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Abstract: The aim of the quality by design initiative is to assure a continuous and high-quality production 
of pharmaceuticals despite the presence of process variations and disturbances. This need for optimal 
process operation necessitates the use of accurate prediction and fault detection methods in combination 
with advanced control strategies. However, the critical component for the success of such an approach is a 

mathematical model providing an adequate representation of the bioprocess under study. This work 
presents a framework for bioprocess online optimization that utilizes rigorous modelling and control 
methods tailored for fed-batch and perfusion cultures. The basis of the methodology is a hybrid process 

modelling approach which enables both monitoring and optimization of cell culture processes. To account 
for inherent process variability of biological organisms, an adaptive state estimation approach is utilized 

which employs multiple models in parallel thus providing improved robustness to a possible occurrence of 
model-plant mismatch. Furthermore, optimal process trajectories for online optimization are calculated 
using a robust multistage nonlinear model predictive control approach which considers different scenarios 

based on the employed process models. Recent promising results from experimental fed-batch CHO 

fermentations are presented which show significant productivity increases. 
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1. INTRODUCTION 

Due to their complex behaviour and characteristic variability, 
cell culture processes present a challenging environment for 

the utilization of predictive methods. The quality by design 
(QbD) initiative from the Food and Drug Administration 
(FDA) for the production of biopharmaceuticals therefore 

necessitates advanced monitoring and control capabilities that 
provide the required robustness and flexibility. This work 
presents recent extensions and application of a framework for 

the development of a hybrid bioprocess model, adaptive state-
estimation and robust model predictive control tailored for the 

online optimization of fed-batch processes.  
 
The basis of an effective QbD approach for 

biopharmaceuticals is provided by an adequate model of the 
process under study. In this work, we are interested in the 
optimization of Chinese hamster ovary (CHO) cultures for 

which the development of mechanistic models presents an 
active research area (Yahia et al., 2015). To describe the 

dynamic behaviour of cells during fermentation, a modelling 
methodology (Provost et al., 2006) is used which broadly aims 
at obtaining specific macro reactions that provide a significant 

contribution to the observed uptake and production rates of the 
major metabolites. Using these macro reactions, it is possible 
to automatically generate kinetics (Hebing et al., 2016) that 

allow for a mechanistic description of the dynamics of major 
metabolites during the fermentation process. To derive models 
that are tailored for process optimization it is further necessary 

to explore the space of bioprocess parameters, e.g. dissolved 

oxygen (DO), stirrer speed, pH and temperature regimes, to 
determine their effect on the cell metabolism. By augmenting 

the mechanistic model with empirical structures, it is possible 
include these observed effects to generate a so-called hybrid 
process model which subsequently can be used for process 

optimization. 
 
However, given the complex nature of organisms, an online 

application of a process model requires monitoring techniques 
that provide robustness and flexibility in order to deal with a 

changing environment. In that regard, it is possible to utilize 
state estimators such as Kalman filters (Gelb 1988; Ohadi et 
al., 2015) to obtain more accurate estimates of the bioprocess 

states in the presence of noisy measurements. For additional 
robustness against model-plant mismatch Hebing et al. 
(2020a) proposed an adaptive constrained extended Kalman 

filter (CEKF) where the most suitable model is selected based 
on a trust-index. Regarding the implementation of an advanced 

process control scheme, we applied a robust multi-stage non-
linear model predictive controller (RS-NMPC) (Lucia et al., 
2013) on a shrinking horizon where, in each iteration, an 

optimization problem is solved in order to determine the 
optimal trajectory of manipulated process parameters for the 
remaining days of the fermentation. The multi-stage MPC 

approach allows for the accounting of uncertainty by 
considering different models as branches in a scenario tree.  
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In the experimental study, we used the advanced control 
scheme to achieve two objectives. The first goal was to 
perform set-point tracking of the glucose concentration inside 

the bioreactor. In this case, a precise regulation was achieved 
with the help of a Raman probe which provides frequent 
measurements thus enabling a more effective feedback 

control. The second goal was to maximize the amount of 
obtained product at the end of the fed-batch duration. This was 

accomplished by optimizing a set of process parameters 
throughout the cultivation. Experimental fed-batch runs were 
realized using 10 L glass reactors where several reactors were 

optimized using the proposed advanced monitoring and 
control strategy while the remaining reactors served as the 
control group that were operated following standard operating 

procedure. 

2. BIOPROCESS MODEL 

In the following, we will present a brief outline of the 
development of a dynamic metabolic model of a bioprocess 
which can be utilized for monitoring and optimization 

purposes.  
 

A typical representation of a component 𝑖 in a fed-batch 
bioprocess is given by: 

𝑑𝑐𝑖

𝑑𝑡
= 𝐷 ∙ (𝑐𝑖,𝑖𝑛 − 𝑐𝑖) + 𝑳𝑖

𝑇 ∙ 𝒓 ∙ 𝑋𝑣 
 

(1) 

where 𝑐𝑖,𝑖𝑛 denotes the concentration of component 𝑖 in the 

feed, 𝐷 the dilution rate, 𝑳𝑖 a set of macro-reactions related to 
component 𝑖, 𝒓 the vector of corresponding cell-specific 

reaction rates and 𝑋𝑣 the viable cell density. Given a known 
network of intra-cellular reactions, the first step of the model 
development is to determine the set of significant reactions that 

make up the matrix of macro-reactions 𝑳. Based on 
experimental data, it is possible to calculate cell-specific 

uptake and production rates of each of the metabolites (Hebing 
et al., 2020b). These are required to subsequently determine 
which intra-cellular reactions are of significant magnitude in 

order explain the observed data. Using the determined rates, it 
is then possible to construct so-called elementary modes 
(EMs) which describe direct intra-cellular pathways between 

substrates and products (Provost et al., 2006). As the number 
of feasible elementary modes can be quite large, we are 

interested in a minimal set of modes that are able to explain 
the given data. To accomplish this task, a multi-objective 
optimization is performed according to Hebing et al. (2016) 

with the goal of finding an optimal trade-off between accuracy 
and complexity by selecting the cut-off value in terms of 
number of EMs such that we still obtain a satisfactory 

prediction of the observed concentration profiles. Based on the 
derived minimal set of modes, we notice that by a linear 

combination of EMs we obtain the matrix of macro-reactions 

𝑳 that is relating the formation of each metabolite to a 
consumption of another metabolite. Having obtained matrix 𝑳, 
as required in (1), we are subsequently interested in the 

construction of the kinetic expressions 𝒓 that govern the 
dynamics of the cell cultivation process.  

1.1 Reaction Rate Kinetics 

In general, a reaction rate 𝑗 that involves limiting or inhibiting 
substrates can be described as follows: 

𝑟𝑗 = 𝑓kinetic(𝒄,𝒛)

= 𝑟𝑗,max ∙ ∏𝑟̃𝑗,𝑖
𝑙𝑖𝑚(𝒄)

𝑛𝑡

𝑖=1

∙ 𝑟̃𝑗,𝑖
𝑖𝑛ℎ𝑖𝑏(𝒄) ∙ ∏𝑟̃𝑗,𝑘

𝑘𝑒𝑟(𝒛)

𝑛𝑧

𝑘=1

 

 
 

(2) 

where 𝑟𝑗,max presents the maximum reaction rate, whereas 𝑟̃𝑗,𝑖
𝑙𝑖𝑚 

denotes a limiting kinetic while 𝑟̃𝑗,𝑖
𝑖𝑛ℎ𝑖𝑏 describes an inhibiting 

kinetic term related to substrate 𝑖 with 𝑛𝑡 being the number of 

substrates involved in the reaction. 𝒄 denotes the vector of 

component concentrations. Furthermore, 𝑟̃𝑗,𝑘
𝑘𝑒𝑟 present terms 

based on experimentally observed effects of operating 

conditions 𝒛 on specific rates. Bioprocess specific operating 

conditions 𝒛 include parameters such as DO, pH, temperature 
or impeller speed.  
 

Substrate limitation kinetics of biochemical reactions can 
generally be described using Monod-kinetics: 

𝑟̃𝑗,𝑖
𝑙𝑖𝑚 = (

𝑐𝑖

𝐾𝑚,𝑗,𝑖 + 𝑐𝑖

)

𝑛

 
 

(3) 

where 𝑐𝑖 is the concentration of the limiting substrate and 

𝐾𝑚,𝑗,𝑖 the Monod constant, whereas substrate inhibitions are 

given by Haldane kinetics:  

𝑟̃𝑗,𝑖
𝑖𝑛ℎ𝑖𝑏 = (

𝐾𝐼,𝑗,𝑖

𝐾𝐼,𝑗,𝑖 + 𝑐𝑖

)

𝑛

 
 

(4) 

where 𝐾𝐼,𝑗,𝑖 presents the inhibition constant. Thus, assuming 

Monod or Haldane kinetics in each of the resulting macro-
reactions, it is possible to generate a set of ordinary differential 
equations according to (1) that represent the dynamic 

behaviour of the process under study.  

1.2 Hybrid Model Structures 

Using (2) - (4) it is possible to semi-mechanistically 

characterize biochemical reaction rates  that involve the 
concentrations of limiting or inhibiting substrates. However, 

the effect of operating conditions 𝒛 on certain reaction rates 
are of vital importance for optimization purposes and can be 

represented by empirical structures. Similar to the Monod 
kinetics (3), which change between zero-order and first-order 

dynamics, we want the effect of process conditions 𝒛 on the 
affected reaction rates to be normalized between 0 and 1. Thus, 
the next step is to select a candidate model function which can 

best represent the phenomena, observed in experimental data. 
In this work, we select a multivariate distribution to model the 

influence of 𝒛 on the different specific uptake and production 
rates. This distribution, also referred to as kernel, is given as 

follows: 

𝑟̃𝑗,𝑘
𝑘𝑒𝑟 = exp (−

1

2
(𝒛𝑘 − 𝝁𝑘)𝑇𝚺𝑘

−1(𝒛𝑘 − 𝝁𝑘)) 
 

(5) 
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where 𝒛𝑘 denotes a subset of process conditions while 𝝁𝑘 and 

𝚺𝑘 represent kernel tuning parameters that need to be estimated 
from experimental data. Using the approach of obtaining a 
semi-mechanistic model structure based on known intra-

cellular reactions and then augmenting the rates (2) with 
influences of additional process parameters (5) thus leads to a 
hybrid bioprocess model.   

1.3 Optimizing Inputs 

The available bioprocess operating condition variables 𝒛 can 
be used for optimization purposes if they were found to affect 
rates of interest such as the growth rate or specific 

productivity. For the remainder of the paper, the subset of 
operating conditions whose set-points can be manipulated for 
optimization purposes are defined as:  

𝒖𝑜𝑝𝑡 ⊆ 𝒛 (6) 

3. STATE ESTMATION 

The complex nature of bioprocesses presents a challenge for 

monitoring and control applications due to large changes in 
concentrations during fermentation and sparse sampling of 
metabolites that are typically taken only once per day. In order 

to maintain an accurate estimation of the relevant states during 
the fermentation, it is therefore vital to employ state 
estimators. As stated in (1), a process model can be generally 

expressed as a system of ODEs as follows: 

𝒙̇ = f(𝒙,𝜽, 𝒖,𝒛) + 𝝂 (7) 

𝒚 = h(𝒙) + 𝜼 (8) 

where 𝒙 represent the state variables, 𝜽 a set of model 

parameters, 𝒖 the vector of model inputs and 𝒚 the model 

outputs. Moreover, 𝝂 presents the measure of process noise 

whereas 𝜼 quantifies the measurement noise. Typically, we 
assume these errors to be normally distributed with zero mean: 

𝝂 ~ 𝒩(𝟎,𝑸𝑘) (9) 

𝜼 ~ 𝒩(𝟎,𝑹𝑘) (10) 

where 𝑸𝑘 and 𝑹𝑘 are the respective state noise covariance and 
measurement noise covariance matrices. In this work, we 

utilize an adaptive constrained extended Kalman filter (CEKF) 
(Hebing et al., 2020a) to update the model states (7) based on 
online measurements from bioreactor sensors as well as 

measurements from analysed samples. To adapt the model to 
a varying environment and to counteract a possible occurrence 

of model-plant mismatch, adaptive correction factors are 
introduced as additional pseudo-states into important reactions 
rates (2) as follows:  

𝑟𝑗 = 𝑓kinetic(𝒄,𝒛) ∙ 𝛿𝑗 (11) 

𝑑𝛿𝑗

𝑑𝑡
= 0 

(12) 

With an initial state value of 𝛿𝑗(0) = 1. The update of the 

correction factor is based on the observed mismatch between 
the model prediction and measured quantity and depends on 

the magnitude of process noise 𝑸𝑘. In addition to the adaptive 
correction factors, the implemented state estimation algorithm 

incorporates a multi-model architecture that selects the active 
model based on a trust-index. Accordingly, whenever a new 

measurement becomes available, the quality of each model 𝑗 
is evaluated based on the error between prediction and 
measurement as follows: 

𝑊𝑆𝑆𝑅𝑘
𝑗

= (h(𝒙𝑘,𝑗
− ) − 𝒚𝑘)

𝑇
𝑹𝑘

−1(h(𝒙̂𝑘,𝑗
− ) − 𝒚𝑘) (13) 

where 𝒙𝑘,𝑗
−  presents the a-priori estimate of the model states 

(7) at iteration k , while 𝒚𝑘 denotes the respective process 
measurement. Furthermore, the error is weighted by the 

measurement covariance matrix 𝑹𝑘. Based on the prediction 
error (13), the trust-index of each model is calculated as 

follows: 

φ𝑘
𝑗

=
∑ 𝑊𝑆𝑆𝑅𝑘

𝑗
𝑗

𝑊𝑆𝑆𝑅
𝑘

𝑗  
 

(14) 

To prevent oscillations of active models between iterations, the 
trust-index in (14) is further processed by a first-order filter. 

Accordingly, in each estimation step, the model with the 
largest filtered trust-index is selected as the active model and 
thus used as basis for the subsequent optimization step.  

4. OPTIMIZING CONTROL 

Following the multi-model state estimation approach, we 

utilize a multi-stage NMPC approach (Lucia et al., 2013) for 

calculating optimal trajectories of process inputs 𝒖. Based on 
the trust-index (14) we define the current bioprocess states of 

the active model as 𝒙0
𝑎𝑚. As depicted in Fig. 1, using this set 

of states and the set of model specific parameters 𝜽0
𝑗
 as initial 

conditions, we can calculate, for each model j, the process 

evolution based on inputs 𝒖𝑘
𝑗

 ∀ 𝑘 = 0, …, 𝑛𝑝, where 𝑛𝑝 

denotes the prediction horizon. Using the scenario 

representation as shown in Fig. 1, we can combine, for each 

model 𝑗, all future states and inputs as follows: 

𝑋𝑗 = {𝒙0
𝑗

,… , 𝒙𝑛𝑝

𝑗 }  (15) 

𝑈𝑗 = {𝒖0
𝑗

,…, 𝒖𝑛𝑝

𝑗 }  (16) 

In each iteration of the NMPC optimization routine, the multi-

stage approach is then solving the following problem (Hebing 
et al., 2020a): 

min
𝒖𝑘

𝑗
∈𝑈𝑗

∑𝑤𝑗 ∙ Φ(𝑋𝑗,𝑈𝑗)

𝑛𝑠

𝑗=1

 

s. t.    𝒖0
𝑗

= 𝒖0
𝑙        ∀𝑗, 𝑙 = 1, …, 𝑛𝑠

                𝒖𝑙𝑏 ≤ 𝒖𝑘
𝑗

≤ 𝒖𝑢𝑏       ∀𝒖𝑘
𝑗

∈ 𝑈𝑗 

             𝑔(𝑋𝑗) ≤ 0         ∀𝑗 = 1,… ,𝑛𝑠

 

 

 
 

 
 
(17) 
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where 𝑤𝑗 presents the respective probability weight given to 

model 𝑗 while 𝑛𝑠 describes the total number of considered 

scenarios. 𝒖𝑙𝑏 and 𝒖𝑢𝑏 are lower and upper bounds on the 

input space whereas 𝑔(𝑋𝑗) presents process dependent 

constraints on future model states.  

 
When the tracking of a desired concentration set-point of 
certain metabolites, e.g. glucose, is of interest, the objective 

function in (17) can be defined as follows:   

Φ𝑡𝑟 = ∑ 𝑲𝑠𝑝
𝑇 ‖𝒚𝑘 − 𝒚𝑠𝑝 ‖

2
+

𝑲∆𝑢
𝑇

∆𝑡
‖𝒖𝑘−1 − 𝒖𝑘‖2

𝑛𝑝−1

𝑘=1

 

 

(18) 

Where 𝑲𝑠𝑝 and 𝑲∆𝑢 presents weights on set-point errors and 

input changes respectively.  

 

 

Fig. 1: Multi-stage NMPC scenario tree (adapted from 

Hebing et al. (2020a)). 

Regarding the optimization of bioprocesses, the objective 

function Φ generally involves some growth or productivity 
measure. Therefore, when employing a short prediction 

horizon of 𝑛𝑝 = 3 days, it is necessary to introduce a weighted 

objective between growth and productivity as proposed in 
Hebing et al. (2020a). This is essential to enable conditions for 

cell proliferation during the initial growth phase before 
switching to conditions that favor productivity but may stunt 
cell growth. However, from practical experience we found out 

that such a weighted objective increases complexity and is 
difficult to tune. In contrast to a weighted objective, in this 
work, we instead propose the use of a shrinking horizon 

implementation, where the horizon always covers the final 
batch time. Thus, we get for the prediction horizon: 

𝑛𝑝(𝑖) = 𝑛𝑝 (𝑖 − 1) − 1,      𝑛𝑝(0) = 𝑛𝑑    (19) 

where 𝑖 represents the iteration index and 𝑛𝑑 the number of 

fermentation days, i.e. 𝑛𝑑  = 14. The shrinking horizon 
approach has the advantage that growth is implicitly 
considered as large cell densities are desired in order to obtain 

the maximum amount product at the end of the fed-batch. 
Thus, in terms of productivity optimization, the objective 
function used in (17) is defined as follows: 

Φ𝑝𝑟𝑜𝑑 = 𝑥𝑛𝑝
𝑝𝑟𝑜𝑑 (𝑋,𝑈) +

𝑲∆𝑢
𝑇

∆𝑡
∑ ‖𝒖𝑘−1 − 𝒖𝑘‖2

𝑛𝑝−1

𝑘=1

 

 

(20) 

where 𝑥𝑛𝑝

𝑝𝑟𝑜𝑑 denotes the product concentration at the end of 

the prediction horizon, which, following the shrinking horizon 
approach (19), is equal to the final batch time. 

5. EXPERIMENTAL SET-UP 

As mentioned in the Introduction, the control strategy of the 

experimental test run for optimizing the CHO cell 
fermentation process consists of two goals: 

• Set-point tracking of the glucose concentration inside 
the bioreactor with use of a Raman probe 

• Product maximization regarding a recombinant 

protein produced by the CHO cells 

To pursue these two targets, we opted for the control structure 
illustrated in Fig. 2, where we distributed the two control 
problems into separate control systems. Control system #1 

implemented the desired glucose pump settings 𝒖𝐺𝑙𝑐  every 1 
h, while control system #2 re-optimized yield related inputs 

𝒖𝑜𝑝𝑡 with a frequency of 24 h. Using a 10 L glass bioreactor 

for fermentation, we were able to obtain analytical sample 

measurements of the metabolite concentrations 𝒚 every 24 h 
while the bioreactor sensors provided online measurements of 

process conditions 𝒛, e.g. pump rates, temperature, etc.  
 
Using a Raman probe, it was possible to generate additional 

measurements of certain metabolites such as glucose at much 
faster rate compared to an offline sample analysis. The more 
frequent feedback signal from the Raman probe thus enabled 

us to perform a set-point tracking of the glucose concentration 
using control system #1 as shown in Fig. 2. For this 

experiment, we opted to control the glucose concentration 
around a pre-determined constant set-point. An adaptive 
CEKF, employing two parallel models, was used for state 

estimation as described in section 3. An RS-NMPC with a 
tracking objective function according to (18) was utilized to 
compute the glucose pump rates every 1 h. In this case, we 

selected a non-shrinking prediction and control horizon of 

𝑛𝑝 = 3 days. Finally, the optimal pump trajectories 𝒖𝐺𝑙𝑐
∗  were 

passed on to a distributed control system (DCU) which 

included an interface to the glucose pump.  
 
For the more important goal, the maximization of obtained 

product at the end of the fed-batch, the second control system 
was utilized for optimizing growth and productivity during the 
fermentation. In this case, the process inputs considered most 

effective for optimization 𝒖𝑜𝑝𝑡
∗  were used as the manipulated 

variables in the objective in (20). Compared to the set-point 
tracking controller, new input trajectories were calculated by 

the economic RS-NMPC only every 24h. Furthermore, to 
avoid any weighted trade-off between a growth and 
productivity objective, the shrinking horizon according to (19) 

was implemented. 
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Finally, to compare and validate any results from the advanced 
control set-up shown in Fig. 2, a set of reference reactors were 
run in parallel. The reference reactors were run as per a 

standard operating procedure which consisted of fixed  

standard set-points for process operating conditions, i.e. 𝑇𝑠𝑝 =
36.5 °C, 𝑝𝐻𝑠𝑝 = 7 and 𝐷𝑂𝑠𝑝 = 40 %, as well as a daily bolus 

feeding of glucose. 

 

Fig. 2: Experimental control structure set-up used for glucose 

set-point tracking and product maximization. 

6. RESULTS AND DISCUSSION 

This section illustrates the results of the implemented control 
strategy to a CHO fed-batch cultivation with a duration of 14 

days. Two dynamic metabolic models  with different sets of 
parameters were used in each of the CEKFs depicted in Fig. 2. 
The models describe the dynamics of the major metabolites 

including viable and dead cell densities according to the 
derived macro-reactions. In addition, effects of various 

process conditions on specific rates of interest were 
incorporated using the kernel densities as stated in (5). 

3.1 State Estimation 

Using the adaptive CEKF described in section 3, we were able 
to obtain an online state estimation of the cell density and the 
remaining major metabolites during the fermentation. In terms 

of viable cell density, the performance of the state estimation, 
including the model prediction between samples, is illustrated 

in Fig. 3. A sample from the bioreactor was taken every 24h 
and the subsequent cell count used to get a measurement of the 
cell density. This measurement in turn was used to correct for 

any error in the model prediction. From Fig. 3 it is evident that 
the two models provide an accurate prediction of cell growth 
during the exponential phase. The prediction is less accurate 

during the cell density peak and the following post-exponential 
phase which lead to greater corrections from the state 

estimator. 

 

Fig. 3: State estimation of viable cell density during the fed-

batch cultivation. 

3.2 Glucose Set-Point Tracking 

Using Raman probes to frequently infer the glucose 
concentration inside the bioreactor, it was possible to  
implement the glucose set-point control scheme using control 

system #1 as illustrated in Fig. 2. Fig. 4 depicts the glucose 
state estimation and set-point tracking performance during the 

first days of the cultivation.  

 

Fig. 4: Performance of the glucose set-point tracking controller 

(results are normalized).  

First, it can be observed that the two models start out with 

slightly different glucose consumption dynamics. However, 
due to the use of the correction factors as outlined in (11) and 
(12), the cell-specific glucose consumption rate was quickly 

adapted to match the one observed from the Raman 
measurements. In the initial phase of a fed-batch process, the 

cells are consuming the glucose provided by the initial amount 
of medium, thus leading to a decrease in the concentration over 
time. Once the desired set-point is reached, fresh glucose was 

provided based on the controller output via a glucose pump. 
From Fig. 4 it is clear that, by using the Raman signal with a 
frequency of ~1h as feedback, it is possible to achieve an 

excellent set-point tracking of a metabolite inside the 
bioreactor.     

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17085



 
 

     

 

 

3.3 Optimizing Control 

While control system #1 was designed to keep the glucose 

concentration at the desired set-point, the purpose of control 
system #2 was to optimize the growth and productivity 

conditions as to maximize the amount of product at the end of 

the fed-batch. For that reason, the set of inputs 𝒖𝑜𝑝𝑡 was 

adjusted over the course of the cultivation according the 
model-based objective provided in (20). Fig. 5 illustrates the 

implemented trajectory of inputs 𝑢𝑜𝑝𝑡,1 and 𝑢𝑜𝑝𝑡,2 during the 

fermentation. In addition, it is possible to illustrate the process 
operating regions that, according to the estimated kernels (5), 

favour growth and productivity respectively. Fig. 5 shows that 
the shrinking horizon approach implicitly promotes cell 
growth during the initial growth phase of the fed-batch while 

facilitating productivity during the later stages when the cells 
are shifting to a post-exponential phase. 

 

Figure 5: Optimal implemented trajectory of the inputs used 

for process optimization. 

 

Figure 6: Product concentration over the course of 

fermentation. Comparison with reference reactor. 

The main goal of the optimal input trajectory, illustrated in Fig. 
5, is an increase the amount of product obtained at the end of 

the fed-batch cultivation. In this regard, Fig. 6 compares the 
performance of a bioreactor using the optimizing control 
strategy with a reference reactor which was operated according 

to standard operating procedure. It is evident that by 
optimizing the process conditions during fermentation, it is 
possible to achieve an increase in productivity of ca. 20% 

compared to a standard fed-batch operating strategy. These 
improvements present very promising results and show that 
advanced model-based optimizing control strategies offer the 

potential of automating bioprocess operation as well as 
enhancing yields. 

7. CONCLUSIONS 

This contribution presents the application of a framework for 
modelling, estimation and control of bioprocesses. An 

adaptive CEKF is utilized for obtaining accurate metabolite 
concentration during cultivation using dynamic metabolic 
models for prediction in between samples. Furthermore, using 

an RS-NMPC approach, a successful set-point tracking of the 
glucose concentration inside the bioreactor was achieved by 

using frequent Raman measurements. Finally, by 
implementing an optimizing control strategy it was possible to 
realize a significant improvement in the amount of 

recombinant proteins at the end of the fed-batch cultivation. 
Overall these promising results show a successful application 
of advanced and robust control strategies to bioprocesses. 
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