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Abstract: This paper introduces the profile likelihood method in order to assess simultaneously
the parameter identifiability and the state observability for nonlinear dynamic state-space
models with constant parameters. While a formal definition of a parameter’s identifiability
has been used before, the novel idea is to investigate also the state’s observability by the
identifiability of its initial value. Using the profile likelihood, both qualitative as well as
quantitative statements are drawn from the analysis based on the nonlinear model and (possibly
noisy) sensor data. A simplified wind turbine model is presented and used as an application
example for the profile likelihood approach in order to investigate the model’s usability for state
and parameter estimation. It is shown that the critical model parameters and initial states are
identifiable in principle. The analysis with more complex models and realistic data reveals the
limitations when assumptions are deliberately violated in order to meet reality.

Keywords: Nonlinear systems, identifiability analysis, observability analysis, parameter
estimation, profile likelihood.

1. INTRODUCTION

Today, in many control applications the system is de-
scribed by ordinary differential equations (ODEs) and its
states are used by the control algorithm, e. g. state space or
model predictive control. Since the complete state vector is
often not directly measurable, state estimators are used to
observe them presuming the full observability of the states.
However, for nonlinear systems, a state’s observability is
not an invariant system property (as is the case for linear
systems), but depends on the system’s stimulation. Let us
assume a nonlinear model described by ODEs of the form

ẋ(t) = f(x(t),u(t),θ), (1a)

y(t) = g(x(t),θ), (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input
vector, y(t) ∈ Rr the output vector. Furthermore, we
respect the possibility of unknown parameters θ. Then,
whether a state xi is observable depens on the input u
and the selection of unknown parameters θ. Moreover, a
state can be more or less well observable, depending on
how the system is stimulated.

If such unknown parameters θ exist, they need to be
identified at the same time. However, their identifiabil-
ity depends on the stimulation, too. Thus, the problem
becomes even more complex and the question arises how
both identifiability and observability in such a setting can
be assessed for real-world applications.

In this paper, we present a method by assessing the states’
x observability by identifying their initial values x0 using
the profile likelihood (PL) approach. Namely, by treating
x0 as part of the unknown parameter vector θ, we convert
the identifiability and observability problem into a mere
parameter estimation problem. Moreover, using the PL,
measurement data (either from simulation or real-world
measurements) are used and both qualitative as well as
quantitative assessments are derived.

Various other methods to solve such parameter estima-
tion problems exist. However, most have significant draw-
backs. More specifically, most of them do not allow both
qualitative and quantitative statements at the same time
by use of measurement data. The power series expan-
sion (Pohjanpalo (1978)), similarity transformation (Vajda
et al. (1989)), direct test (Denis-Vidal and Joly-Blanchard
(2000)), implicit function theorem (Xia and Moog (2003))
and using differential algebra (Miao et al. (2011)), despite
having other significant drawbacks (Schmitt (2017)), all
only lead to qualitative results whether a model’s param-
eter is identifiable in principle or not. There are several
sensitivity based methods which do lead to quantitative
results, but do not respect possible limitations of measure-
ment data. The same holds for Monte Carlo simulations or
the correlation matrix (Miao et al. (2011)). Markov Chain
Monte Carlo methods do not have one of these limitations.
However, they are complex to apply and typically com-
putationally intensive, which can be prohibitive for more
complex models (Vanlier et al. (2012)). The use of the
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PL for parameter estimation problems as described above
has been introduced in Raue et al. (2009). The authors
distinguish between structural and practical identifiability
and provide a formal definition for the latter one. In this
paper, this definition for the case of structural identifia-
bility is extended to the cases of structural and practical
observability of the dynamic states.

The remainder of this paper is structured as follows. The
methodology of the PL approach is discussed in Section 2
and the formal definitions of identifiability and observ-
ability are presented. Section 3 provides the application
example of a wind turbine control system. In Section 4,
the PL approach is applied to the given models using
different data sets in order to assess both identifiability of
parameters as well as the states’ observability. Section 5
summarizes the relevant outcomes and provides the con-
clusions.

Notation: Vectors are written in bold letters, e. g. θ.
χ2
α,df refers to the common χ2-distribution. χ2(θ) refers

to a likelihood in dependence of the parameter vector θ.
χ2
PL,i(µ) refers to the PL of parameter θi to have a value
µ.

2. METHODOLOGY

2.1 Profile Likelihood Approach

The profile likelihood approach provides an attractive al-
ternative to Fisher Information based confidence intervals.
It has been shown that especially for nonlinear models,
Fisher Information based Confidence intervals are often
not appropriate (Raue et al. (2009)).

Its derivation starts with the maximum likelihood estima-
tor (MLE). Assume a system as in (1a) and (1b) and dk
measurements of its r outputs at time points tl. Assuming
Gaussian measurement noise σDkl for the k-th output at
tl, the likelihood to measure data yD given a parameter
vector θ is given by

L(θ) =

r∏
k=1

dk∏
l=1

1√
2πσDkl

exp

(
−1

2

(
yDkl − yk(θ, tl)

σDkl

)2
)
. (2)

To find the MLE, we could maximize (2). Alternatively,
we minimize two times the negative logarithm of this
equation, i. e.

χ2(θ) := −2 log(L(θ)). (3)

On the one hand, this has numerical advantages. On
the other hand, using the negative log likelihood has
another useful characteristic. It can be shown that if
regularity conditions apply, then for n→∞ data points it
follows a χ2-distribution with dim(θ) degrees of freedom
(see Meeker and Escobar (1995)). Equation (3) can be
rewritten as

χ2(θ)=C+

r∑
k=1

d∑
l=1

2 log
(
σDkl
)
+

r∑
k=1

dk∑
l=1

(
yDkl − yk(θ, tl)

σDkl

)2
(4)

where C subsumes parts of the likelihood function which
do not depend on the parameters and as such do not
influence the location of the minimum. If the measurement
noise σDkl is constant, then the second term in (4) is
constant as well. Minimizing this expression results in the
MLE,

θ̂ = arg min
θ

[
χ2 (θ)

]
. (5)

Once a model sufficiently predicts the experimental data,
confidence intervals (CIs) can be computed. Such CIs can
be obtained using the Profile Likelihood approach. To
calculate the profile likelihood for one specific parameter,
we initialize at the best parameter fit. Subsequently, the
parameter to be profiled is incremented iteratively, while
re-optimizing all other parameters,

χ2
PL,i(µ) = min

θ∈{θ|θi=µ}

[
χ2 (θ)

]
. (6)

This procedure yields an optimal path through parameter
space for each θi, thereby providing information on the
minimum likelihood change induced by forcing θi away
from its best fit parameter value. It can be shown that,
under weak assumptions, the region for which

D := χ2
PL,i(µ)− χ2(θ̂) ≤ χ2

α,df (7)

holds yields the CI for the parameter θi to a given confi-
dence level α (see Feder (1968)). The threshold χ2

α,df is the

α-quantile of the χ2-distribution with df degrees of free-
dom. 1 Usually, 1 D-profiles are calculated, i. e. pointwise
CIs with df = 1 are derived (see also Meeker and Escobar
(1995)). Note that the order of parameters being profiled
is arbitrary.

2.2 Structural and Practical Identifiability

In nonlinear models, it is possible that the CI for a pa-
rameter is unbounded (non-identifiable). This means that
no lower and/or upper limit can be calculated. Thereby,
two types of non-identifiabilities can be detected. The
first, often referred to as structural non-identifiability,
refers to profiles which are completely flat, remaining
constant for arbitrary values of the profiled parameter.
Such non-identifiabilities occur when can analytically not
be distinguished in the measured observables y. The sec-
ond type of non-identifiability often termed practical non-
identifiability is related to the data (Raue et al. (2009)). In
both cases, the profile parameter paths can be informative
for determining how to appropriate reduce the model (see
Maiwald et al. (2016)).

To the authors’ knowledge, so far only practical identifia-
bility has been defined formally. Thus, we define structural
identifiability as follows:

Definition 1. A parameter θi is structurally non-identifi-
able, if its likelihood-based confidence interval is infinite,
[−∞,+∞], and its profile likelihood has no unique mini-
mum, but is flat over all θi.

The definition for practical identifiability shall be cited
from Raue et al. (2009):

Definition 2. A parameter θi is practically non-identifiable,
if the likelihood-based confidence region is infinitely ex-
tended in increasing and/or decreasing direction of θi,
although the likelihood has a unique minimum for this
parameter.

Both cases are illustrated in Figure 1. Note that the
absolute value of χ2

PL is arbitrary; only whether and where
it exceeds the CI threshold χ2

α,df matters.

1 The χ2-distribution does not coincide with (4). The nomenclature
may be unfortunate, but has been adopted from Raue et al. (2009)
for better comparability.
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Fig. 1. Exemplary profile likelihood curves for different pa-
rameters θ1, θ2 and θ3. The dashed line indicates the
bounds for the confidence interval. θ1 is structurally
and practically identifiable, θ2 is structurally, but not
practically identifiable and θ3 is neither practically
nor structurally identifiable, i. e. non-identifiable.

2.3 Structural and Practical Observability

While various definitions for the observability of a nonlin-
ear dynamical system exist; in any case it can be expressed
as the initial state vector’s distinguishability. By recalling
the definition from Adamy (2018), it becomes clear that a
system’s observability depends on whether the initial state
vector x0 can be determined or not:

Definition 3. A system as described in (1) shall be defined
for x ∈ Dx ⊆ Rn and u ∈ Cu ⊆ Cn−1 with y ∈ Rr and
x(t0) = x0. If all starting vectors x0 ∈ Dx are uniquely
determinable from the knowledge of u(t) and y(t) in a
finite time interval [t0, t1 < ∞] for all u ∈ Cu, then the
system is called observable.

Note that the unknown parameter vector θ in (1a) is
not respected in Adamy (2018). However, this does not
affect the interpretation of observability. Moreover, the
initial value of a single state xi,0 is eventually a model
parameter. Thus, the qualitative observability of a state
can be determined by the identifiability of the initial value.
Furthermore to formalize this approach, two definitions are
introduced. First, the structural observability of a state is
defined analogously to the structural identifiability of a
parameter.

Definition 4. A state xi is structurally unobservable, if the
likelihood-based confidence interval of its initial value xi,0
is infinite, [−∞,+∞], and its profile likelihood has no
unique minimum, but is flat over all xi. Otherwise, it is
structurally observable.

Note that the term practical observability has already
been used in Kreutz et al. (2012), but with a different
interpretation. There, CIs for a model’s ’observation’,
which can be any combination of model information,
are derived for specific points in time. Here, we refer
to observability of a control system’s state as defined
in Definition 3 and formalize practical observability as
follows.

Definition 5. A state xi is practically unobservable, if the
likelihood-based confidence region of its initial value is in-
finitely extended in increasing and/or decreasing direction
of xi, although the likelihood has a unique minimum for
this parameter.

3. WIND TURBINE APPLICATION EXAMPLE

As an illustrative application example, this paper investi-
gates the nonlinear system dynamics of a horizontal axis
wind turbine. A simplified dynamic model reads

ϕ̈r =
%

2

πR3

Θ
CM(λ)

(
vw(t)− ẋt

)2 − igb
Θ
Mg (8a)

ẍt =
%

2

πR2

mt
CT(λ)

(
vw(t)− ẋt

)2 − 2Dω0ẋt − ω2
0xt (8b)

which captures the drive-train dynamics as well as the
nacelle motion for the partial load regime appropriately
(cf. Ritter et al. (2016a) for more details).

The three dynamic states are the rotor angular velocity ϕ̇r,
the nacelle velocity ẋt and the position xt. Two unknown
model parameters are most relevant, the eigenfrequency
ω0 and the wind velocity vw, where the first changes
slowly and the second more quickly over time. The rotor
aerodynamics are represented by the coefficients of torque
CM(λ) and thrust CT(λ) which depend in this simplified
case solely on the tip-speed ratio λ (TSR), defined as

λ =
ϕ̇rR

vw − ẋt
. (9)

Equation (9) constitutes the dimensionless rotor speed of
a wind turbine which shows a distinguished value λ∗ that
is optimal for electrical power production. A simplified
approximation for the aerodynamic coefficients is

CM(λ) = cm,2λ
2 + cm,1λ+ cm,0 (10a)

CT(λ) = ct,2λ
2 + ct,1λ+ ct,0 (10b)

where both are assumed as second-order polynomials in
λ. All model parameters are gathered and explained in
Tab. 1. The numerical values therein have been evalu-
ated for a well-known reference wind turbine, defined by
Jonkman et al. (2009), with a rated electrical power 5 MW.

Table 1. Model parameters and its numerical values

Symbol Description Value Unit

% air mass density 1.225 kg/m3

ω0 nacelle eigenfrequency 2.1 1/s
mt equiv. tower top mass 450·103 kg
R blade tip radius 63 m
D modal damping ratio 0.01 -
igb drive-train gear-box ratio 97 -
Θ drive-train inertia 4.05·107 kg m2

λ∗ optimal tip-speed-ratio 7.7 -
k∗P optimal controller gain 23.8·10−3 Nm/rpm2

cm,0 constant torque coeff. 10·10−2 -
cm,1 linear torque coeff. −17·10−4 -
cm,2 quadratic torque coeff. −40·10−5 -
ct,0 constant thrust coeff. −16·10−2 -
ct,1 linear thrust coeff. 18·10−2 -
ct,2 quadratic thrust coeff. −77·10−4 -

The measured outputs of the nonlinear system, cf. (8),
are the generator speed ng = (30/π) igbϕ̇r and the nacelle
acceleration ẍt. The only controlled input is the electrical
generator torque Mg. The disturbance input is the rotor-
effective wind velocity vw(t) which is also considered as
unknown time-varying input parameter in the following.
If required, a more complex wind turbine model can be
found in Ritter et al. (2016b).
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In order to perform reasonable simulations of the wind
turbine control system with changing wind velocity vw, a
simple and ideally an optimal control law is needed. For
this purpose, the nonlinear controller

Mg = k∗Pn
2
g = k∗P

(
30/π

)2
i2gbϕ̇

2
r (11)

with proportional feedback proves to be useful, see
e. g. Burton et al. (2011) (p. 485 ff). Note that this control
law is reference-free and thus the optimal operating point
is found automatically in order to track λ∗. Optimality is
considered in this context only for the power production
and not for mechanical loads. Figure 2 shows illustrative
simulation results obtained with the optimal torque con-
troller. Due to the time delay in the generator speed with
respect to the unknown and time-varying wind speed, λ∗

is only
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Fig. 2. Closed-loop simulation results for a turbulent wind
field with an average wind speed vm = 9 m/s

reached on average. These simulation data are used in
Sect. 4.2 to assess the identifiability when the assumption
of a constant disturbance input is violated deliberately.

The reason for conducting this analysis is to make sure
that the relevant states and parameters are identifiable
based on the two measurable outputs. In this context, an
analysis based on empirical Gramian matrices has already
been conducted in Ritter et al. (2018) using a similar
model. In the following, the focus now rests on the novel
approach using the profile likelihood approach.

4. RESULTS AND DISCUSSION

The nonlinear wind turbine model (8) has been imple-
mented in the toolbox Data2Dynamics (D2D, Raue et al.
(2015)). D2D ships with a comprehensive functionality to
apply the PL approach to nonlinear models. However, so
far it has mainly been used for identification purposes of
biological systems, i. e. many unknown parameters and few
known data. Thus, some enhancements were necessary for
this work, e. g. the efficient implementation of large input
data sets by splines. Further details on the implementation
can be found in Schmitt (2017).

4.1 Constant Wind Velocity

In all following simulation results, we identify two model
parameters, i. e. the eigenfrequency ω0 and the wind veloc-
ity vw and all three initial states. For this section, we first
use data generated with a constant vw. The data consist of
200 measurement points with a sampling time of 0.1 s from
three different sources. First, we use simulation data from
the 3-states model (8) itself, which we call the basic model.
Second, we use simulation data from a more complex wind
turbine model with 8 states, which we refer to as the
standard model. Third, we use simulation data from a
sophisticated model with 21 states, called the advanced
model. In any case, the simulation data is overlayed with
normally distributed noise. Thereby, a signal-to-noise ratio
of 30 dB is chosen and the same noise realization is used
for every data set. The measurement error parameters σDkl
from (4) are treated as free parameters and estimated
together with all other parameters, i. e. by solving (5).
However, once the MLE is found, they are set constant
and are not further adapted when calculating the PL for
all other parameters. Note that D2D allows to formulate a
priori knowledge about the distribution of each parameter
θi, such as minimum and maximum possible values. Thus,
together with the possibility to re-run the optimization of
(5) with different initial values, no convergence problems
occur with the model presented here.

0.996 1 1.004
χ2(θ̂)

χ2
0.95, 1

+χ2(θ̂)

ω0

Basic Standard Advanced

0.98 1 1.02

vw

Fig. 3. PLs of the normalized unknown parameters ω0 and
vw with pointwise CIs at α = 5 %

For ease of presentation, all parameters and initial states
have been normalized to 1. Namely, the true value which
should be identified is 1. Figure 3 shows the PLs for both
unknown parameters. Both parameters are structurally
as well as practically identifiable with every data set,
since their CIs are finite. Using noisy data from the basic
model itself, both parameters are identified with an error
≤ 0.012 % and the CIs contain the true values. Using data
from the standard model, the MLE errors are similar,
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but the CI for ω0 increases. For data from the realistic
advanced model, the estimation erorrs for both parameters
and the CI for ω0 increase significantly. However, the errors
are still acceptably small with 0.07 % for ω0 and 0.27 % for
vw.

0.98 1 1.02
χ2(θ̂)

χ2
0.95, 1

+χ2(θ̂)

ϕ̇r,0

0.8 1 1.2

ẋt,0

Basic Standard Advanced

0.96 1 1.04

xt,0

Fig. 4. PLs of the normalized initial states with pointwise
CIs at α = 5 %. Note that every data set (basic,
standard and advanced) had a different initial value.

Figure 4 shows the results for initial states. All states are
both structurally and practically observable, even with a
constant wind velocity. However, the estimation errors are
larger compared to the parameters ω0 and vw. For ϕ̇r,0, the
estimation errors are all ≤ 0.3 % and all CIs contain the
true value. For xt,0, the PLs for data from the basic and
standard model are comparable, i. e. the estimation errors
are negligible with ≈ 0.16 % and the CI for the standard
model data is only slightly larger. However, for data
from the advanced model, the estimation error increases
to 1.16 % and the CI is significant increased. For ẋt,0,
the differences between the different data sets are most
severe. In general, ẋt is less well observable. Namely, the
estimation errors are 2.18 %, 6.18 % and 14.25 % for data
from the basic, standard and advanced model, respectively.
Moreover, this is the only parameter for which the CIs do
not contain the true value. Note that the 95 %-confidence
level is not valid for the measurements from the standard
and advanced model in general, since the PL approach
assumes only measurement noise but no model errors.
For the data from the basic model itself, the necessary
assumption of n → ∞ data points is still violated, but
further simulations showed that raising the confidence
level to e. g. 99.99 % leads to a CI which does include the
true value.

Figure 5 shows the model’s outputs for measurement data
from the basic model. Despite the significant noise on ẍt,
the real trajectories for both ẍt and ng are followed very
accurately.

Concluding, the results show the method’s validity if all
assumptions are met, i. e. there is no model error and vw
really is a constant parameter. Next, it is analyzed how
well the method is applicable for turbulent wind.

4.2 Turbulent Wind Field

In reality, the wind velocity vw is not constant but can be
highly turbulent. However, the PL approach is designed for
constant parameters only. Thus, in this section we test its
applicability under real conditions and use the turbulent
wind field shown in Figure 2. Measurement data is used
only from the advanced model and the sampling time is
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m
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0
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ẍ
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in
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2

Fig. 5. Outputs from wind turbine model simulated with
estimated parameters and initial states. Constant
vw = 9 m/s and noisy data from the basic model itself.

reduced to 0.01 s to increase the total number of data
points. Otherwise, the settings are the same as before.

Figure 6 shows system outputs for a simulation time of
4 s. vw is estimated to 9.08 m/s and the resulting ng
still follows the real one very accurately, since the wind
turbulence’s impact on ng has a high time delay. However,
in comparison to Figure 5, the simulated ẍt is estimated
significantly worse and cannot follow the abrupt changes.
This is due to the direct impact of vw on ẍt, see (8b).
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ẍ
t

in
m
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Fig. 6. Outputs from wind turbine model simulated with
estimated parameters and initial states. Turbulent
wind velocity and noisy data from the advanced model
over 4 s.

This effect becomes more severe for longer simulation
times. Figure 7 shows the results for a period of 10 s.
Since the wind velocity is not only turbulent, but increases
over time, the simulated ẍt overestimates the first and
underestimates the last oscillations. This is in addition to
the abrupt changes which the model with a constant vw
cannot follow. Furthermore, the badly estimated peaks for
ẍt now also lead to a detectable estimation error for ng.

5. CONCLUSION

This contribution has newly introduced the formal defini-
tion of structural and practical observability of nonlinear
system states based on the PL method. The state’s observ-
ability is evaluated by the identifiability of its initial value.
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Fig. 7. Outputs from wind turbine model simulated with
estimated parameters and initial states. Turbulent
wind velocity and noisy data from the advanced model
over 10 s.

Thereby, the observability is assessable qualitatively and
quantitatively with realistic measurement data and sensor
noise. Thus, it offers more potential for a priori analyses
compared to sensitivity based methods. The PL approach
is applied successfully to a nonlinear wind turbine control
system with three states and two unknown critical model
parameters. The results show that if both the generator
speed and the nacelle tower acceleration are observed,
all three states are structurally and practically observable
and the eigenfrequency and wind velocity are structurally
and practically identifiable. This is true for data from
the model itself as well as from more complex models.
However, while the PL is designed to handle Gaussian
measurement noise and identify constant parameters, an
increasing modeling error and time-varying parameters
lead to larger estimation errors and CIs become invalid.
For the presented application, this leads to increased but
still acceptable estimation errors for control purposes.
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