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Abstract: The two-tank problem is often considered as a challenging benchmark problem of process control, owing 

to its non-linear nature and non-minimum phase behavior. Non-linearity arises due to the dependence of non-linear 

outlet flow associated with the tank level. Hence, it is significant to investigate the dynamics of the system. This 

paper utilizes a novel idea of transforming the non-linear Stochastic Differential Equations (SDEs) to an appropriate 

form of the SDEs that preserves non-linear effects. In this paper, first, the Carleman linearization technique is 

explored to arrive at the bi-linearized two-tank SDEs. Then, we utilize the Fokker-Planck equation for the estimation 

of the bi-linearized two-tank problem. The theoretical results corroborated with numerical simulations highlight the 

effectiveness of the proposed Carleman linearization-based estimation method in contrast to the benchmark EKF-

prediction method, i.e. without observation. 

Keywords: State estimation, Carleman linearization, Kronecker product, Itô Stochastic differential rule, Fokker-

Planck equation, two-tank system. 

 

1. INTRODUCTION 

Multi-connected tank systems possessing non-linear 

behaviour are ubiquitous in process industries, such as iron 

and steel, petrochemical, paper-making, food processing, or 

water purification industries. Moreover, because of the highly 

non-linear nature, the two-tank system is considered a 

challenging task and becomes a benchmark problem in the 

control system (Smith and Doyle, 1988). In this paper, the 

structure of two interacting tanks placed one above the other 

is considered. The schematic is shown in Fig.1. Here, water is 

pumped from the bottom water basin and fed to tank 1, 

having an outlet as a water input to the tank 2. Ordinary 

Differential Equations (ODEs) of the two-tank system (Gouta 

et al., 2019) are given in (1) 

 

Fig. 1. Schematic of a two-tank system. 
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where 21, hh denote the water-level in tank 1 and tank 2, 

respectively, see Fig. 1.
 

The terms ,pk ,A ,c g and u are 

pump constant, area of each tank, cross-sectional area of 

orifice, the gravitational force, and the voltage applied to the 

pump, respectively. The cross-sectional area of the orifice of 

both the tanks and the area of both the tanks is the same.  

     Here, we describe some of the appealing results on two-

tank system problems briefly. Hedi et al. (2018) presented a 

technique to estimate the fault in the pipeline of the two-tank 

system. Parameter estimation for the coupled tank system 

using Extended Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF) is explored in (Seung et al., 2017). Estimation 

of the fault detection problem in the two-tank system using a 

Kalman filter can be found in Khalid et al. (2011). More 

significant details regarding the exposure to estimation and 

filtering can be found in (Dochain, 2003; Nørgaard et al., 

2000; Garcia et al., 2019; Zhang and Zhang, 2019; Huang 

and Dey, 2007). Despite the fecundity of various estimator 

design techniques for the non-linear system, results related to 

the stochastic version of the two-tank are scarcely available. 

More precisely, estimation results related to the bilinear 

SDEs framework unifying the Carleman linearization based 

on the Fokker-Planck equation are not available.  

      

    Moreover, fluctuation in the input signal to the pump of 

the two-tank system structure is a reality, which obeys the 

non-linear stochastic evolution equation. Hence, a question 

arises that is it possible to transform the non-linear SDEs into 

an alternative framework of SDEs that accounts for nonlinear 

effects and offer simplified analysis? The answer is yes. In 

order to answer this question, first, we apply the Carleman 

linearization (Carleman, 1932) to the benchmark two-tank 

problem. Then, the conditional moment equations are derived 

by utilizing the Fokker-Planck equation for the estimation of 

the Carleman linearized bilinear two-tank Itô SDEs.  

 

      The paper organization is as follows: Section 2 explains 

mathematical preliminaries utilized for the development of 

the theoretical results. Section 3 presents the formalization of 

Itô stochastic differential two-tank system and the 

development of the conditional moment evolution equations 

from the Fokker-Plank equation for the bilinear two-tank Itô 

SDEs. Section 4 illustrates the numerical simulation results of 
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the proposed method in comparison with the benchmark 

EKF-prediction method.   

 

       2.  MATHEMATICAL PRELIMINARIES 

2.1 Carleman Linearization 

Carleman linearization is one of the important methods in 

system theory almost 80 years ago (Carleman, 1932). The 

technique was developed to transform sets of polynomial 

ordinary differential equations into infinite-dimensional 

bilinear system representation. Based on the order of the non-

linearity, we choose a suitable finite order of Carleman 

linearization to arrive at the finite-dimensional bilinear 

system representation. Carleman linearization is applied to 

extend the state vectors of original state variables. An 

advantage of this method is the embedding dynamics of non-

linear systems in corresponding bilinear representations 

(Kowalski and Steeb, 1991). For Carleman linearization the 

Kronecker product is the cornerstone, i.e., for a given 
mnRA  and ,tsRB  their Kronecker product (Brewer, 

1978) can be written as 
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Consider state equations represented by   

 

                           ,),(),( tttt utgtf  +=                         (3)
  

 

where t  is the 1n state vector with tu  as a scalar input 

signal. Replacing the right-side of (3) by power series 

representation and adopting the Kronecker-product notation 

 in (2) (Rugh, 1981)        
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where n and k represents the dimension of the state vector 

t  and the Kronecker power of the state, respectively. For 

example, if ,2=k then n
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present concept of Carleman linearization for the specific 

case of the two-tank problem with its Itô SDEs, ,2=n and 

2=k is explained in Section 3 of the paper. 

2.2   Fokker-Planck for bilinear SDEs 

The realization of estimation procedures for non-linear SDEs 

is an interesting problem (Sharma, 2008). The Fokker-Planck 

equation is utilized for developing estimation theories for 

given initial states and also for the realization of prediction 

algorithms for continuous dynamics. Consider the Itô SDE 

set up, 

 

                     ,),(),( tttt dBtGdttfd  +=                          (6) 

 

Here, from the Fokker-Planck equation, the conditional mean 

and conditional variance evolutions for the Itô SDE described 

in (6) are as below 
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
 As Carleman linearization order 

contributes to the dimension of the augmented state vector 

and reduces the non-linear stochastic differential system to 

bilinear stochastic differential system. The bilinear SDE in 

Itô setting is recast as            

              ,)( 0 ttttttttt dBGdBDdtAAd +++=                (8) 

The conditional mean and conditional variance evolutions for 

the Itô bilinear stochastic differential equation (8) are 

obtained by utilizing (7a)-(7b), i.e.,  
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The detailed proof 

of conditional mean and conditional variance for bilinear 

SDE can be found in (Bhatt and Sharma, 2019). 

 
 

3.  APPLICATION TO TWO-TANK PROBLEM 

 

3.1   Itô stochastic differential equation for two-tank system 

 

The stochasticity is attributed to the fluctuating voltage signal 

u  of the pump. Now, recalling the two-tank ODEs (1) the 

stochastic version, of the two-tank system, is formalized 

under the influence of noise in the input voltage signal, which 

is depicted below 
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where  is the diffusion noise intensity. The term ,
dt

dB
w t

t =  

where tdB  is the Brownian process. , Thh )( 21 are replaced 

with standard notations .)( 21
T  The Carleman linearization 

approach to non-linear SDEs leads to the bilinear SDEs. For 

this characteristic, it is also referred to as a bi-linearization 

method. Since SDEs of the two-tank system accounts for 

non-linearity, embedding the Carleman linearization will lead 

to bilinear two-tank SDEs. Considering the Carleman 

linearization order two, the augmented state vector becomes 
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the number of states and k  denotes the Carleman linearized 

order. For the two-tank SDE system, n  is 2 and k is 2, so the 

dimension of the Carleman linearized state vector 
)2(

t becomes three. After accounting the independent state 

variables of Carleman linearized state vector order two, the 

dimension of the augmented state vector for two-tank SDE 

system is five, i.e.     

                 =














)2(
t

t
d




.)( 2

221
2

121
Tddddd             (13) 

Thus, utilizing the Carleman linearization method mentioned 

in Section 2.1 and applying the stochastic differential rule 

(Karatzas and Shreve, 1988; p. 154) for (10a)-(10b), the 

following Carleman linearized evolution equations for 

augmented states in (13) are obtained:   
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The above Carleman linearized states (14a)-(14e) of the two-

tank problem can be rearranged in the bilinear SDE format of 

(8), which is given in Appendix A. 

 

3.2 Fokker-Planck for Carleman linearized two-tank system 

 

This section deals with the development of the conditional 

moment evolutions of the Carleman linearized two-tank 

SDEs (14a)-(14e). More specifically, the element-wise 

conditional mean evolution equations and the condition 

variance evolution equations of the bilinear two-tank SDEs, 

which is a consequence of (9a)-(9b), are obtained as 
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The notation 
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 denotes the action of the conditional 

expectation operator on the term .
  

 

Conditional variance evolution equations  
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4. NUMERICAL SIMULATIONS 

The efficacy of the proposed Carleman linearization-based 

estimation methods is adjudged by performing a numerical 

simulation study. The estimation results of the proposed 

method are also compared to the results generated from the 

Extended Kalman Filter-based prediction (EKF-predicted) 

method. The proposed estimation method of this paper is 

implemented in MATLAB© on Intel(R) Core(TM) i5-5200U 

laptop CPU clocked at 2.20 GHz with 8.00GB RAM. The 

operating point values and nominal parameter values are 

depicted in Table 1 (Gouta et al., 2019). The initial value of 

the input signal u  in Table 1 corresponds to the steady-state 

value 16 cm  for the water-level of both the tanks.   

 

 

Table 1. Operating points and nominal values 

 

Parameters Values Units 

pK

 

18.5183 Vscm3

 
A

 

144 2cm

 
c

 

0.502 2cm

 
g

 

981 
2scm

 
u

 

4.803 V

 
s1  16 cm  

s2  16 cm  
 

The closeness of the Carleman linearized bilinear SDEs 

(14a)-(14e) to the exact two-tank non-linear SDEs (10a)-

(10b) is displayed in Fig. 2. Figs. 2(a) and 2(b) show the true 

trajectories vs. Carleman linearized trajectories for the initial 

water-level of both the tanks set to 2)0()0( 21 ==  cm , with 

7.0=  and initial variance ,1)0()0( 21
==  PP  

.0)0(
21

=P  Similarly, Figs. 2(c) and 2(d) show the true 

trajectories vs. Carleman linearized trajectories for the initial 

water-level of both the tanks set to 28 cm .  
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Fig. 2. Comparison of the true state trajectories vs. Carleman 

linearized state trajectories.  
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Fig. 3. Conditional mean trajectories under a series of step 

variations in the input signal. 

 

      Fig. 3 shows the performance of the proposed estimation 

method for a series of step variations in the input signal. The 

input u is increased from 4.803V to 5.8 V and then decreased 

to 4.2 .V  The responses of the true trajectories, i.e., non-

linear SDEs and the Carleman linearized estimated 
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conditional mean trajectories of both the tanks are shown in 

Fig. 3.  

 

     In order to reveal the true potential of the proposed 

estimation method, it is compared with the EKF-predicted 

estimates. Fig. 4 shows the comparison of the Carleman 

linearized estimated state trajectories, the EKF-predicted state 

trajectories, and the true state trajectories. Note that the true 

state trajectories and The Carleman linearized estimated state 

trajectories are a consequence (13a)-(13b)and (18a)-(18e). 

Note that the EKF-predicted trajectories are the non-linear 

predicted estimate without observations (Jazwinski, 1970; p. 

278). 
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Fig. 4. Comparative conditional mean trajectories for both the 

tanks.  

 

     Fig. 4 reveals that Carleman linearized estimates are 

closer to the true trajectories in comparison to the EKF-

predicted trajectories for both the tanks. Fig. 5 shows a 

comparison between two Absolute Prediction Error (APE) 

evolutions for both the states. The maximum APE obtained 

with the Carleman linearized estimate of tank 1 is 0.9, which 

is less than the maximum APE 1.1 of EKF-predicted. 

 

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

Time (s)

A
P

E
 (

h
2

)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

A
P

E
 (

h
1

)

 

 

Carleman linearized estimate

EKF-predicted

 
Fig. 5 Absolute Prediction Error (APE) trajectories for both 

the tanks.  

 

    Similarly, for tank 2 the maximum APE of Carleman 

linearized estimate is 0.54, and that of the EKF-predicted is 

0.75. The less value of the absolute prediction error, 

associated with the proposed method, confirms greater 

closeness of the estimated trajectories via the Carleman 

linearization with true state trajectories.  

 

     The conditional variance trajectory in Fig. 6 gives the 

random fluctuations in the mean trajectory. The less variance 

suggests the better estimate, which is indicative of less 

random fluctuations in the most probable trajectory. The 

conditional variance trajectories associated with the 

Carleman linearized estimate are generated using the 

conditional variance evolution equations (19a)-(19c). Hence, 

the Carleman linearization-based estimation gives a better 

estimate than the EKF-predicted. 
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Fig. 6. Comparative conditional variance trajectories for both 

the tanks.  

 

5. CONCLUSION 

In this paper, we have demonstrated the universality of the 

Carleman linearization technique for a non-linear stochastic 

system via the potential two-tank problem. The Carleman 

linearized two-tank states account for the non-linear effects, 

stochasticity and allow straightforward bi-linear structure. 

The estimation theory of this paper has utilized the Itô 

framework and combined the Carleman linearization with the 

Fokker-Planck equation to develop the conditional moment 

equations for the two-tank problem. Numerical simulations of 

the paper revealed the superiority and overall better 

performance of the proposed Carleman linearization-based 

estimation theory. The proposed method is recommended for 

the filtering, and stochastic control procedures of the 

Carleman linearized two-tank setup. That is under 

investigation.  
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APPENDIX A. BILINEAR SDEs OF TWO-TANK SYSTEM 

 

Recall the standard bilinear SDE form, i.e.,  
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In the partitioned 

matrix-vector format, the two-tank Carleman linearized SDE 

becomes 
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    (A.2) 

For notational convenience, the time ‘ t ’ is stated as an input 

argument of submatrices in (A.2) and a subscript of matrices 

in (A.1). For the specific case of two-tank problem, 
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