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Abstract: The paper concerns a development of an integrated design of fault estimation and
control scheme within an integrated actuator fault-tolerant control framework. The integrated
design boils down to avoiding a standard three-step fault diagnosis (detection, isolation,
identification) and replacing it by a fault estimation. Subsequently, the inaccuracies caused
by fault estimation are taken into account while designing fault-tolerant controller. Contrarily
to the usual framework, which extends the set of disturbances/noise by such inaccuracies, they
are taken into account individually in such a way as to achieve a well-balanced final control
effect. Finally, a complete fault-tolerant design procedure is provided along with its convergence
analysis. The last part of the paper shows the performance of the proposed approach using a
DC-servo motor benchmark example.
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1. INTRODUCTION

Fault diagnosis Blanke et al. (2006); Ding (2008); Witczak
et al. (2014) and control are ones of the main pillars of
modern control engineering, which aims at increasing per-
formance of industrial systems along with their reliability.
Traditionally, their integration boils down to exploiting the
knowledge about the faults for restructuring the controller
and maintain a possibly high system performance under
faults. Note the fault is perceived as an unappealing phe-
nomenon pertaining a deviation of at least one characteris-
tic property of the system comparing to its nominal value.
Whilst a failure stands for a complete system inability to
perform a scheduled mission. The developments presented
in this paper concern abnormal behaviours of actuators,
which clearly mean that the fault is simply an actuator
fault. Irrespective of the nature of a fault, traditional fault
diagnosis can be split into three phases Blanke et al.
(2006); Ding (2008); Witczak et al. (2014), i.e., detec-
tion, isolation and estimation. The first one reduces to
answering the question if there is a fault while the second
provides its location. Finally, the last one provides an an-
swer concerning a possibly time-varying fault magnitude.
In practice, all these three phases incorporate a degree
of uncertainty into the final fault diagnosis decision, e.g.,
a fault detection delay, fault estimation inaccuracy, etc.
Thus, efficient integration should be realized taking into
account all these unappealing effects. Irrespective of these
obvious facts, there are plenty of fault-tolerant-oriented
works in which a perfect fault diagnosis is assumed Zhang
and Jiang (2008). There is, of course, a lot of research
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in which full fault diagnosis is integrated within fault-
tolerant control Zhang and Jiang (2008). However, manag-
ing uncertainties raised by a three-step diagnostic proce-
dure constitutes a serious challenge both from theoretical
and practical perspectives. This is the reason why an
integrated and optimized fusion of Fault-Tolerant Control
(FTC) and fault estimation receives a growing research
attention Salazar et al. (2020); Mejdi et al. (2020); Pazera
et al. (2018). Indeed, in the light of an integration, fault
estimation constitutes a powerful and efficient alternative
to three-step fault diagnosis. As a result, controller design
aims at taking into account fault estimation inaccuracies.
Thus, the usual framework is to extend the set of dis-
turbances/noise by such inaccuracies. However, they may
have different nature, size and influence onto the whole
system being diagnosed and controlled. This observation
raised the developments presented in this paper, which
treat them individually in such a way as to achieve a well-
balanced final control effect.

The paper is structured according to the following plan:
Section 2 introduces the system description. Section 3
formulates the problem of an integrated design and pro-
vides structures of the fault estimator and controller, re-
spectively. Subsequently, Sections 4 provide a convergence
analysis and design procedure for a fault estimator and
robust controller with section 5. Finally, Section 6 portrays
the performance of the proposed approach based on a DC
servo–motor benchmark example.

2. PRELIMINARY BACKGROUND

Let us start with a linear system of the form:
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xk+1 = Axk + Buk + Bfk + W 1w1,k, (1)

yk = Cxk + W 2w2,k, (2)

where xk ∈ Rn is the state, uk ∈ Rr denotes the input,
yk ∈ Rm is the output. The actuator fault is denoted by
fk ∈ Rr while w1,k ∈ Rq1 and w2,k ∈ Rq2 stand for the
system disturbance and measurements noise, respectively.
Moreover, it is assumed that ith actuator fault fk,i is
detectable, isolable and identifiable Blanke et al. (2006).
To make the paper self-contained, let us remind that

ln2 = {w ∈ Rn| ‖w‖l2 < +∞} , ‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

.

(3)

Taking into account the above nomenclature, let us impose
the following assumptions:

• Assumption 1: The process exogenous disturbance is
bounded in lq12 sense, i.e., w1,k ∈ lq12 ;
• Assumption 2: The measurement noise is bounded in
lq22 sense, i.e., w2,k ∈ lq22 ;
• Assumption 3: Actuator fault fk as well as rate of

fault change εk = fk+1−fk are bounded in lr2 sense,
i.e., fk ∈ lr2, εk ∈ lr2.

Assumption 1–2 state that the exogenous disturbances
w1,k and w2,k, acting onto the system have a finite
energy. Finally, Assumption 3 signifies that any physical
actuator posses a finite performance, and hence, it cannot
be increased without limits. This causes that the fault rate
of change cannot increase without limits as well. Indeed,
in most cases it converges to zero as the fault settles
at a constant level. This is the reason why most works
presented in the literature Zhang and Jiang (2008) assume

that εk = 0 (or ḟ = 0 in the continuous-time framework).

Remark 1. As stated in the title, only actuator faults are
taken into account. However, the proposed strategy can
be extended to handle sensor as well as system component
faults. In this work, the actuator fault is treated as
decrease of its performance. For example if the actuator
performance decrease by 10% then a fault is estimated and
the resulting estimate is employed for an appropriate fault
accommodation action. This does not, of course, mean
that the faults are estimated in percents. Indeed, they
are expressed in the units relative to the control values.
For example let us consider a dc–motor. The voltage that
can be fed to this system is from 0[V] to 10[V]. If the
actuator performance by 10% then the a perfect fault
estimate is 1[V] and this value will be added to control
signal to compensate the fault effect (Fig. 1). Finally, this
1[V] can be easily converted percent units, which can show
maintenance services the current actuator performance.

+

fault estimate (e.g 1[V])

signal from controller (e.g 4[V]) control signal (5[V])

Fig. 1. System structure

Given the general description of the system, the integrated
FTC will be proposed in the subsequent sections.

3. PROBLEM FORMULATION

This section undertakes two main problems (fault estima-
tion and compensation ones) that will be investigated in
this paper. Firstly, let us consider an observer of the form:

x̂k+1 = Ax̂k + Buk + Bf̂k + K(yk −Cx̂k), (4)

f̂k+1 = f̂k + L(yk −Cx̂k), (5)

where x̂k ∈ Rn and f̂k ∈ Rr denote the state and
fault estimates. The observer design problem consists of
determining the gain matrices K ∈ Rn×m, and L ∈
Rr×m. The structure of the proposed observer is similar
to the ones presented in the literature Chen and Patton
(1999); Ding (2008); Blanke et al. (2006); Isermann (2006).
However, in this case it was suitably extended to estimate
the magnitude of the fault. In particular, the fault estimate
was included in the observer state equation (4) to improved
the fault estimation quality at each step k.

Based on (1) and (2), the state estimation error ek and
fault estimation error ef,k can be derived as

ēk+1 = (Ā− K̄C̄)ēk + (W̄ 1 − K̄W̄ 2)v̄k + Eεk, (6)

ef,k = Īēk, (7)

where ēk = [eTk , e
T
f,k]T , v̄k = [wT

1,k, w
T
2,k]T , εk = fk+1 −

fk and

Ā =

[
A B
0 I

]
, K̄ =

[
K
L

]
, E =

[
0
I

]
,

W̄ 1 =

[
W 1 0
0 0

]
, W̄ 2 = [0 W 2] ,

Ī = [0 I] , C̄ = [C 0] .

Based on the above equation, three different objectives
are considered while determining the gain matrices K
and L: (i) asymptotic convergence of the state and fault
estimation error (6)–(7); (ii) rejection of v̄k and (iii)
rejection of εk in the H∞ sense. The above problem is
formulated formally through the following definition:

Definition 1. The system (6)–(7) is robustly convergent in
the H∞ sense if given scalars µo,1 > 0 and µo,2 > 0:

i) (6)–(7) are asymptotically stable when v̄k = 0 and
εk = 0;

ii) ‖Gef v̄ (z)‖∞ < µo,1 when v̄k 6= 0;
iii) ‖Gefε(z)‖∞ < µo,2 when εk 6= 0;

where

Gef v̄ (z) = Ī
(
zI −

(
Ā− K̄C̄

))−1 (
W̄ 1 − K̄W̄ 2

)
,

Gefε(z) = Ī
(
zI −

(
Ā− K̄C̄

))−1
E,

denote the transfer functions from the input v̄k and εk to
the output ef,k respectively.

Note that the usual approach is to treat εk and ef,k as a
coupled disturbance vector. However, as observed by the
authors, this may lead to an increased conservativeness as
they may operate on completely different magnitude levels.

The second problem to be addressed is to design fault
compensation scheme for (1)–(2) , which is proposed as:

uk = −Fxk − f̂k. (8)

By defining vk = [wT
1,k, w

T
2,k]T and applying the control

strategy to (1)–(2), one can show that:
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xc,k+1 = (A−BF )xc,k + Bef,k + [W 1 0]vk, (9)

yk = Cxc,k + [0 W 2]vk. (10)

where xc,k ∈ Rn represent the state of close loop system.
Based on the above equations, three different objectives
are considered while determining the gain matrix F for
the control strategy (8): (i) asymptotic convergence to zero
of the state xc,k and (ii)–(iii) rejection of vk and ek in
the H∞ sense. The above problem is formally formulated
through the following definition:

Definition 2. The close loop system (9)–(10) is robustly
convergent in the H∞ sense if given scalars µc,1 > 0 and
µc,2 > 0:

i) (9)–(10) are asymptotically stable when vk = 0 and
ef,k = 0

ii) ‖Gyv (z)‖∞ < µc,1 when vk 6= 0
iii) ‖Gyef

(z)‖∞ < µc,2 when ef,k 6= 0

where

Gyv (z) = C (zI − (A−BF ))
−1

[W 1 0] + [0 W 2] ,

Gyef
(z) = C (zI − (A−BF ))

−1
B,

denote the transfer functions from the input vk and ef,k
to the output yk, respectively.

The controller design problem being formulated assumes
that the real state xk is available for the feedback. How-
ever, a more realistic situation is the one in which the
estimated state should be used instead, i.e., (8) changes
into:

uk = −F x̂k − f̂k, (11)

where x̂k is the estimated state given by the observer (4)–
(5). Now, let us start by considering the system (1)–(2),
the observer (4)–(5) and the control law (11). It can be
shown that the overall system obeys:[

xc,k+1

ēk+1

]
=

[
A−BF BF

0 Ā− K̄C̄

] [
xc,k
ēk

]
+

[
B 0
0 E

] [
ef,k
εk

]
+

[
[W 1 0]

W̄ 1 − K̄W̄ 2

]
vk,

(12)

yk = [C 0]

[
xc,k
ēk

]
+ [0 W 2]vk. (13)

It can be seen that the separation principle holds for the
asymptotic stability of (12)–(13). Indeed, the convergence
of the system is defined by a union of eigenvalues of A −
BF and Ā− K̄C̄. In this case, the fault/state estimator
and the controller can be designed separately.

Given Definition 1 and 2, the general structure of the
estimator along with its estimation error (6)–(7) and
control strategy (8) along with its close loop system (12)–
(13) a design procedure to determine matrices K, L and
F for the system (1)–(2) will be presented in the next
section.

4. FAULT ESTIMATOR AND CONTROLLER DESIGN

The objective of this section is to obtain necessary and
sufficient conditions for the synthesis of the observer (4)–
(5) and controller (11) for the system (1)–(2), satisfying
the conditions expressed by Definition 1 and 2 respectively.
Using the definitions mentioned above, it is possible to
formulate the two main results of this section. The first
one is related to estimator design:

Theorem 1. For prescribed attenuation levels µo,1 > 0 and
µo,2 > 0 of v̄k and εk respectively, the H∞ observer design
problem is solvable if and only if there exist P � 0 and
N such that the following conditions are satisfied: Ī

T
Ī − P ∗ ∗
0 −µ2

o,1I ∗
PĀ−NC̄ PW̄ 1 −NW̄ 2 −P

 ≺ 0, (14)

 Ī
T
Ī − P ∗ ∗
0 −µ2

o,2I ∗
PĀ−NC̄ PE −P

 ≺ 0, (15)

where N = PK̄. And second one is related to controller
design:

Theorem 2. For a prescribed attenuation level µc,1 > 0
and µc,2 > 0 of vk and ef,k, the H∞ controller design
problem is solvable if and only if there exist S � 0 and N
such that the following conditions are satisfied:

−S ∗ ∗ ∗
0 −I ∗ ∗

SAT −NTBT SC̃
T −S ∗

B̃
T

1 D̃
T

0 −µ2
c,1I

 ≺ 0, (16)


−S ∗ ∗ ∗
0 −I ∗ ∗

SAT −NTBT SC̃
T −S ∗

B̃
T

2 0 0 −µ2
c,2I

 ≺ 0, (17)

where N = FS.

Due to the lack of space, proofs of Theorem 1 and Theorem
2 are not given in an explicit way. After some lengthy
but straightforward transformations, they can be obtained
using a hybrid mixture of authors’ results concerning fault
estimation Buciakowski et al. (2017) and FTC Witczak
et al. (2016). The main distinction between the results
presented in Buciakowski et al. (2017); Witczak et al.
(2016) and those proposed in this paper is that the former
one do not take into separation between εk and vk, which
introduces a significant level of conservatives. They also
do not take into account shaping the closed-loop system
response, which is undertaken in the subsequent sections.

5. LMI DESIGN PROCEDURE FOR FTC

The problem of determining the observer and controller
gain matrices described by Theorem 1 and Theorem 2,
respectively, can be treated as an optimization problem
aiming at minimizing the disturbance attenuation levels
µo,1, µo,2, µc,1, µc,2, respectively. This optimization prob-
lem can be defined as:

minimize
γo,1>0,γo,2>0

γo,1 + γo,2

subject to (14), (15),
(18)

with a γo,1 = µ2
o,1 and γo,2 = µ2

o,2 for the observer case
while it is

minimize
γc,1>0,γc,2>0

γc,1 + γc,2

subject to (16), (17).
(19)

with γc,1 = µ2
c,1 and γc,2 = µ2

c,2 for the controller case.

Moreover, the above cost functions (18) and (19) can be
transformed into finding a trade off between disturbance
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attenuation levels µo,1 and µo,2 for observer and µc,1
and µc,2 for controller by introduction weighting variables
αo ∈ (0, 1) for γo,1 and γo,2 and αc ∈ (0, 1) , which boils
down to:

minimize
γo,1>0,γo,2>0

(1− αo)γo,1 + αoγo,2

subject to (14), (15).
(20)

for the observer case and

minimize
γc,1>0,γc,2>0

(1− αc)γc,1 + αcγc,2

subject to (16), (17).
(21)

for the controller case.

Taking into account the above considerations, a complete
integrated FTC design procedure can be summarized as
follows:

Off-line computation:

(1) for a predefined αo solve (20);

(2) calculate K̄ = P−1N and

[
K
L

]
= K̄;

(3) for a predefined αc solve (21);
(4) calculate F = NS−1;

On-line computation (for each k):

(1) compute the fault estimate f̂k with (4)–(5);
(2) compute uk with (8);

6. ILLUSTRATIVE EXAMPLE

This section presents an empirical verification of the pro-
posed approach. For that purpose, a DC servo–motor
given in Buciakowski et al. (2017) was considered and the
remaining system matrices were as follows:

A =

[
1.0000 0.1000 0

0 0.8495 0.4977
0 −0.0357 0.9995

]
, B =

[
0
0

0.0729

]
,

Co =

[
1 0 0
0 1 0

]
, Cc = [1 0 0] ,

W 1 =

[
0.5
0
0

]
, W o,2 =

[
0.05 0

0 0.05

]
, W c,2 = 0.05,

with xk = [θ, v, i]T where θ is the angular velocity of
the motor, and v is the velocity of the motor and i is the
armature current.

Subsequently, the initial conditions for the system and the
observer are:

x0 = [0, 0, 0]T , x̂0 = [50, 20, 10]T , f̂0 = 0.

The reference θ is chosen as 100[rad]. The signal w1,k

was chosen as a step one with the time duration of
20[s] and w2,k is chosen as a periodic square signal with
time duration 0.2[s]. Matrices Co and W o,2 are used to
calculate observer gain matrices K and L, while matrices
Cc and W c,2 are used to obtain the controller gain matrix
F .

At the beginning, substituting C = Co, W 2 = W o,2

into (6)–(7) and solving the optimization problem (20) for
αo = 0.001 give:

K̄ =

[
K
L

]
=

 0.9930 0.1002
0.0000 1.2809
−0.0002 0.9919
−0.0021 2.1985

 , (22)

with µo,1 = 0.1278 and µo,1 = 6.5767. Subsequently,
for designated parameters, Figs. 2–3 show singular values
of the transfer functions Gef v̄ (z) and Gefε(z). Next,
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S
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g
u
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r
V
a
lu
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(d
B
)

σ
µo,1

1
Fig. 2. Singular values of the transfer function Gef v̄ (z)
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B
)

σ
µo,2

1
Fig. 3. Singular values of the transfer function Gefε(z)

substituting C = Cc, W 2 = W c,2 in to (9)–(10) and
solving optimization problem (21) for αc = 0.75, gives:

F = [640.1341 124.5959 50.2044] . (23)

with µc,1 = 1.1457 and µc,1 = 0.0464. From the above
results, it is evident that the values of the controller gain
matrix F have large values, which is not often accepted
in practice. To solve this problem a modification of the
output matrix Cc = [1, 1, 1]. Note that it is a technical
trick as the full state estimate is available.

In all above cases, it is assumed that sum of all energy from
vk and ef,k to output yk will be minimized. It is important
to note that modification of this matrix Cc is needed for
solving the optimization problem (21), only. Solving again
(21) for αc = 0.75 gives

F = [15.0215 13.8383 21.8474] , (24)

with µc,1 = 0.5085 and µc,1 = 0.0942. The correspond-
ing singular values of the transfer functions Gyfv (z) and

Gyfef
(z) are portrayed in Figs. 4–5. To verify the perfor-

mance of the close-loop system, the singular values of the
sensitivity function S and the complementary sensitivity
function T defined as

S = 1− Φ1Φ2, T = 1− S, (25)

where Φ1 = (Cc(zI− (A−BF ))−1B) and Φ2 = (F (zI−
(A−KCo))

−1K) for portrayed in Figs. 6–7. The results
show that for the first channel the function T (dash–dot
black line) and S (black solid line) have good shapes, this
means that the close loop system for this channel has a
good disturbance and noise rejection characteristics as well
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Fig. 4. Singular values of the transfer function Gyfv (z)
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Fig. 5. Singular values of the transfer function Gyfef

(z)

as good tracking performance. On the other hand, for the
second channel function T (dash–dot black line) and S
(black solid line) are not as good as the characteristics for
the first one. In order to solve this problem and improve
the characteristics of T and S, it is proposed to use
shaping filter W for changing the shape of function S.
To handle this issue, the following algorithm for designing
the controller gain matrix F is proposed:

Step 1: Design observer gain matrices K and L using
optimization problem (20).

Step 2: Solve optimization problem (21) to get an initial
value of controller gain matrix F .

Step 3: Select shaping filter W for function S.
Step 4: Select scaling factor ζ to decrease or increase the

gain of matrix F .
Step 5: Solve the following optimization problem

minimize
ζF

‖WS‖∞ < 1. (26)

Using the above algorithm and arbitrarily selecting shap-
ing filter

W =
0.9z − 0.8

z − 0.9999
, (27)

after 100 iterations the results are:

‖WS‖∞ = 1.7660, F = [4.4811 2.6277 7.4235] , (28)

and hence controller gains are no longer unacceptably
large. Figs. 6–7 show singular values of the sensitivity
function S (solid red line) and complementary sensitivity
function T (dash–dot black line) as well as singular values
of shaping filter W (dotted blue line) after solving opti-
mization problem (26). The results show that close loop
system for each channel has good disturbance and noise
rejection characteristics as well as good tracking perfor-
mance. Finally, in order to verify in time domain perfor-
mance of proposed approach related to fault compensation
and disturbance rejection the following Simulation Case
(SCs) are proposed:
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T S T S W−1

1
Fig. 6. Singular values from input 1 to output with shaping

filter: S (solid red line), T (dash dot red line) and
without shaping filter: S (black solid line), T (dash
dot black line) and shaping filter W−1 (dotted blue
line)
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Fig. 7. Singular values from input 2 to output with shaping

filter: S (solid red line), T (dash dot red line) and
without shaping filter: S (black solid line), T (dash
dot black line) and shaping filter W−1 (dotted blue
line)

SC1: Observer parameters given by (22) and controller
parameters in the form (24);

SC2: Observer parameters given by (22) and controller
parameters in the form (28).

For each simulation case, the following fault scenario (FS)
treated as a 10% decrease in actuator performance is
proposed:

fk =

{
−0.10 40 ≤ t ≤ 50,

0 otherwise.

Figs. 8–9 present the system state variable θ for SC1,
SC2 and FS with and without FTC strategy. The control
strategy without FTC (i.e., uk = −Fxk), which is a
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robust control only, does not consider any information
about faults. Thus, it is impossible to be realize suitable
recovery actions (Fig. 8). Contrarily, the control strategy

with FTC (i.e. uk = −Fxk − f̂k) gives significantly
better performance, which is exhibited in Fig. 9. Moreover,
Figs. 8–9 show the system response for disturbance w1,k.
It can be seen that for SC1 the amplitude of the state
variable θ is greater than the amplitude for SC2. This
is due to the fact that close loop system for controller
designed using the proposed algorithm with shaping S
function provides better disturbance and noise rejection
characteristics than SC1. Additionally, from Figs. 8–9 it
can be deduced that response to the actuator fault for SC2
has a lower amplitude than SC1. This is a very important
feature form practical viewpoint.

30 40 50 60 70 80
70

80

90

100

110

120

Time[s]

θ[
ra
d
]

SC1 SC2

1
Fig. 8. State variable θ for SC1 (blue solid line), SC2

(red doted line) and response for fault signal at time
40 ≤ t ≤ 50 and response for disturbance signal w1,k

at time 60 ≤ t ≤ 80 without FTC (i.e. uk = −Fxk)

7. CONCLUSIONS

The main objective of the paper was to proposed a novel
design procedure of an integrated FTC. It avoids three-
step fault diagnosis procedure and replaces by the fault
estimation. The inaccuracies caused by fault estimation
are taken into account while designing fault-tolerant con-
troller. However, they do not simply extend the set of dis-
turbances/noise. They are taken into account individually
in such a way as to achieve a well-balanced final control
effect. This results in the FTC design procedure that can
be tailored to various system behaviors, which may arise
in control engineering practice. The performance of the
proposed approach is illustrated with a DC servo–motor
benchmark example. The obtained results clearly exhibits
benefits related to its application.
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