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Abstract: This paper presents a distributed set-membership estimator for linear full-coupled
systems affected by bounded disturbances. The estimator makes use of a recently developed
multi-hop subspace decomposition of the system that allows to transform the dynamic matrix
into an upper triangular matrix, decoupling the influence of the non-observable modes to the
observable ones. This way, each agent has to compute sets to encompass the observable dynamics
on the one hand, and the unobservable dynamics on the other. The sets are mathematically
described by zonotopes. Due to the multi-hop decomposition, the agents are able to design
different gains for the observable and the unobservable part, pursuing the reduction in volume
of the corresponding sets. The paper presents the solution for the two-agents case. Simulations
are given to compare the proposed solution with existing ones in the field.
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1. INTRODUCTION

With the development of wireless networks, embedded de-
vices and agents with processing and sensing capabilities,
distributed techniques are becoming increasingly impor-
tant. In particular, distributed estimation allows monitor-
ing important variables that can not be locally measured
and, this way, making it possible to operate and control
the system in a decentralized way.

Different distributed estimators have been proposed de-
pending on the model of the system, disturbances and
noises (Ge et al., 2019; Ierardi et al., 2019). Most research
considers different modifications of the distributed Kalman
filter (Mahmoud and Khalid, 2013; Olfati-Saber, 2007),
particle filter (Hlinka et al., 2013), H∞ filtering (Dong
et al., 2013; Shen et al., 2011), or Luenberger observer
(del Nozal et al., 2019; Mitra and Sundaram, 2018).

In contrast to the aforementioned paradigms, distributed
set-membership observers aim to bound the variables
estimation under certain geometrical set like intervals
(Efimov and Räıssi, 2016; Chebotarev et al., 2015; Mazenc
and Bernard, 2011), ellipsoids (Zhou et al., 2013; Merhy
et al., 2019), and zonotopes (Alamo et al., 2008; Le et al.,
2013; Combastel, 2015; Chabane et al., 2014; Wang et al.,
2017). Compared to interval descriptions or ellipsoids,
zonotopes have the advantage of allowing for a trade-off
between mathematical complexity and precision, through
the number of generator vectors used.

The state of the art in distributed set-membership esti-
mation is rather scarce. Ellipsoidal descriptions have been
recently used in Xia et al. (2018); Ma et al. (2016); Liu
et al. (2019). The authors in Xia et al. (2018) consider
an asynchronous event-driven transmission policy between

the agents. Ma et al. (2016) deals with sensor saturations.
The work Liu et al. (2019) analyses the impact of the
Round-Robin scheduling in the estimation performance.

Concerning zonotopic formulations, the authors present
several contributions for the case when the communica-
tions between agents are affected by delays (Garćıa et al.,
2017), multi-rate communications (Orihuela et al., 2017),
and bandwidth limited networks (Orihuela et al., 2018).
In addition, Wang et al. (2018); Combastel and Zolghadri
(2018) proposed distributed zonotopic estimators for large
scale-systems. Interestingly, the observer in Combastel and
Zolghadri (2018) merges set-membership with Gaussian
estimation. The most interesting feature of these zonotopic
observers is that they can be designed in a decentralized
way, in contrast to the aforementioned ellipsoidal ones, in
which centralized optimization problems need to be solved.

It should be mentioned that most of these results (Orihuela
et al., 2018; Wang et al., 2018; Combastel and Zolghadri,
2018; Xia et al., 2018) have been developed for a descrip-
tion of the system that consists of a set of interconnected
subsystems and, then, the estimation goals are simplified
to the estimation of the local subsystem’s state. In Xia
et al. (2018), it is proposed an additional step to combine
all local estimations into an unique global one, but this
requires a central unit that must merge all the information.

Hence, this paper deals with distributed set-membership
estimation with global estimation objectives, as in Garćıa
et al. (2017), but with several novel contributions:

• This paper makes use of a multi-hop decomposition of
the state-space into the observable and unobservable
subspaces developed in (del Nozal et al., 2019). This
decomposition let us write the dynamic matrix of the
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system with an upper triangular form, this allowing
for a cascade implementation of the observer.
• Each agent has to find a different set for each sub-

space, instead of a unique set for all the states.
• The observer gains that minimize the size of those

sets, i.e. the estimation uncertainty, can be designed
in independent distributed steps.

This paper presents the analysis for the two-agents case,
constituting a preliminary work of an extension for a
general case. The computational and communication re-
quirements of the proposed method are compared to other
formulations in which only one zonotope must be found.

The paper is organized as follows. Section 2 presents some
preliminaries. The problem formulation is detailed in Sec-
tion 3. Section 4 describes the proposed estimator design.
Section 5 develops the minimization of the estimation
uncertainty. Section 6 presents some consideration about
computational and communication costs. Simulations and
examples are illustrated in Section 7. Finally, some con-
clusions and future works are drawn in Section 8.

Notation. Let R ∈ Rn×p. Then, ‖R‖F =
√
tr(RTR)

is the Frobenius norm of R. Given matrices A,B of
appropriate dimensions, operator cat{A,B} , [A B].

2. PRELIMINARIES

2.1 The multi-hop decomposition

The multi-hop decomposition described here was intro-
duced in del Nozal et al. (2019). The most important
details are given here for the case of two agents. For a
complete description, the reader is referred to that paper.

Consider a set of agents V = {1, 2}, connected with a
bidirectional communication link, able to measure some
information from the next discrete-time LTI system:

x(k + 1) =Ax(k), (1)

yi(k) =Cix(k) ∀i ∈ V, (2)

where x ∈ Rn is the state vector, A is the system matrix,
yi ∈ Rmi is the output locally measured by each agent i
and Ci ∈ Rmi×n is the output matrix of agent i.

Let’s define the 0-hop output matrix of agent i as its
output matrix, this is Ci,0 = Ci. The 1-hop output matrix
of agent i, Ci,1, is a matrix that stacks the 0-hop output
matrix of agent i and the 0-hop output matrix of its
neighbor, that is:

Ci,1 :=

[
Ci,0
Cj,0

]
, j 6= i.

For any agent, there exists a coordinate transformation
matrix

[
V̄i,ρ Vi,ρ

]
∈ Rn×n, being ρ the {0, 1}-hop, ac-

cording to pair (Ci,ρ, A) such that the change of variable

zi,ρ , [V̄i,ρ Vi,ρ]
>x ∈ Rn transforms the original state-

space representation into the observability staircase form,
for ρ = 0, 1.

Definition 2. The ρ-hop unobservable subspace from
agent i is the unobservable subspace related to pair
(Ci,ρ, A) using the above coordinate transformation:

Ōi,ρ := Im(V̄i,ρ).

The orthogonal complement of Ōi,ρ is denoted ρ-hop
observable subspace from agent i, Oi,ρ := Im(Vi,ρ).

According to previous definitions, it is clear that:

Oi,0 ⊆ Oi,1, ∀i ∈ V. (3)

Then, the vectors of the “innovation” basis that generates
Oi,1 ∩ (Oi,0)⊥ can be stacked into a matrix Wi,1 in such
a way that Im(Wi,1) := Oi,1 ∩ (Oi,0)⊥. Then Im(Wi,1)
corresponds to the observable modes for agent i at hop 1
that are not observable at hop 0. From these definitions it
is clear that

Im(Vi,1) = Im ([Wi,1 Vi,0]) , (4)

Im(V̄i,0) = Im
([
Wi,1 V̄i,1

])
. (5)

Accordingly, a orthogonal transformation matrix Ti can be
defined such as:

Ti :=
[
V̄i,1 Wi,1 Wi,0

]
, (6)

where V̄i,1 corresponds to the modes that are not observ-
able by any of the agents.

Proposition 1. For each agent i, the orthogonal similarity
transformation given by Ti in (6) transforms the system
matrix A into a block upper-triangular matrix in the form:

T>i ATi =

 V̄ >i,1AV̄i,1 V̄ >i,1AWi,1 V̄ >i,1AWi,0

0 W>i,1AWi,1 W
>
i,1AWi,0

0 0 W>i,0AWi,0


2.2 Zonotopes

A zonotope X , denoted with calligraphic, capital letters, is
a centrally symmetric, convex set determined by its center
c ∈ Rn, and by a matrix H ∈ Rn×p: X = 〈c,H〉 =
{c+

∑p
i=1 ςihi : ∀i |ςi| ≤ 1}, where hi ∈ Rn (columns of

H) are called generator vectors. The order of a zonotope
is given by the number of generator vectors, its F-radius
is the Frobenius norm of H, and its covariation is defined
as PX = HHT (see Combastel (2015)).

Let X = 〈cx, Hx〉 and Y = 〈cy, Hy〉 be two zonotopes,
and let R be a matrix of appropriate dimensions. A
linear transformation of a zonotope is given by RX =
〈Rcx, RHx〉, and the Minkowski sum of two zonotopes is
obtained as X⊕Y = 〈cx+cy, cat{Hx, Hy}〉. Given a matrix
A and any vectors such that x ∈ X and w ∈ W, it holds
that y := Ax + w ∈ AX ⊕ W. The operator redq(X ),
defined as in Combastel (2015), is an order reduction of
the zonotope X in such a way that X ⊆ redq(X ), and the
order of redq(X ) is q.

3. PROBLEM FORMULATION

In this paper, we consider the problem of set-membership
state estimation for a multi-output linear system affected
by bounded disturbances, observed by two agents. The
system is described by the following equations:

x(k + 1) =Ax(k) +Dw(k), (7)

y1(k) =C1x(k) + v1(k), (8)

y2(k) =C2x(k) + v2(k), (9)
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where x ∈ Rn is the state vector, yi ∈ Rmi is the output
locally measured by each agent, w represents disturbances
or unmodeled dynamics, and vi are measurement noises,
Matrices A,D,C1, C2 are constant matrices of appropriate
dimensions.

Assumption 1. Disturbances and noises belong to
bounded known sets described as zero-centered zonotopes,
this is, w(k) ∈ W = 〈0, Q〉, vi(k) ∈ Vi = 〈0, Ri〉, being Q
and Ri matrices of adequate dimensions.

Assumption 2. System (7)-(9) is collectively observ-
able. That is, the pair (C,A) is observable, where C :=
cat{C>1 , C>2 }>.

For each agent i = 1, 2, it is possible to find a coordinate
transformation matrix Ti ∈ Rn×n such that under the
change of variables zi = T>i xi, system (7)-(9) can be
transformed into the observability staircase form:

zi(k) = T>i x(k) =

[
W>i,1
W>i,0

]
x(k) =

[
zi,1(k)
zi,0(k)

]
. (10)

The transformed state vector comprises two terms: the
local observable modes zi,0(k) ∈ Rni,0 , and the local
unobservable modes that are locally observable by the
other agent zi,1(k) ∈ Rni,1 . Now, using T−1i = T>i , it holds:

x(k) = Tizi(k) = Wi,0zi,0(k) +Wi,1zi,1(k). (11)

Referring to equation (7), we obtain:

zi(k+ 1) = T>i x(k+ 1) = T>i ATizi(k) + T>i Dw(k), (12)

with T>i ATi upper block diagonal according to Proposition
1. Then, the dynamics of each hop is given by:

zi,ρ(k + 1) =

ρ∑
r=0

W>i,ρAWi,rzi,r(k) +W>i,ρDw(k). (13)

Let’s define the following a priori and a posteriori zono-
topes for each agent and hop, using the notation in Section
2.2, intended to contain the actual state of each subspace:

• A priori : Ẑi,ρ(k+1|k) = 〈ci,ρ(k+1|k), Hi,ρ(k+1|k)〉,
• A posteriori : Ẑi,ρ(k|k) = 〈ci,ρ(k|k), Hi,ρ(k|k)〉.

Assuming that the local information measured by each
agent (8)-(9) is not enough to reconstruct the whole state,
they have to communicate with the other agent in order
to fulfill the following objectives:

(i) Find sets, by means of zonotopes, in which the ac-
tual state of its associated subspace is continuously
contained. In particular, both agents must obtain an
a priori and an a posteriori sets such that zi,ρ(k) ∈
Ẑi,ρ(k|k) and zi,ρ(k + 1) ∈ Ẑi,ρ(k + 1|k), ∀i, ρ, k.

(ii) Minimize the estimation uncertainty, measured through
the F-radius of the a posteriori zonotopes. This is,
minimize ‖Ẑi,ρ(k|k)‖F ,∀i, ρ.

4. PROPOSED ESTIMATOR

This section presents the distributed set-membership esti-
mator considering the multi-hop subspace decomposition.

Let’s assume that each agent knows an a priori es-
timation set for hops ρ = 0, 1, i.e. Ẑi,0(k|k − 1) =

〈ci,0(k|k−1), Hi,0(k|k−1)〉 and Ẑi,1(k|k−1) = 〈ci,1(k|k−
1), Hi,1(k|k−1)〉. Those zonotopes contain the actual state
of the associated subspace.

The a posteriori estimation set for hop ρ = 0 is derived
using the information locally measured from the system
yi(k) as follows:

ci,0(k|k) = ci,0(k|k − 1)

+ Li(k) (yi(k)− CiWi,0ci,0(k|k − 1)) , (14)

Hi,0(k|k) = cat{(I − Li(k)CiWi,0)Hi,0(k|k − 1),

− Li(k)Ri}. (15)

Local observer gain Li(k) is computed so that the F-radius

of the a posteriori zonotope Ẑi,0(k|k) is minimized. This
problem will be tackled in Section 5.

Now, an order reduction step is conducted Z̃i,0(k|k) =

〈c̃i,0(k|k), H̃i,0(k|k)〉 = redq(Ẑi,0(k|k)). This set is sent
through the communication network to the other agent.

The a posteriori estimation set for ρ = 1, Ẑi,1(k|k), is
computed as:

ci,1(k|k) =
(
I −Ni,j(k)W>j,0Wi,1

)
ci,1(k|k − 1)

−Ni,j(k)W>j,0Wi,0ci,0(k|k) +Ni,j(k)c̃j,0(k|k), (16)

Hi,1(k|k) = cat
{(
I −Ni,j(k)W>j,0Wi,1

)
Hi,1(k|k − 1),

−Ni,j(k)W>j,0Wi,0Hi,0(k|k),

Ni,j(k)H̃j,0(k|k)
}
, (17)

where j 6= i represents the neighbor agent. Gain Ni,j(k)
is chosen to minimize the F-radius of the a posteriori
zonotope Ẑi,1(k|k). See Section 5 for more details.

Having computed the a posteriori zonotopes for both hops,
let’s move to the a priori ones. For hop ρ = 0, the a priori
estimation set is obtained as follows:

ci,0(k + 1|k) =W>i,0AWi,0ci,0(k|k), (18)

Hi,0(k + 1|k) = cat{W>i,0AWi,0Hi,0(k|k),W>i,0DQ}.(19)

Finally, the a priori estimation set for ρ = 1 is given by:

ci,1(k + 1|k) = W>i,1AWi,1ci,1(k|k) +W>i,1AWi,0ci,0(k|k),
(20)

Hi,1(k + 1|k) = cat{[W>i,1AWi,1Hi,1(k|k),

W>i,1AWi,0Hi,0(k|k),W>i,1DQ}. (21)

Next theorem states that, no matter the value that is given
to matrices Li(k), Ni,j(k), objective (i) is fulfilled if the
previous equations are implemented.

Theorem 1. Let’s assume that zi,ρ(k) ∈ Ẑi,ρ(k|k−1),∀i, ρ
for some particular instant k. Then, if the distributed set-
membership observer in (14)-(21) is implemented by every
agent, both the a posteriori and a priori estimation sets
continuously contain the associated system states.

Proof. Consider zi,ρ(k) ∈ Ẑi,ρ(k|k − 1) for all i and for
ρ = 0, 1 at some instant k. According to (8)-(9):
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zi,0(k) = zi,0(k) + Li(k)
(
yi(k)− CiWi,0zi,0(k)− vi(k)

)
,

that, under some manipulations, yields:

zi,0(k) =
(
I − Li(k)CiWi,0

)
zi,0(k)

+ Li(k)yi(k)− Li(k)vi(k),

Since zi,0(k) ∈ Ẑi,0(k|k−1), vi(k) ∈ Vi, and yi(k) is known,
state zi,0(k) is contained in:

zi,0(k) ∈
(
I − Li(k)CiWi,0

)
Ẑi,0(k|k − 1)

⊕ Li(k)〈yi(k), 0〉 ⊕
(
− Li(k)

)
Vi,

which is the zonotope described in (14)-(15).

Using a similar idea for the transformed states at hop
ρ = 1, it is satisfied:

zi,1(k) = zi,1(k) +Ni,j(k)
(
W>j,0x̂j(k)−W>j,0x(k)

+W>j,0ej(k)
)
,

being ej(k) = x(k)− x̂j(k).

Note that the term W>j,0x̂j(k) plays here the role of
yi(k) in the previous hop. This is the information that
agent i receives and uses to compute the estimation set.
This signal W>j,0x̂j(k), representing the states that the
neighbour locally observes, is affected by the uncertainty
of the a posteriori zonotope Ẑi,0(k|k). Then, from the fact

W>j,0x(k) = W>j,0

(
Wi,0zi,0(k) +Wi,1zi,1(k)

)
,

we finally obtain

zi,1(k) =
(
I −Ni,j(k)W>j,0Wi,1

)
zi,1(k)

−Ni,j(k)W>j,0Wi,0zi,0(k) +Ni,j(k)W>j,0

(
x̂j(k)− ej(k)

)
.

Therefore, state zi,1(k) is ensured to belong to the set:

zi,1(k) ∈
(
I −Ni,j(k)W>j,0Wi,1

)
Ẑi,1(k|k − 1)

⊕
(
−Ni,j(k)W>j,0Wi,0

)
Ẑi,0(k|k)⊕Ni,j(k)Ẑj,0(k|k).

Since Ẑj,0(k|k) ⊆ Z̃j,0(k|k), zi,1(k) is proven to be con-
tained in a zonotope described by equations (16)-(17).

Regarding the a priori sets, taking into account (7) and
Proposition 1, it is possible to write:

zi,0(k + 1) ∈W>i,0AWi,0Ẑi,0(k|k)⊕W>i,0DW,

zi,1(k + 1) ∈W>i,1AWi,1Ẑi,1(k|k)⊕W>i,1AWi,0Ẑi,0(k|k)

⊕W>i,1DW.

Previous sets can be computed with (18)-(21). 2

Assuming a sufficiently large initial zonotope, in such a
way that zi,0(0) ∈ Ẑi,0(0| − 1), zi,1(0) ∈ Ẑi,1(0| − 1),
Theorem 1 ensures the satisfaction of objective (i).

5. OPTIMAL ESTIMATOR

The second objective of this work is to synthesize matrices
Li(k) and Ni,j(k) to minimize the F-radius of zonotopes

Ẑi,0(k|k) and Ẑi,1(k|k), respectively.

Theorem 2. The observer gains Li(k) and Ni,j(k) that

minimize the F-radius of Ẑi,ρ(k|k), for ρ = 0, 1 are:

Li(k) = PẐi,0(k|k−1)W
>
i,0C

>
i ×(

CiWi,0PẐi,0(k|k−1)W
>
i,0C

>
i + PVi

)−1
, (22)

Ni,j(k) = PẐi,1(k|k−1)W
>
i,1Wj,0

(
W>j,0(Wi,1PẐi,1(k|k−1)W

>
i,1

+Wi,0PẐi,0(k|k)W
>
i,0)Wj,0 + PZ̃j,0(k|k)

)−1
, (23)

where PX denote the covariation of zonotope X , defined
in Section 2.2.

Proof. The arguments Li(k) and Ni,j(k) that minimize

the F-radius of Ẑi,ρ(k|k) are the same arguments that

minimize Ji,ρ(k) , ‖Ẑi,ρ(k|k)‖2F = tr(PẐi,ρ(k|k)), for ρ =

1, 2. These Frobenius norms are convex with respect to
Li(k) and Ni,j(k), so the gains that minimize Ji,ρ hold:

L∗i (k) = arg

(
∂Ji,0(k)

∂Li(k)
= 0

)
, (24)

N∗i,j(k) = arg

(
∂Ji,1(k)

∂Ni,j(k)
= 0

)
. (25)

Solving (24)-(25), the optimal observer gains in (22),(23)
are obtained. Intermediate steps has been omitted due to
space restrictions. 2

Note that both observer gains can be computed using only
local information available for each agent at instant k. For
the sake of clarity and ease of implementation, the iterative
procedure to be implemented in each agent is presented in
Table 1. Steps 0 and 4 indicate the available and received
information needed to implement the complete algorithm.

Table 1. Algorithm 1. Estimation loop

0. Initial zonotopes Ẑi,0(k|k − 1) , Ẑi,1(k|k − 1)

1. Measurement yi(k) with (8)-(9)

2. A posteriori estimation

2.1 Local gain Li(k) with (22)

2.1 Zonotope Ẑi,0(k|k) with (14)-(15)

3. Order reduction redq(Ẑi,0(k|k))

4. Communication

4.1 Send redq(Ẑi,0(k|k))

4.2 Receive redq(Ẑj,0(k|k))

5. A posteriori estimation

5.1 Neighbour gain Ni,j(k) with (23)

5.2 Zonotope Ẑi,1(k|k) with (16)-(17)

6. A priori estimation Ẑi,0(k + 1|k) with (18)-(19),

Ẑi,1(k + 1|k) with (20)-(21)
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6. COMPUTATIONAL AND COMMUNICATION
REQUIREMENTS

Table 2 lists computational and communication require-
ments for the proposed algorithm and other distributed
set-membership estimation algorithms in the literature
valid for global estimation. It is denoted by O(n1, n2)
when a matrix of dimension n1×n2 must be computed or
transmitted. Letters n and q are reserved for the dimension
of the state vector and the order chosen after the reduction
step, respectively. For all the algorithms listed in Table 2,
only the a posteriori requirements are included.

Table 2. Comput.&Commun. requirements

Algorithm Communication Computation

Table 1 O(ni,0, q) O(ni,0, q) + O(ni,1, q)
Garćıa et al. (2017) O(n, q) O(n, q)
Xia et al. (2018) O(n, n) O(n, n)

Since ni,0 + ni,1 = n, the computational requirements of
the proposed method and the ones for Garćıa et al. (2017)
are equivalent, communication requirements are reduced.
This table also illustrates the trade-off between complexity
and precision mentioned in the introduction. By introduc-
ing additional generator vectors, less uncertainty is intro-
duced in the order reduction step. This is made at a cost
of higher computational and communication requirements.
This does not appear in ellipsoidal observers.

Remark. We have intendedly used the word requirement
instead of cost, since each paper propose a completely
different way to find the sets. We have focused here in
the size of the matrices that must be computed, but not
on how they are computed.

7. SIMULATIONS

In this section a simulation example is presented in order
to show the effectiveness of the proposed observer. We have
chosen a discrete system with three states (see Millán et al.
(2017)), in which the first state x1 has an unstable dynamic
and it is decoupled from the others states x2 and x3, which
correspond to a pair of conjugated imaginary poles:[

x1(k + 1)
x2(k + 1)
x3(k + 1)

]
=

[
1.05 0 0

0 0.9954 −0.08757
0 0.1248 0.9945

][
x1(k)
x2(k)
x3(k)

]
(26)

The two agents have access to plan outputs y1 = x1
and y2 = x3, respectively. Therefore, agent 1 can locally
observe the first state, while agent 2 can locally observe
remains states. However, neither of them can estimate the
whole state without communicating with the other one.

The basis vectors of the observable and unobservable
subspaces of both agents are given by:

W1,0 =

[
1
0
0

]
,W1,1 =

[
0 0
1 0
0 1

]
,W2,0 =

[
0 0
1 0
0 1

]
,W2,1 =

[
1
0
0

]
.

The initial condition for the simulation is x(0) = [0, 1, 1]>.
The maximum order of the a posteriori zonotopes is q =
100. Disturbances and noises are uniformly-distributed
random signals described by R1 = 0.02, R2 = 0.02, Q =
0.02I3×3.

Figure 1 shows the estimation performance of agent 1,
through the a posteriori zonotope. Dashed lines have been
used for the actual states, and solid lines for the bounds
of the zonotopes. It can be seen that the agent is able
to estimate the overall plant states. Better performance is
obtained for those states directly measured, as expected.

0 10 20 30 40 50 60 70 80 90

k

-1

-0.5

0

0.5

1
Actual state

Center

Bounds

Fig. 1. Evolution of the states and estimates of agent 1.

Finally, the proposed method is compared with the one in
Garćıa et al. (2017). As explained in the introduction, this
is, from the authors’ best knowledge, the unique available
zonotopic distributed set-membership estimator dealing
with the observation of the whole state vector. In that
paper, they propose the use of intersections between zono-
topes to include the information of neighboring agents.

We define the next indexes for a time horizon of N steps:

Ia =
1

N

N∑
k=1

1

2

2∑
i=1

√
||Ẑi,0(k|k)||2F + ||Ẑi,1(k|k)||2F ,

Ib =
1

N

N∑
k=1

1

2

2∑
i=1

||Ẑi(k|k)||F ,

where index Ia is adequate for Algorithm 1 that computes
two zonotopes per agent, and Ib for the method in Garćıa
et al. (2017) that only computes one zonotope per agent
at each sampling instant.

Figure 2 draws the different values of the indexes for
different values of the maximum order of the zonotopes
q. For small values of q (smaller than 200), the proposed
method outperforms that in Garćıa et al. (2017) in terms
of uncertainty minimization. However, if the order is large,
the intersection-based algorithm proposed in Garćıa et al.
(2017) is able to get smaller sets.
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Fig. 2. Index Ia obtained with Algorithm 1 in Table 1 and
index Ib with Garćıa et al. (2017).
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8. CONCLUSIONS AND FUTURE WORKS

A distributed set-membership estimator for linear full-
coupled systems affected by bounded disturbances has
been presented in this paper. The multi-hop decomposition
has allowed to propose the design the observers in such a
way that the volumes of the estimation zonotope can be
reduced with respect to previous works.

This paper constitutes a preliminary work and the mathe-
matical basis to move forward to more complex problems,
considering multiple agents.
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R. (2018). Negotiated distributed estimation with guar-
anteed performance for bandwidth-limited situations.
Automatica, 87, 94–102.

Orihuela, L., Roshany-Yamchi, S., Garćıa, R.A., and
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