented in
Figure 2.
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ŷ2
k |k
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Figure 2: The BCTTF fusion process. As inputs, both Kalman fil-
ter prediction steps take process variables (Xk ) and the previous esti-
mated state (ŷk−1|k−1). Measurements from sensors (z1,z2), update
each of the Kalman filter’s predictions ŷ1,2

k |k−1
) which are fused in the

fusion center, yielding the new estimated state (ŷk |k ).

3. Results

In this section, the aforementioned fusion schemes
are applied in a real industrial case study and compared.
A brief description of the case study is first presented
followed by the results of the fusion schemes and an
analysis of their advantages and limitations.
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3.1. Case study

The dataset provided for this study comes from the
refining section of a production process. The process
comprises two trayed distillation columns, namely a
primary column and a rectifying column, as shown in
Figure 3. The dataset includes measurements of pres-
sures, temperatures and flow rates across the columns,
as well as reflux ratio and online analyzer readings from
upstream reactors [20]. The quality outputs (target re-
sponses) are the concentration of impurities y1 and y2
which are measured by two sensors: an online analyzer
(OA) sampling at an hourly rate and a gas chromatog-
raphy (GC) analysis performed every 12 hours. The
measurements units can not be disclosed for proprietary
reasons. During 8 months of operation data, plant tech-
nicians reported a true alarm in the third month. The
true alarm occurs when the sum of the concentrations of
impurities is above a threshold value.

Figure 3: Simplified process flow diagram of the refining process stud-
ied.

3.2. A comparative analysis of sensor fusion using TBF
and BCTTF

This section presents the results for both fusion
schemes. Every plot of the response is paired with a
plot of the relative sensor uncertainty (RSU) computed
by the fusion scheme for each one of the three sensors.
These range from 0 (small uncertainty) to 1 (high uncer-
tainty), representing the relative magnitude of the uncer-
tainty for the data streams, using the estimation of R̂OA,
R̂GC and Q̂ (note that, in the present case all these quan-
tities are scalar), as follows:

RSUOA =
R̂OA

R̂OA + R̂GC + Q̂
, (3)

RSUGC =
R̂GC

R̂OA + R̂GC + Q̂
, (4)

RSUPLS =
Q̂

R̂OA + R̂GC + Q̂
. (5)

Results for TBF
Figure 4 shows the results for TBF. On top, we can

see that the true alarm at sample 2371 is correctly iden-
tified by the method and three GC incorrect measure-
ments (samples 3327, 3735 and 3741) are rejected by
the sensor fusion algorithm. The bottom plot shows how
the RSU changes over time. While GC measurements
are consistently close to zero, OA and PLS soft sensor
RSUs vary, compensating each other. In this method,
an increase of the OA’s noise and its deviation from GC
measurements, causes R̂OA to be higher, increasing the
OA relative uncertainty. Upon penalization of the OA,
the method relies more in the PLS soft sensor.

Figure 4: TBF fused signal (top) and the relative weight of each sensor
for Y1 (bottom).

Results for BCTTF
Figure 5 shows how the proposed BCTTF method

performed. The true alarm at 2371 is correctly detected
and the GC and OA incorrect measurements are suc-
cessfully rejected. In this method, the OA RSU are
lower than in TBF, because θ is not added as a penalty to
R̂OA. Instead, θ is used to correct the OA measurements
in the Kalman filter update step.
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Figure 5: BCTTF fused signal (top) and the relative weight of each
sensor for Y1 (bottom).

BCTTF is also capable of detecting when the OA fails
but as it corrects its trajectory, this method does more
than just discarding the failing sensor. BCTTF can still
collect some information from the OA relative to its dy-
namic trend. This feature can be observed in sample
5591, where the OA signals a false alarm and BCTTF is
capable of disregarding it because of the bias correction
made to the OA measurements. On the other hand, TBF
does not correct the OA measurement, and issues a false
alarm.

Discussion
The sensor fusion methods presented in this work

provide an efficient way to improve the quality of dif-
ficult to measure quantities. From three different sig-
nals (although the fusion schemes can be expanded to
deal with n sensors) measuring the same variable, these
methods allow for the reconstruction of a new signal
which is smoother, has the fastest sensor’s sampling rate
and is more accurate than any of the sensors alone.

The quantification of uncertainty is an interesting
byproduct of these methods. It is possible to follow the
evolution of the relative sensor uncertainty in the fusion
processes through the estimation of the noise variance
matrices. This feature can even be used as an indicator
for the need of sensor maintenance.

Finally, regarding the ability to detect alarms,
both fusion schemes performed well and no miss-
identifications are reported. Nevertheless, BCTTF is
shown to be the best fusion scheme between the two be-
cause it did not report any false alarms while TBF was
influenced by the OA values (see Table 1).

Table 1: List of alarms signaled by sensors or fusion schemes.

Sample Index Alarm Type Lab Analyzer Online Analyzer PLS TBF BCTTF

2371 True X X X X X
3327 False X
3735 False X
3741 False X
5591 False X X

4. Conclusions

In this work, we report the development and test of
two new sensor fusion schemes that integrate informa-
tion collected from different sources, namely a data-
driven dynamic soft sensor, an online analyzer and a
laboratory analysis (GC). The proposed schemes share
the capability of managing asynchronous sampling rates
and faulty measurements while reducing false alarms
and miss-identifications. They also characterize the dif-
ferent measurement sources according to their relative
uncertainty. The quality of the resulting fused signal is
higher than for each of the measurement sources, yield-
ing estimates closer to the ground truth. Furthermore,
the fused signal is less noisy and more robust which are
positive features for control and process supervision ap-
plications.

Regarding the multirate problem, both fusion
schemes were able to handle quite well the different
rates of information sources, capitalizing on the pre-
cision of the non-frequent sensor to improve the qual-
ity of estimates. Note that there is no requirement for
the acquisition rates to be regular in either of the fu-
sion schemes. The sampling rate can be changed with-
out the need of major retuning, except perhaps for the
adjustment of the moving window size. Overall, the
BCTTF has proved to be superior to the TBF in our case
study, where the non-frequent sensor is much more pre-
cise than the more frequent one.

While the application of the new method to an indus-
trial dataset grants it validity from a practical point of
view, the method’s performance can be more finely as-
sessed comparing the fused signal with the true state of
the system, which is only possible in a simulation study.
Therefore, future activities contemplate the analysis of
simulated industrial systems.
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