
Position control of a mobile robot using
reinforcement learning

G. Farias ∗ G. Garcia ∗∗ G. Montenegro ∗ E. Fabregas ∗∗∗

S. Dormido-Canto ∗∗∗ S. Dormido ∗∗∗

∗ Pontificia Universidad Católica de Valparáıso, Av. Brasil, 2147,
Valparáıso, Chile (e-mails: gonzalo.farias@pucv.cl,

guelis.montenegro@gmail.com).
∗∗Ocean and Mechanical Engineering, Florida Atlantic University,

Boca Ratón, FL 33431, USA. (e-mail: garciag@fau.edu).
∗∗∗Departamento de Informática y Automática, Universidad Nacional

de Educación a Distancia (UNED), Juan del Rosal, 16, 28040,
Madrid, Spain (emails: {efabregas,sebas,sdormido}@dia.uned.es).

Abstract: Robotics has been introduced in education at all levels during the last years. In
particular, the application of mobile robots for teaching automatic control is becoming more
popular in engineering because of the attractive experiments that can be performed. This
paper presents the design, development, and implementation of an algorithm to control the
position of a wheeled mobile robot using Reinforcement Learning in an advanced 3D simulation
environment. In this approach, the learning process occurs when the agent makes some actions
in the environment to get some rewards. Trying to make a balance between the new information
of the environment and the current knowledge about it. In this way, the algorithm is divided
into two phases: 1) the learning stage, and 2) the operational stage. In the first stage, the
robot learns how to reach a known destination point from its current position. To do it, it uses
the information of the environment and the rewards, to build a learning matrix that is used
later during the operational stage. The main advantage of this algorithm concerning traditional
control algorithms is that the learning process is carried out automatically with a recursive
procedure and the result is a controller that can make the specific task, without the need for a
dynamic model. Its main drawback is that the learning stage can take a long time to finish and
it depends on the hardware resources of the computer used during the learning process.

Keywords: Control Education, Mobile Robot, Position Control, Reinforcement Learning.

1. INTRODUCTION

Robotics is a suitable platform to teach control engineering
fundamentals because it provides a lot of interrelated
elements, for example, mechanics, electronics, control,
programming and so on. As autonomous machines, robots
are a whole example of a closed control loop: 1) sensors,
2) control unit and 3) actuators. That is why many
universities use robots to teach basic concepts in control
(Fabregas et al. (2017); Farias et al. (2019)). In this
context, mobile robots represent a good tool to carry out
laboratory practices with students in virtual environments.
This work proposes the use of the Khepera IV robot
library into V-REP simulator (Farias et al. (2017)). The
simulator is a versatile and scalable framework for creating
3D simulations in a relatively short period of time. It
allows designing and performing experiments before using
real Khepera IV robots.

One of the most one basic practice that can be performed
with mobile robots is called position control. This experi-
ment is known as point stabilization or position control of
a nonholonomic mobile robot. It deals with the problem of
carrying a robot from its current position to a known des-
tination point (Siegwart et al. (2011); Tzafestas (2018)).

This experiment has been studied and used for teaching
during the last years, using different traditional linear
and nonlinear control techniques, such as: nonlinear model
predictive control (Rezaee (2017)), back-stepping control
with asymptotic stability (Dumitrascu et al. (2011)), con-
tinuous time-varying adaptive controllers (González et al.
(2010)), PID controllers (Villela et al. (2004); Fabregas
et al. (2020)) and much more. Other approaches to deal
with this problem have implemented machine learning
techniques (ML), for example, genetic algorithms (Caceres
et al. (2017)), neural networks (Mohareri et al. (2012)),
and fuzzy logic applied to ML (Omrane and Masmoudi
(2016)), etc.

These two paradigms of control have in common that they
can solve this kind of problem but using two different
approaches. The traditional control techniques, in general,
design a controller by obtaining its parameters. These
parameters can be adjusted using different existing tech-
niques. The result is an algorithm that takes the inputs and
calculates the action to make the control most efficiently.
On the other hand, the methods of artificial intelligence,
in general, obtain a control law from data or an agent
learns how to solve a specific problem adjusting automat-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17634

ically the internal parameters. Most of these algorithms
need a learning stage, where the agent learns to solve the
problem, but this process can take a long time, depending
on the complexity of the task to solve. From this group,
Reinforcement Learning sticks out as it is not dependent
on any prior dynamic model of the system.

The main goal of this paper is the design, development,
and implementation of an algorithm to control the position
of a wheeled mobile robot using Reinforcement Learning
(RL), based on Busoniu et al. (2017); Sutton and Barto
(2018). This is an area of machine learning where an agent
interacts with the environment to get some rewards for its
actions. From this interaction, the agent must learn how
to make a specific task finding a balance between the new
information obtained from the environment and its current
knowledge of it. In this case, the robot must learn how to
reach a known target point from its current position.

The process is divided into two phases: 1) Learning stage,
and 2) Operational stage. During the first stage, the agent
is trained in simulation to obtain the learning matrix,
which is the result of this phase. During the second
stage, the robot uses this matrix to carry out control
of its position. The main advantage of this approach
with respect to the traditional control algorithms is that
the learning process is carried out automatically in a
recursive procedure in a computer and the result is a
controller that can make a specific task. No dynamic
model of the plant is ever needed. This process can be
carried out in simulation initially, and then the controller
is directly implemented in the real robot for operation, or
for a reduced time fine tuning learning stage to capture
features not included in the emulated model. In this way,
the damages to the robot can be avoided during the
learning stage. Its main drawback is that the learning
stage can take a long time to finish and it depends on
the hardware resources of the computer used to train
and obtain the model. This experiment can be easily
added to the pedagogical platform for performing hands-
on experiments with advanced mobile robots (Farias et al.
(2019)).

The remainder of the paper is organized as follows: Section
2, presents some theoretical aspects about the Reinforce-
ment Learning approach; Section 3 describes its appli-
cation to mobile robot position control; Section 4 shows
and discusses some simulation results of this research, and
Section 5 presents the main conclusions and future works.

2. REINFORCEMENT LEARNING

RL is an area of machine learning concerned with an agent
that interacts with the environment to receive cumulative
rewards for its actions.

Fig. 1. A typical framing of a RL scenario.

Figure 1 shows a typical RL scenario, where an agent
makes actions in the environment, which are interpreted
into a reward and a representation of the next state, which
is feedback into the agent Jaksch et al. (2010).

RL is one of the three paradigms of machine learning:
1) Supervised learning, 2) Unsupervised learning and
3) Reinforcement learning. This algorithm is focused on
finding a balance between the exploration of unknown
territory i.e. new information of the environment and the
utilization of its current knowledge about it (Busoniu et al.
(2017); Sutton and Barto (2018)).

2.1 Recursive algorithm Q-learning

The environment is typically formulated as a Markov De-
cision Process (MDP), where many reinforcement learn-
ing algorithms within this context are based on dy-
namic programming techniques, see White (2001); Bu-
soniu et al. (2017). The deterministic MDP defined by
xk+1 = f(xk, uk) and the reward function rk+1 =
ρ(xk, uk) constitute the dynamics of the algorithm, with
uk = l(xk) a static control law to be determined in a recur-
sive procedure, and where xk is the state of the system. In
this application, the reward function is known and given
by the designer, and the MDP function is shaped by the
plant itself, no model is needed during the fine-tuning of
the controller. For this purpose, an infinite-horizon return
with discount 0 < γ < 1 is defined by:

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, l(xk)), (1)

representing the accumulated discounted rewards into the
future from the current state x0 by applying the policy
l. The discount factor penalizes future rewards. From this
definition, the action-value function:

Q(x0, u0) = ρ(x0, u0) +

∞∑

k=1

γkρ(xk, l(xk))

= ρ(x0, u0) + γ

∞∑

k=0

γkρ(xk+1, l(xk+1)),

(2)

is defined, that allows the assessment of the goods for an
agent to perform the action (u0) while in the state x0
and then continue using policy l. The optimal policy is
then obtained by maximizing the future reward through
l∗(x) = γmax

v
Q(x, v). This control law achieves the opti-

mal action-value function Q∗(x, u) which can be rewritten
recursively, constituting a Bellman equation:

Q∗(xk, uk) = ρ(xk, uk) + γmax
v

Q∗(xk+1, uk)

= ρ(xk, uk) + γmax
v

Q∗(f(xk, uk), v),
(3)

A Bellman equation characterizes the Principle of Opti-
mality by stating that future optimal control values are
defined only by the state values from where they are com-
puted, independently of past control actions and states.
In a discrete framework, this equation allows a backward-
in-time recursive computation to solve for optimal pol-
icy, like in dynamic programming. The Bellman equation
characterizes Q∗ and declares that the optimal value of
action u took while in state x equals then to the sum of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17635

the immediate reward and the discounted optimal value
obtained by the best action in the next reached state
by previously using u. Watkins (1989) and Watkins and
Dayan (1992) developed a forward-in-time model-free it-
erative algorithm, called Q-learning, that asymptotically
converges to Q∗ as time k goes to infinity. This procedure
incrementally populates the action-value function during
operation of the system without the need for any back-
in-time calculation, and the need for any modeling, with
the system materializing the function f . After the transi-
tion from xk to xk+1 using uk, the following action-value
function can be updated:

Qi+1(xk, uk) = Qi(xk, uk) + α(ρ(xk+1, uk)

+ γmax
v

Qi(xk+1, v)−Qi(xk, uk))
(4)

with (0 < α < 1) a learning rate. This Q-learning
relation can be seen as coming from a discrete low pass
filter defined by the accumulated knowledge Qi(xk, uk)
and the incoming new information, the temporal difference
TDi(xk, uk) as:

Qi+1(xk, uk) = αTDi(x+ k, uk) + (1− α)Qi(xk, uk) (5)

with TDi(xk, uk) = ρ(xk+1, uk) + γmax
v

Qi(xk+1, v) −
Qi(xk, uk). Initial condition of Q can be set to zero, i.e.
Q0 = 0 or to the reward function.

2.2 Application of Q-learning

In this paper, the application of the algorithm is divided
into two stages: 1) a learning process, and 2) an operational
process. Both phases are performed with an emulated
version of the robot f , described in the next section.

For a feasible application of equation (4), both states
and control variables are finitely discretized covering the
working state space, replacing the function Q by a matrix
Q with a fixed amount of entries.

Learning stage. This stage is characterized by a limited
degree of randomness involved in the selection of the cur-
rent action to be taken. As the robot is learning as it moves
in a flat surface, the learning process is set to constantly
be shifting between a purely random control action, and
a deterministic one, based on previously acquired knowl-
edge of the environment, to avoid the robot to get away
from the initial position, and/or the target position. The
deterministic version is defined as uk = max

v
Qi(xk, v),

while the random control is done by simply randomly
selecting a control action among the available ones. Note
that a system is a white-box approach because we know
the model of the robot. If we were considered a black-
box approach (unknown model) the learning stage had
to be done with the actual robot, which could imply a
must larger training time and might damage the actuators
(motors).

Operational stage. After the learning process, where the
matrix Q has been populated, the operational phase can be
entered. The analysis of the best criteria for stopping the
learning process is not covered in this work, an empirical
one was used, although this topic is of high importance, as
it is directly related to the goodness of the convergence of

the action-value matrix to its optimal one. The control in
this stage is determined by the same deterministic control
used during the learning phase, with the difference that
the action-value matrix is not changing and set fixed as it
ended up in the learning stage.

3. MOBILE ROBOT POSITION CONTROL WITH RL

3.1 Position control experiment

This experiment consists of driving a mobile robot from
point C (current position of the robot) to point Tp (target
point), by manipulating its angular (ω) and linear (V)
velocities. Note that these velocities are then transformed
into speeds for the left and right motors as the robot is a
double wheeled one. Figure 2 shows the variables involved
in this experiment.

R

R

ICC

d

C
C

XpXc

Kr

v

v

X

Tp

Y

Yc

Yp

Fig. 2. Position control experiment of a differential robot.

This problem has been widely studied during the last
years as the kinematic behavior of these robots may
seem deceptively simple, but nonholonomic constraints
introduce a challenging problem in the designing of the
control law. This has been explained in more detail in
some of the author’s previous works, Fabregas et al.
(2016) and Fabregas et al. (2020). In regular motion, the
differential robot describes a circular trajectory of radius
R with center ICC (Instantaneous Center of Curvature).
The position control algorithm seeks to minimize the
orientation error, θe = α− θ, where α is the current angle
to the target point and θ is the current orientation of
the robot. At the same time, the robot tries to reduce
the distance to the target point (d → 0). Figure 3
shows the block diagram of the control algorithm for
this experiment, where the inner dashed square represents
the controller and the outer dashed square represents the
robot. Note that the position sensor is an IPS (Indoor
Positioning System), which provides the absolute position
and orientation of the robot Farias et al. (2019).

Version September 21, 2018 submitted to Sensors 3 of 11

where atan2(x, y) is the four quadrant arctangent of y and x. Then, we can define an orientation error

eθ = atan2 (sin (α− θ) , cos (α− θ)) , (4)

such that eθ ∈ [−π, π] is equivalent to α − θ but lies in the interval eθ ∈ [−π, π]. Therefore, the
following dynamical system is obtained

ḋ = −v cos(eθ)

ėθ = v
d sin(eθ)−ω.

(5)

Consequently, the problem of positioning the mobile robot is solved if it is possible to achieve that66

eθ , d → 0. Figure 1 shows the variables involved in this experiment.67

Figure 1. Position control problem

Figure 2 shows the control blocks diagram of this problem. The robot tries to minimize eθ , and at68

the same time, to reduce the distance to the target point (d = 0). The values of d and α are calculated in69

the block Compute, using the target point (Tp) as reference and the current position of the robot (C).70

These two values and the orientation θ are used by the Control Law block to obtain the control signals71

(V and ω). It is important to notice that in order to apply this control actions to the robot it is necessary72

that |ω| ≤ ωmax and |V| ≤ Vmax.73

Compute Control Law Wheels

RobotController

Position Sensor

Tp
d
α

V
ω

x, y, θ

C

Figure 2. Diagram of the position control problem

Different solutions for this problem can be found in the bibliography, [13], [14], [17] and [26]. The
last one is represented by

V =

⎧
⎨
⎩

Vmax if d > Kr

d
(

Vmax
Kr

)
if d ≤ Kr

(6)

ω = ωmax sin (eθ) , (7)

where the linear velocity V(t) is obtained depending on the distance to the target point. When74

the robot is far from the target point, V is saturated to Vmax. This velocity decreases when the robot75

enters into the docking area, being Kr the radius of a docking area around the target point (see Fig. 1).76

Fig. 3. Block diagram of the position control problem.

Equation (6) calculates the distance (d) and equation (7)
calculates the angle to the target point (α). In both cases,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17636

the values used for the calculation are the coordinates of
Tp(xp, yp) and C(xc, yc). Note that both equations are
implemented in the block Compute.

d =

√
(yp − yr)

2
+ (xp − xr)

2
(6)

α = tan−1
(
yp − yr
xp − xr

)
(7)

Once the algorithm has the distance and angle to the des-
tination point, it must obtain the corresponding angular
and linear velocities to reach it, using the implementation
of the block Control Law. This control law can be designed
in different ways as was mentioned before. In this work, for
simplicity we use the implementation described in Villela
et al. (2004), which are the following equations:

V =

{
Vmax if |d| > Kr

d
(

Vmax

Kr

)
if |d| ≤ Kr

(8)

ω = ωmax sin (α− θ) , (9)

where Vmax is the maximum linear velocity, Kr is the
radius of a docking area (around the target point) and
ωmax is the maximum angular velocity of the robot. Note
that the linear velocity (V) is proportional to the distance
inside the docking area, and it is otherwise saturated to
its maximum value. The docking area allows the robot to
reduce its linear velocity when it is near the destination
point.

3.2 Mobile robot position control with RL

The main idea is to control the mobile robot using RL
instead of a traditional control algorithm. To this end, the
block Control Law has to be replaced for a trained RL
model. During the training stage, this model learns how
to obtain the velocities (V , ω) using distance (d) and angle
(α) to the destination point. In this case, for simplicity in
the learning stage, the model only learns about the angular
velocity (ω) by using the error angle (thetae). The linear
velocity (V) is kept constant at the maximum value while
the robot is outside of the docking area.

As was mentioned before, this process is divided into two
stages. During the first stage, the learning matrix Q is
built. This matrix is composed of pairs (state, action),
which are the states of the robot and its corresponding
actions. The state, in this case, is an angular error (θe),
and the action (control signal) is the angular velocity (ω)
of the robot. The other state, distance d, is not used in the
algorithm. Each pair (state, action) generates the rewards
that compose the matrix Q. These rewards depend on the
criterion that wants to be applied for the specific task
to solve. In this approach, the criterion is to negatively
penalize the deviations of the controlled signal, which
are the big changes in the error angle of the robot, i.e.
ρ(xk, uk) = −abs(θe). The actions have been divided into
20 regularly spaced values between −π and π.

At the beginning of this stage, the algorithm finds in
the matrix Q the current state of the robot using the
current angular error. This state is used to determine if
the robot advances randomly or if it advances taking into
account the principle of exploration (uncharted territory)
and exploitation (of current knowledge). The result is a

value of the angular velocity selected from the actions,
which is executed by the robot. Then, this process is
repeated until a value defined by the user. The number
of iterations depends on the obtained results and it is
adjusted by trial and error. Note that the implementation
of the algorithm considers the inclusion of disturbances by
modification of the distance and angular error to the target
point. The idea is to cover different scenarios to improve
learning. These disturbances are supplied at the end of the
learning stage. At this time the accumulated rewards are
rewritten in the matrix Q using equation 4. Figure 4 shows
an example of this stage after 5 million iterations.

Fig. 4. Learning stage example.

The blue line represents the trajectory followed by the
robot and the red crosses represent the destination points.
The red arrow represents the initial position (0;0) and
orientation of the robot. As can be seen, when the process
starts, the robot has to reach point number 1 from its
initial position at the origin. In this part of the learning
process, its behavior is random because it is building the
matrix Q using aleatory actions. After a big number of
trials, the first target is reached. From point number 1 to
point number 2, the built matrix Q is used to reach this
destination point, which means that the robot uses the
current knowledge to make the task. For the rest of the
target points (3, 4, 5, 6 and 7), the process is repeated.
Note that for these last targets the behavior of the robot
is much more precise, which means that the robot has
learned how to go from its current position to a predefined
target. Figure 5 shows the resulting matrix Q after the
learning stage of this example for 5 million iterations.

-1000

2

-800

-600

200

Q

-400

100

Action

-200

0

State
0

0

-100

-2 -200

Fig. 5. Matrix Q at the end of the learning stage, States
in degrees, and Action in radians per second.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17637

4. RESULTS

This section shows some results of the implementation of
the presented algorithm in simulation. The matrix Q is ob-
tained in MATLAB after some iterations as was explained
before. This matrix is exported into Python (Spyder-
Anaconda). Spyder is connected to V-REP simulator to
calculate the control law. The tests are carried out in V-
REP using the KH4VREP library (Peralta et al. (2016);
Farias et al. (2017)). Note that this library is a previous
development of the authors. This library has been used
in other developments obtaining reliable results, showing
similar behavior in both, simulation and real platform
(Farias et al. (2019)). In future versions of this work we
will include results with the platform. Figure 6 shows the
development environment.

Fig. 6. Development environment.

4.1 Position control experience with RL

Figure 7 shows the results of the robot’s position control
experiment for different algorithms. In all the cases the
initial conditions are the same. At the beginning of the
experiment, the robot is at rest and its position is at point
(-1;0). Its orientation is marked by the red arrow. The
target point is marked by the red cross at the origin of
the coordinates (0;0). The lines describe the trajectories
followed by the robot for each algorithm.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

x [m]

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

y
 [
m

]

Villela

RL 600m

RL 1M

RL 2M

RL 3M

RL 4M

RL 5M

IPC

Fig. 7. Obtained trajectories for each control algorithm.

The red line represents the control algorithm described
before in subsection 3.1 (Villela et al. (2004)). This control
law shows the longer trajectory of all the algorithms stud-
ied in this work. On the other hand, the best performance
is shown by the control law called IPC (Integral Position
Control) (Fabregas et al. (2020)), which is represented by
the brown line. The rest of the lines are the results of the
implementation of the RL algorithm for different numbers

of iterations in the calculation of the matrix Q. For exam-
ple, RL600m represents the algorithm implemented with
the matrix Q of 600 thousand iterations and the line RL
1M represents the algorithm with 1 million iterations. As
can be seen, when the number of iterations is increased,
the trajectory to the destination point is improved, which
means that the robot describes a shorter trajectory to
reach the destination point.

Note that these trajectories show a better performance
than the Villela algorithm but it can’t improve the IPC
algorithm trajectory. Because in the IPC trajectory the
linear velocity is also manipulated at the beginning of
the experiment when the orientation error of the robot
to the destination point is too big and the robot needs to
turn more than to advance to get as soon as possible, the
orientation to the goal. In the case of the RL algorithm,
only the angular velocity is manipulated. That is why it
never surpasses the IPC algorithm performance no matter
the number of iteration in the calculation of the matrix Q.
Figure 8 shows the distance to the destination point for
the same experiments. The y-axis represents the distance
in meters and the x-axis represents the time in seconds.

2 4 6 8 10 12 14 16 18 20

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

d
 [
m

]

Villela

RL 600m

RL 1M

RL 2M

RL 3M

RL 4M

RL 5M

IPC

Fig. 8. Distance to the target for each control algorithm.

As can be seen, the trajectory that takes more time to
reach the destination point (to make the distance equal
to 0) is the Villela algorithm. While the IPC needs the
shortest time to reach the destination. The rest of the
trajectories show the expected behavior, decreasing the
time to reach the destination when the number of iteration
of the matrix Q is increased. To show the differences
between the algorithms in a better way, different perfor-
mance indexes for the distance to the destination have
been compared, as it is shown in Table 1.

Table 1. Comparison between algorithms.

Index Villela RL600m RL1M RL3M RL5M IPC

IAE 10.18 7.91 7.47 7.24 6.90 6.75
ISE 8.96 6.39 5.89 5.63 5.30 5.10
ITSE 51.02 31.24 28.13 26.44 24.25 23.28
ITAE 68.21 46.45 42.84 40.95 38.03 36.96

As can be observed, the RL algorithm provides an im-
provement when the number of iterations in the calculation
of the matrix Q is increased, converging to the optimal as
time increases. This implies that the robot reaches the
destination point with a shorter trajectory. Consequently,
the different measurements of the integral error of the
position over time are reduced.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17638

5. CONCLUSION

In this paper, an algorithm to control the position of
a wheeled mobile robot using Reinforcement Learning
has been presented. This algorithm can be used at an
academic institution to teach control engineering as an
alternative paradigm to the traditional control approaches.
The algorithm is divided into two parts: 1) Training
stage and 2) Operational stage. In the first phase, the
robot learns to reach a known destination point from its
current position. During the learning process, the robot
interacts with the environment and receives some rewards
or punishment for its actions. This allows the robot to
learn how to solve this task.

The results during the operational phase show that the
obtained controller is capable of achieving the predefined
task. The trajectories of the robot to the destination
point are improved with the increase in the iterations on
the learning stage. The trajectories never reach the IPC
algorithm because in this case the linear velocity (V) is
also manipulated. The main advantage of this algorithm
is that the training stage is carried out automatically on
a computer, in this way the damages to the robot during
the learning time can be avoided. The main drawback is
that this training stage can take a long time to finish. Note
that you need a PC with high resources and performance
because this stage can take millions of iterations to give
good results.

In the near future, the algorithm will include the linear
velocity of the robot (V) in the learning stage and the
other remaining state, the distance (d). This can make
the learning process more complex and will increase the
training time, but in turn, it can increase the efficiency
and accuracy of the resulting model. Once both velocities
and both states are included in the model, the next step
will be to implement the control law in the robot Khepera
IV that we have in our laboratory, to compare the results
with previous control law (IPC) that has been designed
and tested.

ACKNOWLEDGEMENTS

This work was supported in part by the Spanish Min-
istry of Economy and Competitiveness under Projects
CICYT RTI2018-094665-B-I00 and ENE2015-64914-C3-2-
R and by the Chilean Ministry of Education under Project
FONDECYT 1191188.

REFERENCES

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D.
(2017). Reinforcement learning and dynamic program-
ming using function approximators. CRC press.

Caceres, C., Rosario, J.M., and Amaya, D. (2017). Ap-
proach of kinematic control for a nonholonomic wheeled
robot using artificial neural networks and genetic algo-
rithms. In 2017 International Conference and Workshop
on Bioinspired Intelligence (IWOBI), 1–6.

Dumitrascu, B., Filipescu, A., and Mı̂nzu, V. (2011).
Backstepping control of wheeled mobile robots. In 15th

International Conference on System Theory, Control
and Computing, ICSTCC 2011.

Fabregas, E., Farias, G., Aranda-Escolástico, E., Garcia,
G., Chaos, D., Dormido-Canto, S., and Dormido, S.
(2020). Simulation and experimental results of a new
control strategy for point stabilization of nonholonomic
mobile robots. IEEE Transactions on Industrial Elec-
tronics, 67(8), 6679 – 6687.

Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M.,
Sánchez, J., and Dormido Bencomo, S. (2016). Platform
for teaching mobile robotics. Journal of Intelligent &
Robotic Systems, 81(1), 131–143.

Fabregas, E., Farias, G., Peralta, E., Sanchez, J., and
Dormido, S. (2017). Two mobile robots platforms for
experimentation: Comparison and synthesis. In Pro-
ceedings of the 14th International Conference on Infor-
matics in Control, Automation and Robotics (ICINCO),
volume 2, 439–446. SciTePress.

Farias, G., Fabregas, E., Peralta, E., Vargas, H., Dormido-
Canto, S., and Dormido, S. (2019). Development of
an easy-to-use multi-agent platform for teaching mobile
robotics. IEEE Access, 7, 55885–55897.

Farias, G., Fabregas, E., Peralta, E., Torres, E., and
Dormido, S. (2017). A Khepera IV library for robotic
control education using V-REP. In IFAC-PapersOnLine
20th IFAC World Congress, volume 50, 9150–9155.

González, R., Fiacchini, M., Alamo, T., Guzmán, J.L., and
Rodriguez, F. (2010). Adaptive control for a mobile
robot under slip conditions using an lmi-based approach.
European Journal of Control, 16(2), 144 – 155.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal
regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11(Apr), 1563–1600.

Mohareri, O., Dhaouadi, R., and Rad, A.B. (2012). Indi-
rect adaptive tracking control of a nonholonomic mobile
robot via neural networks. Neurocomputing, 88, 54 – 66.
Intelligent and Autonomous Systems.

Omrane, H. and Masmoudi, M. (2016). Fuzzy logic
based control for autonomous mobile robot navigation.
Computational intelligence and neuroscience, 2016.

Peralta, E., Fabregas, E., Farias, G., Vargas, H., and
Dormido, S. (2016). Development of a Khepera IV
library for the V-REP simulator. IFAC-PapersOnLine,
49(6), 81–86. 11th IFAC Symposium on Advances in
Control Education ACE 2016.

Rezaee, A. (2017). Model predictive controller for mobile
robot. Transactions on Environment and Electrical
Engineering, 2, 17.

Siegwart, R., Nourbakhsh, I., and Scaramuzza, D. (2011).
Introduction to autonomous mobile robots. MIT press.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
learning: An introduction. MIT press.

Tzafestas, S.G. (2018). Mobile robot control and naviga-
tion: A global overview. Journal of Intelligent & Robotic
Systems, 91(1), 35–58.

Villela, V., Parkin, R., López, M., and Dorador, J. (2004).
A wheeled mobile robot with obstacle avoidance capa-
bility. Tecnoloǵıa Y Desarrollo, 1(5), 159–166.

Watkins, C. (1989). Learning from delayed rewards. Ph.D.
thesis, King’s College, Cambridge, King’s Parade, Cam-
bridge CB2 1ST, United Kingdom.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4), 279–292.

White, C.C. (2001). Markov decision processes. Springer
US, Boston, MA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17639

