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Abstract: A key factor for the further distribution of biomass boilers in modern energy systems
is the capability of changing the applied feedstock during normal plant operation. This is
only possible with the application of advanced control strategies that utilize knowledge about
the state variables and varying fuel properties. However, neither the state variables nor the
fuel properties are measurable during plant operation and, thus, need to be estimated. This
contribution presents a method for the simultaneous real-time estimation of the state variables
and the fuel properties in fixed-bed biomass boilers which is a novel approach in the field of
biomass boilers. The method bases on an Extended Kalman Filter using a nonlinear dynamic
model and measurement data from the combustion process. The estimated variables are the
masses of dry fuel and water in the fuel bed as well as the fuel’s bulk density, water content,
chemical composition and lower heating value. The proposed method is easy to implement
and requires moderate computational effort which increases the potential of its application at
actual biomass boilers. The proposed method is verified with simulation studies and by test runs
performed at a representative small-scale fixed-bed biomass boiler. The estimation results show
a good agreement with the actual values, demonstrating that the proposed method is capable of
accurately estimating the biomass boiler’s state variables and simultaneously its fuel properties.
For this reason, the presented method is a key technology to ensure the further distribution of
biomass boilers in modern energy systems.

Keywords: Renewable energy systems, Biomass combustion, Biomass fuels, System state
estimation, Parameter estimation, Kalman filters

1. INTRODUCTION

Biomass combustion plays a central role in the supply of
heat and electricity from renewable energy technologies.
Unlike volatile renewable energy technologies such as solar
thermal plants or wind turbines, energy systems based on
biomass combustion are capable of providing a consistent
and stable thermal or electric output. Simultaneously, they
offer a high degree of flexibility as their power output
can be adjusted according to the load demand. However,
there is an increasing number of applications for conven-
tional biomass feedstocks apart from combustion such as
processes for the conversion of biomass into chemicals,
e.g. (Alamia et al., 2017). This results in conventional
biomass feedstocks becoming more expensive. Hence, a key
element in the further distribution of biomass boilers is
their capability of utilizing new and alternative biomass
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feedstocks. This includes cheaper feedstocks that typically
exhibit a lower fuel quality and locally available, special
feedstocks with strongly varying fuel properties. Especially
the capability of performing fuel changes during the nor-
mal plant operation without any noticeable influence on
the biomass boiler’s output variables is essential for their
further distribution. This is only possible with the applica-
tion of advanced control strategies that utilize knowledge
about the changing fuel properties. Most advanced control
strategies also require knowledge of the controlled system’s
state variables. As neither the state variables nor the fuel
properties are typically measurable during plant opera-
tion, their determination by other means is necessary. For
this reason, this contribution presents a method for the
simultaneous real-time estimation of state variables and
fuel properties in fixed-bed biomass boilers. This is the
first method capable of simultaneously estimating these
variables for fixed-bed biomass boilers. The application
of the presented method enables the compensation of the
effects of fuel changes during the plant operation and, as a
result, supports the further distribution of biomass boilers.

The focus lies on combustion processes in fixed-bed
biomass boilers with air staging, which represents a widely
used combustion technology. Such boilers can be consid-
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ered as a nonlinear, coupled, multi-variable system with
parameters depending on the fuel properties. State-of-the-
art linear control strategies are not capable of compensat-
ing the effects of changing and fluctuating fuel properties
sufficiently well. Control strategies based on a mathe-
matical model of the combustion process can potentially
directly utilize the knowledge of changing fuel properties
and compensate their effects. The state variables used by
the model-based control strategies found in literature, e.g.
(Gölles et al., 2014), are the mass of water and dry fuel
on the fuel bed. The fuel properties considered in the
mathematical models used by these control strategies are
he chemical composition of the dry fuel as well as the
fuel’s bulk density, water content and lower heating value.
Although all these fuel properties are considered in the
mathematical models, they are typically assumed to be
constant and known. A variation of the fuel properties
leads to a model error which has to be compensated by
these control strategies. In order to avoid this model error,
methods for the real-time estimation of the fuel properties
have been proposed in literature. A method for the es-
timation of fuel properties based on mass and substance
balances was suggested by (vanKessel et al., 2004) for
waste incineration plants which can also be applied at
biomass boilers. However, it only estimates the fuel’s water
content, chemical composition and lower heating value but
neither the bulk density nor the state variables needed by
model-based controllers when high fuel-flexibility should
be achieved. (Kortela et al., 2013) developed a method for
the estimation of the fuel’s moisture content in biomass
boilers based on mass and energy balances. Other fuel
properties as well as the state variables are not determined
by this method. (Gölles et al., 2011) and (Gölles et al.,
2014) as well as (Seeber et al., 2014) and (Zemann et al.,
2014) applied Extended Kalman Filters to estimate the
state variables in biomass boilers that do not directly de-
termine the fuel properties. A method estimating both, the
state variables and the fuel properties is not available in
literature. For this reason, the objective of this work is the
development of a method for the simultaneous real-time
estimation of a fixed-bed biomass boiler’s state variables,
specifically the mass of water and dry fuel in the fuel bed
and the properties of the supplied fuel, in particular the
bulk density, the water content, the chemical composition
and, thus, the lower heating value.

Most of the estimation methods explained above utilize
a combination of mass-, substance- and energy balances
to determine the fuel properties or state variables. Each
of these balance equations introduces additional mathe-
matical models, simplifying assumptions and the necessity
for more measurement variables, increasing the complex-
ity and computational effort of the estimation method.
In order to minimize the computational effort and mea-
surement variables needed by the proposed method, it
should be limited to the utilization of the least amount of
balance equations necessary. As especially energy balances
require a multitude of accurately measured variables and
mathematical models, the presented estimation method
is limited to the utilization of mass- and substance bal-
ance equations. This reduces the effort necessary for the
implementation of the estimation method increasing the
potential of its application at actual biomass boilers.

To achieve the objective, a mathematical model for the
considered biomass boilers is derived from partial models
available in literature. This is explained in section 2 where
also the calculation of the lower heating value is discussed.
The observability of the resulting model, which is essential
for the viability of the application of a state estimator,
is also shown in that section. The derived model is used
in an Extended Kalman Filter (EKF) in section 3 to
estimate the biomass boiler’s state variables and the fuel
properties. In that section, also simulation studies are
conducted to show the EKF’s basic functionality and to
investigate the influence of measurement errors and model
parameter errors on the estimation results. Finally, in
the same section, the EKF is verified with measurement
data from test runs performed at a representative biomass
boiler. A conclusion and outlook is given in section 4.

2. PROCESS DESCRIPTION AND MATHEMATICAL
MODEL

This section describes the derivation of a state-space model
that can be used in state observers such as an EKF to
estimate the state variables and the fuel properties. In
section 2.1, the combustion process is first described and
then divided into sub-processes to simplify modeling. For
each sub-process a mathematical model is formulated in
sections 2.2, 2.3 and 2.4 respectively. Then, the calculation
of the lower heating value is explained in section 2.5.
Subsequently, a state-space representation is derived from
these models for the use in a state observer in section 2.6
and its observability shown in section 2.7.

2.1 Process Description and Segmentation

In fixed-bed biomass boilers with air staging (schemati-
cally illustrated in Fig. 1) the wet biomass fuel is fed to
a fuel bed through a fuel feed such as a screw feeder or a
stoker feeder. In the fuel bed, a substoichiometric combus-
tion takes place driven by the supplied primary air. This
consists of the evaporation of water in the biomass and
the thermal decomposition of the dry fuel. The resulting
mass flow of incompletely combusted flue gas is mixed
with the supplied secondary air and enters the secondary
combustion zone, where it is completely combusted. To
simplify the modeling, the entire combustion process is
divided into less complex sub-processes as proposed in
(Gölles et al., 2012). The process is divided into the fuel
feed, the fuel bed and the secondary combustion zone.
For each of these sub-processes, a separate mathematical
model is formulated in the following sections.

2.2 Fuel Feed

The mathematical model of the fuel feed describes the
correlation between the fuel feed’s input variable and the
resulting mass flow of wet fuel ṁfuel supplied to the fuel
bed. A typically used screw feeder operated in pulsed
mode, with the pulse frequency fFF, can be described by

ṁfuel = bfuelkFF fFF . (1)

The pulse frequency fFF is the screw feeder’s input vari-
able and is, thus, known. The variable kFF is a model
parameter. Data from test runs performed with different
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Fig. 1. Combustion process in fixed-bed biomass boilers.

types of biomass fuels suggest that kFF can be assumed
to be constant and independent of the fuel used. It can
be determined with little effort in test runs where the fuel
properties are known. For this reason, it is assumed to be
a known variable. The fuel’s bulk density bfuel is unknown
and changes with different fuels which is why it needs to
be estimated. In the remainder of this contribution it is
assumed that the biomass boiler is equipped with such a
screw feeder. This is not a limitation since a stoker feeder
can be modeled similarly (Zemann et al., 2014).

2.3 Fuel Bed

The mathematical model of the fuel bed describes the
evaporation of water and the thermal decomposition of dry
fuel in the fuel bed. It consists of two ordinary differential
equations adapted from (Bauer et al., 2010):

dmW /dt=−cW mW + wH2O ṁfuel (2)

dmDS/dt=−cDS,1mDS (ṁPA + cDS,2)

+ (1− wH2O) ṁfuel (3)

The state variables are the masses of water mW and dry
fuel mDS in the fuel bed. One input variable is the mass
flow of wet fuel from the fuel feed ṁfuel (see section 2.2).
The other input variable is the mass flow of primary
air ṁPA which, for the purpose of parameter and state
estimation, has to be measured. The model parameters
are the mass fraction of water in the wet fuel entering the
fuel bed (’water content’) wH2O as well as the coefficients
cW, cDS,1 and cDS,2. Data from test runs performed with
different types of biomass fuels suggest that cW, cDS,1 and
cDS,2 can be assumed to be constant and independent
of the fuel used. They can be determined in test runs
where the fuel properties are known. For this reason, these
coefficients are assumed to be known. The fuel’s water
content wH2O is unknown and can change with the fuel
used which is why it needs to be estimated.

2.4 Secondary Combustion Zone

The mathematical model describing the complete com-
bustion of the incompletely combusted flue gas with the
secondary air provides the output variables of the biomass
boiler which are the molar flow of oxygen ṅO2 and water
ṅH2O in the completely combusted flue gas as well as the

mass flow of thermally decomposed wet fuel ṁWF. It bases
on a common combustion calculation, e.g. (Moran et al.,
2006), under the assumptions of a complete combustion
and that the dry fuel entirely consists of hydrogen, carbon
and oxygen, neglecting all other components such as ni-
trogen and especially ash. The sum of the respective mass
fractions of hydrogen wH, carbon wC and oxygen wO in
the dry fuel equals to one:

wH + wC + wO = 1 (4)

This is a valid assumption for most biomass feedstocks
since the weight fractions of the remaining components
are typically smaller than 1 wt.%. Some special biomass
feedstocks such as mint straw or palm kernels (Vassilev
et al., 2010) exhibit higher nitrogen or ash contents. In
these cases, an adaption of (4) is necessary. Based on the
examination of different representative fuels (see Table
1) and following the suggestion in (vanKessel et al.,
2004) the fraction wH/wC is assumed to be constant and
independent of the fuel used:

α := wH/wC = 0.129 (5)

This simplification reduces the number of unknown fuel
properties in the model. The choice in (5) results in a
deviation in the ratio α of less than 5% in the fuels
examined in Table 1 which is assumed to be sufficiently
small for practical applications. The influence of this
assumption on the estimation results is investigated in
simulation studies in section 3.3.

Table 1. Typical composition of different
biomass feedstocks.

Fuel wC wH α
- (kg/kg) (kg/kg) -

Spruce1) 0.502 0.063 0.125

Straw1) 0.449 0.056 0.125

Corncob2) 0.477 0.059 0.124

VFGD3) 0.531 0.071 0.135

1) (Sommersacher et al., 2013), 2) (Kelz et al., 2017),
3) (vanKessel et al., 2004) Using (4) and (5) in a common
combustion calculation, e.g. (Moran et al., 2006), the
output variables can be calculated as

ṅO2
= β1(wC) cDS,1mDS (ṁPA + cDS,2) (6)

ṅH2O = cW mW /MH2O + β2(wC) cDS,1mDS

(ṁPA + cDS,2) (7)

ṁWF = cW mW + cDS,1mDS (ṁPA + cDS,2) (8)

with

β1(wC) = (γ1 − 3/MC − 3α/(2MH))wC + γ2, (9)

β2(wC) = wC α/(2MH) (10)

and

MDS = MO −
(1/3)wC + 15αwC

1/MO + (1/4)wC/MC + (15/16)αwC/MH

=
1

γ1wC + γ2
.

(11)

These equations contain the molar masses of hydrogen
MH, carbon MC, oxygen MO and water MH2O as well
as the positive constants γ1 and γ2. The unknown mass
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fraction of carbon in the fuel wC depends on the fuel used
and, thus, needs to be estimated. All other parameters
are either known physical constants or model parameters
already assumed to be known and independent of the fuel
used. These output variables can not be measured directly.
However, they can be calculated from the mass flows
of primary air ṁPA, secondary air ṁSA and completely
combusted flue gas ṁFG as well as the oxygen content xO2

and the water content xH2O of the flue gas. These are either
typically measured variables or can be measured with
moderate effort for the estimation of the state variables
and fuel properties. The output variables can be calculated
with these measured variables using the equations

ṅO2 = 2xO2ṁFG/MFG

−2(wair,O2/(2MO))(ṁPA + ṁSA) (12)

ṅH2O = xH2OṁFG/MFG

−(wair,H2O/MH2O)(ṁPA + ṁSA) (13)

ṁWF = ṁFG − (ṁPA + ṁSA) (14)

with the typically sufficiently well known mass fractions
of water wair,H2O and oxygen wair,O2

of the wet air as
well as the molar mass of the flue gas MFG. The molar
mass MFG can be calculated using available measurement
data in a common combustion calculation. This requires
an assumption about the unknown mass fraction of carbon
in the fuel wC. Even a significant variation of wC of
100% results in a deviation in MFG of less than 12% for
typically observed combustion conditions. For this reason,
the influence of wC on MFG is considered negligibly small
for practical applications. Thus, it is sufficient to assume
that wC = 0.49 kg/kg when calculating MFG which is the
mean value for the mass fractions wC displayed in Table 1.
ṁFG excludes the mass flows of any recirculated flue gas.

2.5 Lower Heating Value

The lower heating value is a fuel property that changes
with the used fuel. It determines the heat released during
complete combustion of the fuel which can potentially
be used in a subsequent process. This makes the lower
heating value an important parameter for the evaluation
and the model-based control of biomass boilers. Using a
common approximation formula (Gaur et al., 1998) and
incorporating assumption (4), it can be calculated by

LHV =(1− wH2O)(45.25wC + 128.17αwC − 10.34)1e6

− (wH2O + (1− wH2O)αwCMH2O/(2MH))∆hv
(15)

with ∆hv being the enthalpy of evaporation of water. This
equation contains the unknown fuel properties wH2O and
wC as well as known molar masses. For this reason, an
estimation of these unknown fuel properties enables the
calculation of the lower heating value.

2.6 State-Space Representation

Combining (1) to (11) and changing the variable names to
a more generalized nomenclature leads to the state-space
representation of the model which is subsequently used in
the estimator. The fuel properties to be estimated (wH2O,

Table 2. State variables, input variables and
output variables of the state-space model with

their corresponding physical quantities.

variable physical quantity variable physical quantity

x1 mW u1 fFF

x2 mDS u2 ṁPA

x3 wH2O y1 ṅO2

x4 bfuel y2 ṅH2O

x5 wC y3 ṁWF

bfuel and wC) are considered by random walk models as
state variables. Table 2 shows the state variables

xi, input variables uj and output variables yl and their
corresponding physical quantities. The resulting state-
space model is

dx1/dt = −c1x1 + c2x3x4u1
dx2/dt = −c3x2(u2 + c4) + c2(1− x3)x4u1
dx3/dt = 0

dx4/dt = 0

dx5/dt = 0 (16)

y1 = c3 (u2 + c4)x2 β1(x5)

y2 = c1 c5 x1 + c3 (u2 + c4)x2 β2(x5)

y3 = c1x1 + c3(u2 + c4)x2. (17)

The constant coefficients c1 to c5 are all real-valued, pos-
itive and known. The overall model is a time-continuous,
nonlinear (affine-input), multi-variable system of 5th order
with three manipulated variables and three output vari-
ables

dx

dt
= f(x,u); y = h(x,u) (18)

with the state vector x, the input vector u and the output
vector y.

2.7 Observability Analysis

According to (Kou et al., 1973) a nonlinear system as
described by (18) is said to be completely observable on
the time interval [t0, t] if there exists a value of k ∈ N such
that the matrix equation

y(t0)
ẏ(t0)

...

y(k−1)(t0)

 =



h(x(t))
∣∣
t=t0

∂

∂t
h(x(t))

∣∣
t=t0

...
∂(k−1)

∂t(k−1)
h(x(t))

∣∣
t=t0


︸ ︷︷ ︸

ĥ

(19)

has a unique solution for the initial state x0 := x(t0). The

corresponding vector ĥ for the state-space model (16) and
(17) reads as

ĥ =


a1x2,0β1

a2x1,0 + a1x2,0β2
a3x1,0 + a1x2,0

a5x2,0β1 + a6x4,0β1 + a6x3,0x4,0β1
a4x1,0 + a5x2,0β2 + a6x4,0β2 + a7x3,0x4,0β2

a8x1,0 + a5x2,0 + a6x4,0 + a9x3,0x4,0


(20)

with
β1 = β1(x5,0), β2 = β2(x5,0) (21)
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and

a1 = c3(u2
∣∣
t=t0

+ c4) (22)

a2 = c1c5 (23)

a3 = c1 (24)

a4 = −c21c5 (25)

a5 = c3u̇2
∣∣
t=t0
− c23(u2

∣∣
t=t0

+ c4)2 (26)

a6 = c2c3u1
∣∣
t=t0

(u2
∣∣
t=t0

+ c4) (27)

a7 = c1c2c5u1
∣∣
t=t0
− c2c3u1

∣∣
t=t0

(u2
∣∣
t=t0

+ c4) (28)

a8 = −c21 (29)

a9 = c1c2u1
∣∣
t=t0
− c2c3u1

∣∣
t=t0

(u2
∣∣
t=t0

+ c4). (30)

The system of equations using ĥ calculated in (20) does
have a unique solution for the initial state variables x1,0
to x5,0 if the initial values for the input variable u1

∣∣
t=t0

is

positive and the initial value for the input variable u2
∣∣
t=t0

is non-negative. As these input variables represent mass
flows, they are always greater than zero when a combustion
takes place. Thus, the state-space model (16) and (17) is
observable.

3. ESTIMATION APPROACH AND VERIFICATION

3.1 Extended Kalman Filter

An Extended Kalman Filter is chosen for the simultaneous
estimation of the state variables and fuel properties as it
is a well established method with moderate computational
costs. The recursive algorithm applied for calculating the
estimated state vector x̂k|k and the covariance matrix P k|k
is, e.g. (Grewal et al., 2001),

Prediction

x̂k|k−1 = x̂k−1|k−1 + TSf(x̂k−1|k−1,uk)

P k|k−1 = AT
kP k−1|k−1Ak + Qk (31)

Correction

Sk = HT
kP k|k−1Hk +Rk

Kk = P k|k−1HkS
−1
k

x̂k|k = x̂k|k−1 + Kk

(
yk − h(x̂k|k−1,uk)

)
P k|k = (I −KkH

T
k)P k|k−1 (32)

with the sampling time ts, the system gradient matrix F k,
the constant covariance matrix of the process noise Q and
the constant covariance matrix of the observation noise
R. The system gradient matrix F k and the measurement
matrix Hk are defined as

F k =
∂f

∂x

∣∣
x̂k−1|k−1,uk

and Hk =
∂h

∂x

∣∣
x̂k|k−1

. (33)

In biomass boilers, the time constants of (16) are typically
in the range of some minutes. For this reason, the sampling
time is chosen as ts = 1 s to guarantee stable behav-
ior of the EKF’s Euler-discretization for all combustion
conditions. The covariance matrix of the process noise Q
is a diagonal matrix with constant coefficients that are
empirically chosen, through trial and error, to provide a
sufficiently fast estimation of the state variables and fuel
properties.

3.2 Simulation Results - Basic Functionality

Simulation studies are performed to verify the estimation
method. The model parameters are chosen to simulate a
representative small-scale biomass boiler with a nominal
capacity of 50 kW (kFF = 6.58e−5, cW = 2e−2, cDS,1 =
4e−1 and cDS,2 = 1e−3). The simulation is performed
with a constant simulation step-size of tS,sim = 0.1 s. Fuel
changes as well as changes in the operating conditions of
the biomass boiler are simulated. In order to demonstrate
the basic functionality of the estimation scheme no model-
ing error, measurement error or noise is considered in the
simulation. The influence of these errors is investigated
separately in section 3.3. The fuel initially used has the
properties bfuel = 650 kg/m3, wH2O = 10 wt.% and
wC = 0.48 kg/kg. At minute 30 the fuel properties are
changed to bfuel = 421 kg/m3, wH2O = 45 wt.%, wC = 0.3
kg/kg and at minute 60 the fuel properties are changed to
bfuel = 550 kg/m3, wH2O = 30 wt.%, wC = 0.6 kg/kg. The
hydrogen content wH of all fuels is chosen to exhibit a ratio
α = 0.129, which is also used in the estimator. In summary,
all assumptions made in section 2 are fully met. During the
entire simulation, the fuel feed has a constant input signal,
resulting in the fuel mass flow varying with the fuel’s bulk
density. The mass flows of primary and secondary air are
adjusted simultaneously with the fuel change to keep the
operating conditions representative. Additionally to these
changes of the fuel properties the mass flow of primary
air is changed at minutes 15, 45 and 75 to alter the mass
of dry fuel on the fuel bed while the fuel properties are
unaltered.

Fig. 2 shows the actual and estimated fuel properties. For
all fuels and operating conditions, the fuel properties can
be estimated accurately in steady state. While quick fuel
changes are not detected instantaneously the estimated
value approaches the actual value asymptotically. During
this time, the estimated fuel properties differ from the
actual ones, which results in the estimated state variables
slightly deviating from the actual values (shown in Fig.
3). For constant fuel properties, the state variables and
the lower heating value calculated using (15) and shown
in Fig. 4 can be estimated accurately. A change in the
operating conditions as a result of a changing mass flow
of primary air (minutes 15, 45 and 75) does not affect the
estimated fuel properties.

These results clearly demonstrate that the proposed es-
timation method is capable of simultaneously estimating
the state variables and fuel properties in fixed-bed biomass
boilers. The influence of measurement errors and model
parameter errors on the estimation results are investigated
in the following section.

3.3 Simulation Results - Influence of Measurement Errors
and Model Parameter Errors

Measurement errors as well as errors in the model parame-
ters typically lead to an inaccurate estimation of the state
variables when using state estimators. For this reason the
EKF’s behavior needs to be investigated for cases when
model parameters as well as measurement values exhibit
errors. This section investigates the EKF’s behavior for
these errors in simulation studies. The same model param-
eters for the biomass boiler as in section 3.2 are chosen and
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Fig. 4. Simulation results: estimated lower heating value.

the simulation is again performed with a constant simula-
tion step-size of tS,sim = 0.1 s. The fuel properties used are
bfuel = 650 kg/m3, wH2O = 10 wt.% and wC = 0.48 kg/kg
and α = 0.129. All input variables are kept constant for the
entire simulation. Three particular cases are investigated
which represent the most relevant errors to be expected in
biomass boilers.

In case 1 the influence of the simplification (5), i.e. α =
0.129 = const., on the estimation results is investigated.
This is a deliberately chosen model parameter error intro-
duced for the sake of simplifying the state and parameter
estimation. It is a known source of error and introduces
inaccuracies to the EKF even when no measurement errors
occur. In the simulation, the value for α used in the EKF is

changed at minute 40 by ∆α = 0.005 while the actual value
remains the same. This matches the difference between
the standard value defined in (5) and the value valid for
corncob (see Table 1). At minute 60 this error is reverted
to ∆α = 0.

In case 2 the influence of a measurement error of ṁSA is in-
vestigated. The measurements of air mass flows frequently
exhibit errors in biomass boilers for example due to insuffi-
cient inlet or outlet distances for the measurement devices.
For this reason, this case represents a typical source of
error to be expected in biomass boilers. Additionally, a
measurement error in ṁSA has the same effect as the
occurrence of leakage air, i.e. non-measurable air mass
flows entering the secondary combustion zone through
cracks and openings of the biomass boiler. At minute 60 a
measurement error ∆ṁSA = 4.77kg/h (+10% of the actual
value) and reverted at minute 80. This is considered a large
error for the secondary air mass flow.

In case 3 the influence of a measurement error of ṁFG

is investigated. This mass flow is particularly difficult
to measure due to frequently occurring fouling of the
measurement devices. At minute 100 a measurement error
∆ṁFG = 9.49 kg/h (+10% of the actual value) and
reverted at minute 120 which is considered a large error
for this mass flow.

An overview over these errors is given on Table 3 with the
time the error being introduced ’start time’ and the time
the error being reverted ’end time’.

Table 3. Measurement errors and model pa-
rameter errors introduced to the simulation.

case variable error start time end time

case 1 ∆α 0.005 minute 20 minute 40
case 2 ∆ṁSA +10% minute 60 minute 80
case 3 ∆ṁFG +10% minute 100 minute 120

Fig. 5 and Fig. 6 show the actual and estimated fuel
properties and state variables respectively while Fig. 7
shows the lower heating value calculated using (15). The
results indicate that case 1, i.e. the simplification (5),
only marginally influences the estimation results. Even a
comparatively large error of α results in small errors in the
estimated fuel properties and state variables. Case 2 as well
as case 3 show that large measurement errors of the mass
flows, i.e. secondary air and completely combusted flue gas
respectively, lead to significant errors in the estimation
results. However, despite these significant measurement
errors the estimation method (EKF) still exhibits stable
behavior. After the errors are reverted, all estimated
values approach the actual values asymptotically. This
demonstrates that a sufficiently accurate measurement of
these mass flows is required. In cases where no accurate
mass flow measurements are available energy balance
equations with additional measurement data can lead to an
improvement of the estimation accuracy and is, therefore,
recommended.

3.4 Results with Measurement Data

The estimation method is verified using measurement data
from test runs at a small-scale biomass boiler with a
nominal capacity of 50 kW. The model parameters for this
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Fig. 7. Influence of errors: estimated lower heating value.

boiler are the same as used for the simulation in section
3.2. The sampling time for the data acquisition is chosen
as tS,acq = 1 s. The boiler is operated at different loads
and with corncob grits as a fuel (average fuel properties
determined a-posteriori: bfuel = 480 kg/m3, wH2O = 12
wt.%, wC = 0.477 kg/kg). The actual value for the average
ratio is α = 0.124, while the value used in the estimator is
α = 0.129.

Fig. 8 shows the estimated and the actual fuel properties.
While the fuel’s carbon content wC and hydrogen content
wH as well as its bulk density bfuel can be estimated
correctly, the estimated water content wH2O exhibits a
noticeable error of up to 58%. This is assumed to be a
result of the combined measurement errors in the mass

flows of completely combusted flue gas and air which is in
accordance with simulation results shown in section 3.3.
Fig. 9 shows the estimated state variables. As they cannot
be measured in real boilers, no comparison between actual
and estimated value can be given. Fig. 10 shows the lower
heating value calculated from the estimated fuel properties
using (15). The mean value of the calculated lower heating
value of 16.03 MJ/kg is higher than the value determined
a-posteriori of 15.15 MJ/kg. The fluctuations in all es-
timated variables are a result of stochastic fluctuations
in the combustion process that are not considered in the
model. In order to reduce the fluctuations in the estimated
variables, a suitable choice of the EKF parameters is nec-
essary. However, a stronger damping of the fluctuations
will lead to lower estimation speed in the case of quick
fuel changes. These results demonstrate that the presented
estimation method is capable of simultaneously estimating
the fuel properties and state variables in fixed-bed biomass
boilers.

Fig. 8. Validation results: estimated fuel properties.

Fig. 9. Validation results: estimated state variables.

4. CONCLUSIONS AND OUTLOOK

The result of the work presented is a method for the simul-
taneous estimation of the non-measurable state variables
and fuel properties in fixed-bed biomass boilers with air
staging. This is the first discussion of such a method for
the application at biomass boilers.
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Fig. 10. Validation results: estimated lower heating value.

The presented method is limited to the utilization of mass-
and substance balances which leads to a low implementa-
tion effort. It can be implemented at all fixed-bed biomass
boilers with the necessary instrumentation. In addition to
the typically available residual oxygen content of the flue
gas, the method requires the measurement of the mass
flows of air and flue gas as well as the water content of
the fully combusted flue gas which are typically not avail-
able at biomass boilers. Due to the costs associated with
retrofitting the necessary instrumentation, this method is
mostly relevant for medium-scale biomass boilers.

As with other state estimators, measurement errors or
errors in the model parameters lead to a deviation of the
estimation results from their actual value at steady state.
The investigated errors in the model parameters showed
only a small influence on the estimation results. However,
measurement errors for the mass flows of secondary air
and fully combusted flue gas have a bigger influence on the
estimation results. In cases where significant measurement
errors for these mass flows are expected, the use of energy
balance equations with additional measurement data can
lead to an improvement of the estimation accuracy and is
therefore recommended. However, this is not deemed nec-
essary for the application at biomass boilers with accurate
measurements for the mass flows. Further improvements
could be achieved through the application of robust state
estimation methods instead of the EKF utilizing a-priori
knowledge of the uncertainties of the measured variables.

The application of this estimation methods in combina-
tion with model-based control strategies is expected to
especially improve the biomass boiler’s operational behav-
ior during fuel changes. This enables a fully automated
operation of biomass boilers even when the fuel quality
varies strongly. As a result, the plant operator’s effort
necessary for ensuring a smooth operation of the biomass
boiler during a fuel change is significantly decreased. Thus,
the utilization of new and alternative biomass feedstocks
is made more viable by the application of the proposed
estimation method. For this reason, the presented esti-
mation method is a key technology to ensure the further
distribution of biomass boilers in modern energy systems.
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