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Abstract: We study a simple transportation problem on a string graph. The objective is to regulate
the node levels of some decaying quantity to optimize dynamical performance. This can be achieved
by controlling the flows, which are subject to delay, between neighbouring nodes. The problem is
considered from two perspectives. In the first (the social perspective), all nodes cooperate to find the
flows that maximize the aggregated utility of the entire transportation network. In the second (the user
perspective), the nodes instead try to maximimize their own utility. Our main contribution is to give an
implementation of the feedback law that gives the social optimum, that only depends on the local states
and a set of prices defined by a distributed update rule. These prices align the social and user optimum
in a budget neutral way, and give all nodes no worse cost than if they were on their own.

Keywords: Distributed control and estimation, Control of networks, Convex optimization, Distributed
optimisation for large-scale systems, Systems with time-delays

1. INTRODUCTION

In this work we study the optimal transportation of a decaying
quantity. The dynamics studied could for example describe a
transportation network, as illustrated in Section 2. The objective
is to control the node levels by regulating the transportation
between the nodes to optimize performance. The challenge is
to do this in a manner that scales well with network size, whilst
accounting for dynamical effects such as transportation delays.

To capture the essence of the problem, we consider a string
network with N nodes in discrete time. The nodes are numbered
as in Fig. 1, where the most downstream node has index
one, the second most downstream has index two, and so on.
Furthermore, we index the links according to the node which
they enter. We let the transportation delay be one time unit on
every link, and define the dynamics to be

zi[t +1] = α (zi[t]+ui[t−1])−ui−1[t], (1)
for 1 ≤ i ≤ N. The variable zi[t] is the level of the quantity
in node i (at time step t), and the control input ui−1[t] is the
amount leaving node i (if written in state-space form, a choice
of the system system state would be {zi[t], ui[t − 1]}). At the
boundaries we have u0[t] = 0, uN [t] = 0. The constant 0<α ≤ 1
is the decay rate.

We assume that node i values its level zi[t] according to the
quadratic function, Ui(zi[t]) = bizi[t]−1/2qizi[t]2, where qi > 0,
bi > 0, and bi+1 = αbi. The last assumption arises naturally
when considering transportation about an equilibrium, and will
be motivated fully in the next section. We study the problem
from two perspectives. First we consider the social optimum
problem, where the objective is to maximize the sum of local
utility functions for the nodes:
? This work was supported by the Swedish Foundation for Strategic Research
through the project SSF RIT15-0091 SoPhy.
The authors are members of the LCCC Linnaeus Center and the ELLIIT
Excellence Center at Lund University.

z3 z2 z1

Node 3 Node 2 Node 1

u2 u1

Link 2 Link 1

Fig. 1. Illustration of the studied problem when N = 3. There
are three nodes whose levels z are to be controlled. Each
link has a corresponding input u that is the flow entering
the link and arriving one time unit later. We have also
indicated the indexing conventions for the nodes and links.

maximize
z,u

J(z) =
N

∑
i=1

T

∑
t=1

(
bizi[t]−

1
2

qizi[t]2
)

subject to Dynamics in (1)
zi[0] given.

(2)

In the above, z[t]∈RN is defined for 1≤ t ≤ T and u[t]∈RN−1

is defined for 0 ≤ t ≤ T − 1. This problem is an instance of
a Linear Quadratic control problem with a linear term in the
optimization criterion. The absence of an input penalty allows
for a highly structured solution that is efficient to calculate. This
was demonstrated for the infinite horizon case in Heyden et al.
(2018) (with bi = 0) by finding the solution to an algebraic
Riccati equation.

Our main contribution is to provide a distributed solution to eq.
(2), using a pricing mechanism to implement the feedback law.
The prices are used to adjust the utility of the individual nodes,
so that each has an optimal level when considering its own
utility. Our scheme is budget neutral, is simple to implement
even in very large networks, and leaves no node worse off than
if it were on its own. These results are previewed at the end of
this section, and presented in Section 3.

Our results add to the growing body of work on distributed
control. Early effort in this regard include team game problems,
where a set of agents work towards a common goal, but with
different information, see for example Radner (1962). Impor-
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tant work along these lines includes Rotkowitz and Lall (2006),
where sufficient conditions for finding a distributed controller
using convex optimization were given. More recent work in-
cludes System Level Synthesis, see for example Anderson et al.
(2019), that allows for scalable synthesis and implementation of
distributed controllers using a novel controller architecture. In
contrast, the structure in the controllers in this paper is inherited
from the plant. This is similar in nature to the work on spatially
invariant systems from Bamieh et al. (2002), where the optimal
control law was shown to be localized in space. The structure of
the controllers derived in this work also have strong similarities
to those from Shah and Parrilo (2013), where the optimal poset-
causal controller is found.

The objectives of this paper are also well aligned with the
theme of solving optimization problems using prices based
on Lagrange multipliers. For pioneering work on the use of
prices for coordination, see Cohen (1978), which was later
used to control water supply networks in Carpentier and Cohen
(1993). The use of Lagrange multipliers for coordination is
well studied, for example as shadow prices in the work on
Internet congestion control from Kelly et al. (1998), Low et al.
(2002), and in the distributed MPC schemes from Giselsson
et al. (2013). Lagrange multipliers have also been suggested
for controlling power grids Jafarian et al. (2016), Jokić et al.
(2009). Normally these problems are either static, or of high
complexity. Requiring either solving for all the prices and states
at the same time, or solving a Riccati equation. In our specific
problem, the prices are not the Lagrange multipliers, but rather
a linear combination of current node levels and goods in transit.
These prices are much simpler to compute than the Lagrange
multipliers are.

Preview of Results

To give an incentive for the individual nodes to follow the social
optimum, we will introduce prices and study the problem from
a node perspective. Each node i will be presented with a price
vector pi[t] that will affect the nodes utility proportional to their
levels, so that its total utility Vi(zi, pi) is given by

Vi(zi, pi) = pi[0]zi[0]+
T

∑
t=1

(
bizi[t]−

1
2

qiz2
i [t]− pi[t]zi[t]

)
. (3)

Typically increasing zi[t] will lead to a trade off between the
increased utility from the bizi[t] − 1/2qiz2

i [t] term, and the
decreased utility from the cost pi[t]zi[t]. The utility function
in (3) will be further discussed in Section 2. Each node will
consider the following problem

maximize
zi

Vi(zi, pi)

subject to pi given.
(4)

We find the solution to social optimum problem by studying
the Lagrangian of the problem. The main contribution lies in
deriving a set of prices from the Lagrange multipliers that
allows for a distributed implementation of the optimal feedback
law and aligns social and user optimum. However, in contrast
to ’typical’ Lagrangian approaches, the prices are given by a
simple, temporally decoupled, expression

pi[t +1] =

bi− γi

i

∑
j=1

z j[t]+u j[t−1] 0≤ t ≤ T − i

0 t > T − i.
(5)

In the above, γ is a constant that can be computed ahead of time
by the following iteration:

γ1 = q1, γi =
α2γi−1qi

α2γi−1 +qi
, i≥ 2. (6)

With p as in (5), the optimal inputs are given by

ui−1[t] = α(zi[t]+ui[t−1])− 1
qi

(
pi[t +1]−bi

)
. (7)

The combined structure of (5) and (7) allows for a simple im-
plementation of the optimal u using only local communication.
The expression for the optimal prices in (5) indicates that the
price should increase the more a node values its level from the
term bi, and decrease when more goods are available.

2. MOTIVATION FOR THE PROBLEM

We will consider a simple model of a generic transportation
network for a decaying quantity. This could for example be
a district heating network, or an inventory control system for
decaying goods. In this section we will show that when con-
trolling such a system around an equilibrium, the dynamics in
(1) arise. This could, for example, be of interest if the operating
conditions changes and the system needs to be shifted from the
old to the new equilibrium point.

Each node i in the network has a constant production (or
consumption) wi. Furthermore, the quantity can be transported
along the links of the system. Finally, we make the simplifying
assumption that the decay has a homogeneous rate 1 − α

throughout the system. We can write the dynamics for the level
ζi in each node i as

ζi[t +1] = α
(
ζi[t]+ vi[t−1]

)
+wi− vi−1[t].

In the above vi−1 is the quantity leaving node i and vi is the
quantity arriving to node i. The quantity leaving the node goes
immediately into transportation and will take one time unit to
arrive. For the physical interpretation the flows v[t] must be
positive. This will generally be the case if there is producer at
the top of the network.

Let the flows v[t] = v̄ be constant. Then each node will have an
equilibrium level ζ̄i where the inflow equals the outflow,

ζ̄i =
1

1−α
(wi +α v̄i− v̄i−1).

We assume that each node values its level according to a
quadratic function Ui(ζi). Then the optimal equilibrium is the
solution to

maximize
v̄ ∑

i
Ui(ζ̄i)

subject to ζ̄i =
1

1−α
(wi +α v̄i− v̄i−1).

(8)

Now we study the system around this equilibrium. We intro-
duce a new level vector z ∈ RN describing the levels relative
to the optimal levels, and a new input vector u ∈ RN−1 that
describe the flows relative to the optimal flows,

ui[t] = vi[t]− v̄i,

zi[t] = ζi[t]− ζ̄i.

Then the dynamics for z are given by (1). The utility relative to
the optimum can be written as

Ui(ζ̄i + zi[t])−Ui(ζ̄i) =
T

∑
t=1

(
bizi[t]−

1
2

qiz2
i [t]
)
,

where qi < 0. Note that ui[t] can take negative values.
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Remark 1. Since ζ̄i solves (8), we must have that
bi+1 = αbi. (9)

To see this, observe that if it were not the case, then the utility
could be improved by making a small perturbation ε to v̄i which
would increase ζ̄i by α/(1−α)ε and decrease ζ̄i+1 by 1/(1−
α)ε .

The optimal control around the equilibrium can be found by
solving (2). The lack of penalty on the flows can be motivated
by that the cost of changing the transportation is small. For
example, if the transportation is done via trucks, then there is
typically a very low, or no additional cost, if a truck transports
more goods. However, there is still a loss in moving the quantity
in that it is not being utilized while in transportation.

How can the user problem in (3) be motivated? It is natural
that the users in the transportation network pay, or are paid, for
changes in equilibrium levels. If the new equilibrium level of a
node is lower, then that node would expect to be paid to actively
send away some of its quantity, since this reduction will reduce
its own utility. Similarly, if a node is to receive a higher level,
that node would be expected to pay for it. This is captured by
the term pi[0]zi[0]. Since the new equilibrium cannot be reached
immediately, the nodes should also pay for the time periods
where they have a higher level, and be compensated while it
is too low. This is captured by the terms pi[t]zi[t]. We note that
close to the equilibrium, pi[t]> 0 , t ≥ 1. We shall later see that
that is the case for t = 0 as well.

3. RESULTS

We start by giving the solution to (2), in Theorem 1 below. This
result shows that the i-th entry of the optimal control input can
computed based only on local measurements of the quantity z
and the goods in transit u, and a local price pi. Next we show
in Proposition 2 how these prices can be used to align the user
problem in (4) to the social optimum. The prices have additional
appealing properties. Firstly, the node utilities are higher than
if they had zero flows and no payments, and secondly, the sum
of all payments equal zero. The proofs of the results presented
here will be given in Section 5.
Theorem 1. Define γi as in (6), and p[t] by

pi[t +1] =

bi− γi

i

∑
j=1

z j[t]+u j[t−1], 0≤ t ≤ T − i

0 t > T − i.
(10)

Then the optimal u for (2) is given by

u[t] =α [0 I]


z1[t]+u1[t−1]

...
zN−1[t]+uN−1[t−1]

zN [t]

−


0
1
q2

0

. . .

0
1

qN

(p[t+1]−b).

(11)
With p[t] = [p1[t], . . . , pN [t]]T and b = [b1, . . . ,bN ]

T , 0 a column
vector of length N − 1 and I an identity matrix of dimension
N−1.

If we write out the expressions for each input we get (7).
From the theorem we see that there exists a simple method for
calculating the optimal feedback law, using only local states and
local prices. Furthermore, pi[t+1] can be calculated recursively
through the graph,

pi[t +1] = γi

(
−zi[t]−ui[t−1]+

1
γi−1

pi−1[t +1]
)

+(1− 1
αγi−1

)bi,

requiring only local communication. This expression is also in-
teresting in that each node only needs to share a combination of
its level and utility function. This gives some privacy compared
to sharing both the level and the utility function.

Equation (7) has a very natural interpretation from the user
optimal perspective, as it is the solution to

minimize
ui−1[t−1]

bizi[t]−
1
2

qiz2
i [t]− pi[t]zi[t]

subject to zi[t] = α(zi[t−1]+ui[t−2])−ui−1[t],

which corresponds to the node optimizing its utility for the next
time point.
Remark 2. At first sight it may seem like (11) is non causal as
the input at time t depends on prices at time t + 1. However,
from (10) we can see that prices at time t +1 depends on state
at time t, and the expression is indeed causal. As the prices are
associated with the states when the input has taken affect, it is
natural that the prices are one time-index ahead of the inputs.
Remark 3. It might be surprising that some of the prices are
zero and thus the corresponding nodes will have optimal levels,
zi = −b2/q2, as t gets closer to T . This is due to the boundary
effects of the system, where the level of a node can be increased
without decreasing the value of others. This is achieved by by
exploiting that the goods sent at time T − 1 will not reach its
destination within the optimization horizon .
Proposition 2. In addition to the definitions in Theorem 1, let
m = min(T − i,N), and

pi[0] =
T−(i−1)

∑
t=1

(
α

t−(t0+τ)bi

)
−α

(
m

∑
j=i

γ j

j

∑
k=1

zk[0]+uk[−1]

+
T

∑
j=N+1

γNα
2( j−N)

N

∑
k=1

zk[0]+uk[−1]

)
Then:

(i) The optimal z for (2) and (4) are equal.
(ii) The node utility satisfies

V (zi, pi)≥
T

∑
t=1

(
biα

tzi[0]−qi(α
tzi[0])2

)
.

(iii) The sum of payments are equal to zero,

N

∑
i=1

(
pi[0]zi[0]−

T

∑
t=1

pi[t]zi[t]

)
= 0.

The proposition shows not only that is possible to align the user
and social optimum, but also that each node is never worse off
than if they had no in- or outflow. This is what would happen if
the node was not a part of the transportation network. This is an
important property, as otherwise the nodes would be reluctant
to be part of the network. Furthermore the payment scheme is
budget neutral (the payments sum to zero). This is significant
as if the scheme had a budget deficit, it would be very hard to
find someone to supply additional money to drive the system,
while receiving nothing in return.
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4. ANALYSIS OF THE LAGRANGIAN

In this section we perform the necessary analysis of the La-
grangian for (2) needed to prove Theorem 1 and Proposition
2. An important part is to construct an alternative user utility
based on the Lagrange multipliers, and showing that it is equal
to the original one in (4).

4.1 Lagrangian

The Lagrangian of (2) is given by

L(z,u,λ ) = J(z)+
T−1

∑
t=0

[
λ1[t +1]

{
α
(
z1[t]+u1[t−1]

)
− z1[t +1]

}
+

N−1

∑
i=1

λi[t +1]
{(

α(zi[t]+ui[t−1])−ui−1[t]
)
− zi[t +1]

}
+λN [t +1]

{(
αzN [t]−uN−1[t]

)
− zN [t +1]

}]
.

(12)
The Lagrange dual variable has dimensions λ [t] ∈ RN for
1 ≤ t ≤ T . The dual variables λi[t] has a natural economic
interpretation as the marginal change in social utility when zi[t]
changes.

4.2 Alternative User Optimal Problem

Based on the Lagrangian we define an alternative user utility
function, and show that it is equal to the original in (3). In this
formulation the node utility will include a cost based on the
level change,

V̂i(zi,λi) =
T

∑
t=1

bizi[t]−
1
2

qiz2
i [t]−λi[t] (zi[t]−αzi[t−1])︸ ︷︷ ︸

change in level

. (13)

Note that all the terms in V̂i are in the Lagrangian L. By letting

pi[t] =


αλi[1] t = 0
λi[t]−αλi[t +1] 1≤ t ≤ T −1
λi[T ] t = T,

(14)

the node utility can be rewritten as
V̂i(zi,λi)

=
T−1

∑
t=1

bizi[t]−
1
2

qiz2
i [t]− (λi[t]−αλi[t +1])zi[t]

+αλi[1]zi[0]−λi[T ]zi[T ]

=
T

∑
t=1

(
bizi[t]−

1
2

qiz2
i [t]− pi[t]zi[t]

)
+ pi[0]zi[0] =Vi(zi, pi).

Thus the two different user optimal problems are equal, and we
can analyze either one of them. We will use the Lagrangian
version for analysis, while the p version will be used for
implementation.

4.3 Optimality Conditions

The optimization problem in (2) is concave as it is the max-
imization of a concave cost function under affine constraints.
Thus necessary and sufficient optimality conditions are given
by the KKT conditions (see Boyd and Vandenberghe (2004))

∇λ L = 0, ∇uL = 0, ∇zL = 0.
∇λ L = 0 is equal to the dynamics constraint being satisfied.

For a standard LQ problem with a penalty on the input, ∇uL= 0
gives u as a function of λ . See Cannon et al. (2008) for a slightly
more general MPC case. Here we instead get the following

∂L
∂ui[t]

=−λi+1[t +1]+αλi[t +2] = 0, 0≤ t ≤ T −1

(15a)
∂L

∂ui[T −1]
=−λi+1[T ] = 0. (15b)

Note that it is due to the lack of penalty on u that ∇uL is
independent of u.

Next we study ∇zL. Normally this allows us to solve for λ given
z, going backwards in time. Calculating the gradients gives

∂L
∂ zi[t]

= bi−qizi[t]+αλi[t +1]−λi[t] 1≤ t ≤ T −1

(16a)
∂L

∂ zi[T ]
= bi−qizi[T ]−λi[T ]. (16b)

Combining the two optimality conditions, we get the following
lemma.
Lemma 3. The optimal inventory level z satisfies

zi[t] =
αqi−1

qi
zi[t +1] (17)

for i≥ 2 and t ≤ T −1.

Proof. Using (16a) and (15a) gives for t ≤ T −2

zi[t] =
αλi[t +1]−λi[t]+bi

qi

=
αqi−1

qi

αλi−1[t +2]−λi−1[t +1]+bi−1

qi−1
+

bi−αbi−1

qi

=
αqi−1

qi
zi−1[t +1]

where we have used that αbi−1 = bi. The case for t = T − 1
follows similarly.

5. PROOF OF THEOREM 1 AND PROPOSITION 2

We are now ready to prove Theorem 1 and Proposition 2.

Proof of Theorem 1: For every input ui−1, i ≤ N, we have
from the dynamics that

zi[t +1] = α(zi[t]+ui[t])−ui−1[t]⇒
ui−1[t] = α(zi[t]+ui[t])− zi[t +1].

Using (16a–b) we get for t ≤ T −2, that the optimal ui−1 must
satisfy

ui−1[t] = α(zi[t]+ui[t])+
αλi[t +2]−λi[t +1]+bi

qi
and for t = T −1,

ui−1[T −1] = zi+1[T −1]+ui[T −1]+
−λi[T ]+bi

qi
.

Thus with the relation between p and λ as defined in (14) we
have that the optimal u is given by (11). The expressions for
p in (10) follows from Proposition 8 and Lemma 7(see the
appendix).

Proof of Proposition 2: As the nodes choices of levels has no
effect on the prices, the optimal level from the nodes perspec-
tive must satisfy

0 =
∂V̂i

∂ zi[t]
=

∂L
∂ zi[t]

.
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This must also hold for the social optimum, thus proving (i).

Furthermore we see that choosing the social optimum inventory
levels are better than choosing zi[t] = α tzi[0], as it is not a
minimizer of Vi. Thus proving (ii).

The sum of all the payments are

−
N

∑
i=1

T

∑
t=1

λi[t]
(

zi[t]−αzi[t−1]
)
. (18)

Using that
zi[t]−αzi[t−1] =−ui−1[t−1]+αui[t−2],

The sum in (18) can be rewritten as
N−1

∑
i=1

(
T−2

∑
t=0

(
−λi+1[t +1]+αλi[t +2]

)
ui[t]−λi+1[T ]ui[T −1]

)
.

This is equal to zero, since λi+1[t+1] =αλi[t+2] and λi[T ] = 0
for i≥ 2. Thus proving (iii).

6. CONCLUSIONS

We have considered an optimal control problem for a simple
transportation network from the social and user perspective.
By solving the social problem using a Lagrange multiplier
approach, we gave an implementation of the feedback law
in terms of local prices and local states that allows for a
distributed implementation. Furthermore, these prices aligned
the two problem in a budget neutral way so that the nodes are
never worse off than if they had been on their own.
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APPENDIX

In the appendix we will derive the optimal Lagrange multipliers
λ [t0 + τ] in terms of z[t0− 1] and u[t0− 2]. We will show that
each λ can be found as a sum of the the corresponding node
levels in Lemma 4. These node levels can in turn be found by
studying a time shifted aggregate level as shown in Lemma 5.
This shifted aggregate can then be written in terms of a non
shifted aggregate at t0−1 in Lemma 6.
Lemma 4. The optimal Lagrange multipliers are given by

λi[t0] =
T

∑
t=t0

α
t−t0
(
bi−qizi[t]

)
.

Proof. We have from (16) that λi[T ] = bi−qizi[T ] and λi[t] =
bi−qizi[t]+αλi[t +1]. From that the lemma follows trivially.

Next we show how each node level can be written in terms of a
time shifted level vector.
Lemma 5. The optimal inventory levels satisfy

zi[t0 + k] =


γi+k

αkqi

i+k

∑
j=1

z j[t0 + k+(i− j)]
αk+i− j i+ k ≤ N

γN

αN−iqi

N

∑
j=1

z j[t0 + k+(i− j)]
αN− j i+ k > N.

(19)

Proof. We start by showing the lemma for k = 0. Using (17)
gives

z2[t] =
αq1

q2
z1[t +1]⇒

(1+
α2q1

q2
)z2[t] =

α2q1

q2

(
z1[t +1]

α
+ z2[t]

)
⇒

z2[t] =
α2γ1

q2 +α2γ1

(
z1[t +1]

α
+ z2[t]

)
.

Now assume that (19) holds for i−1 and k = 0. Then using (17)
again gives

zi[t] =
αqi−1

qi
z(i−1)[t +1]

=
αqi−1

qi

γi−2

qi−1 + γi−2

(
i−1

∑
j=1

z j[t +((i−1)− j)]
α(i−1)− j

)
Which gives that(

1+
α2γi−1

qi

)
zi =

α2γi−1

qi

(
i

∑
j=1

z j[t +(i− j)]
α i− j

)
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From which it follows that the lemma holds for k = 0. Now
assume that the lemma holds for k−1. Then if i+ k ≤ N

zi[t0 + k] =
qi+1

αqi
zi+1[t0 + k−1] =

qi+1

αqi

γ(i+1)+(k−1)

αk−1qi+1

i+1+k−1

∑
j=1

z j[t0 +(k−1)+((i+1)− j)]
α(k−1)+(i+1)− j

=
γi+k

αkqi

i+k

∑
j=1

z j[t0 + k+(i− j)]
αk+i− j

For i+ k > N define k̂ and t̂0 so that

i+ k̂ = N

t̂0 + k̂ = t0 + k.
(20)

Then using that zi[t0 + k] = zi[t̂0 + k̂] gives the second part.

Finally, we will show that the time shifted level vector can be
written in terms of z[t0−1].
Lemma 6. The optimal z for (2) satisfies for i+ k ≤ N:

i+k

∑
j=1

z j[t0 + k+(i− j)]
αk+i− j = α

i+k

∑
j=1

(
z j[t0−1]+u j[t0−2]

)
and for i+ k > N:

N

∑
j=1

z j[t0 + k+(i− j)]
αN− j = α

k+i−N+1
N

∑
j=1

(
z j[t0−1]+u j[t0−2]

)
Proof. We start with the first equality. Using that

z j[t +n] = α
n+1(z j[t−1]+u j[t−2])

−
n−1

∑
τ=0

α
(n−1)−τ u j−1[t + τ]+

n−2

∑
τ=0

α
n−1−τ u j[t + τ],

we have for i+ k ≤ N:
i

∑
j=1

z j[t0 + k+(i− j)]
αk+i− j = α

n

∑
j=1

(
zi[t0−1]+ui[t0−2]

)
+α

−1−τ

( i

∑
j=1

k+(i− j)−2

∑
τ=0

u j[t0 + τ]−
i

∑
j=1

k+(i− j)−1

∑
τ=0

u j−1[t0 + τ]
)

Since u0 = 0 and k+(i− j)− 2 < 0 for j > i− 2 the last row
equals to zero:

i−2

∑
j=1

k+(i− j)−2

∑
τ=0

u j[t + τ]−
i−1

∑
j=2

k+(i− j)−1

∑
τ=0

u j−1[t + τ] = 0

For the second equality we use (20) again,

N

∑
j=1

z j[t0 + k+(i− j)]
αN− j =

N

∑
j=1

z j[t̂0 + k̂+(i− j)]

α k̂+i− j

= α

N

∑
j=1

(
z j[t̂0−1]+u j[t̂0−2]

)
= α

k−(N−i)+1
N

∑
j=1

(
z j[t0−1]+u j[t0−2]

)
Where we have used that t̂0− t0 = k− k̂ = k− (N− i) and that
the system is closed.

We also need the following lemma, which shows that there exist
a boundary effect in the optimal controller that makes some of
the states locally optimal.

Lemma 7. The optimal inventory levels satisfy

zi[t] =
bi

qi
∀t ≥ T − (i−2), i≥ 2.

Proof. We start by showing the lemma for i = 2. As u1[T −1]
only affects z2[T ], the optimal value corresponds to maximizing
the local utility, so that z2[T ] = b2/q2. Thus

u1[T −1] =−b2

q2
+α(z2[T −1]+u2[T −2])

and z2[T ] = b2/q2, independent of all other ui[t].

Now assume that the lemma holds for all i≤ n. Then ui[t] only
needs to consider zi+1 for all t ≥ T − i. Thus the optimal un[t]
satisfies

un[t] =−
bn+1

qn+1
+α(zn+1[t]+un+1[t−1])

∀t ≥ T −n and

zn+1[t] =
bi+1

qi+1
∀t ≥ T − (n−1).

Thus the Lemma holds for all n.

We are now ready to state the following proposition, which
gives expressions for the optimal λ .
Proposition 8. Let m = min(T − t0− (i−1),N) and

Ξi(t0,τ) = α
1−τ

(
m

∑
j=i+τ

γ j

j

∑
k=1

zk[t0−1]+uk[t0−2]+

T−t0+1

∑
j=N+1

γNα
2( j−N)

N

∑
k=1

zk[t0−1]+uk[t0−2]

)
Then the optimal λ ’s are given by

λi[t0 + τ] =
T−(i−1)

∑
t=t0+τ

α
t−(t0+τ)bi−Ξi(t0,τ)

Proof. From Lemma 4 and 7 we have that

λi[t0 + τ] = α
−τ

T−t0−(i−1)

∑
k=τ

α
k
(

bi−qizi[t0 + k]
)

Combining Lemma 5 and 6 gives that

α
kqizi[t0 + k] =
αγi+k

i+k

∑
j=1

z j[t0−1]+u j[t0−2] i+ k ≤ N

αγNα
2(k+i−N)

N

∑
j=1

z j[t0−1]+u j[t0−2] i+ k > N

Which gives that

α
−τ

T−t0−(i−1)

∑
k=τ

α
kqizi[t0 + k] =

α
1−τ

( m

∑
j=i+τ

γ j

j

∑
k=1

zk[t0−1]+uk[t0−2]

+
T−t0+1

∑
j=N+1

γNα
2( j−N)

N

∑
k=1

zk[t0−1]+uk[t0−2]
)
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