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Abstract: This paper proposes a multi-frequency controller design scheme for Markov jump
systems (MJSs) based on the self-triggered strategy in a resource-aware way. Firstly, a
derandomization technique is introduced to make sure the transition probability information is
included in the finite frequency specification analysis. Then, a self-triggered policy is developed
to update the control input of the system via the history measurement. Finally, sufficient
conditions are deduced that guarantee the multiple range frequency performances and the
reduction of computation and communication occupation for the controlled MJSs, simultanously.
The cart- spring system is employed to illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Most feedback control approaches are implemented by the
traditional time-triggered scheme, which is sampling and
updating in a constant interval. This triggering pattern
may be conservative that wastes the usage in some cases.
Especially for multiple tasks, communication bandwidth,
batteries, and computation abilities are limited. To this
end, some resource-aware sampling strategies are devel-
oped. Event-triggered control is an aperiodic scheme which
only updates the control input when the predefined thresh-
old conditions are satisfied (Tabuada (2007)). However,
event-triggered scheme needs extra-dedicated hardware to
monitor the threshold continuously. On the contrary, the
self-triggered policy is another aperiodic scheme. Under
this paradigm, the execution intervals are adjusted adap-
tively to drag the trajectories back to the equilibrium
point when far from the equilibrium and relax the update
frequency to save the resource usages when close to the
equilibrium (Heemels et al. (2012)). Recent years, the self-
triggered policy has been widely studied in varies fields
such as trajectory tracking of unicycle-type robots (Cao
et al. (2019)), the consensus of multiagent systems (Mi
et al. (2020)), formation control of nonholonomic robots
(Santos et al. (2019)), etc.

As a special type of hybrid systems, Markov jump systems
(MJSs) can be described by the continuous state evolution
and the discrete mode transition obeying a Markov chain.
MJSs have been widely applied for modeling a variety of
real systems like economic, power, and failure-prone man-
ufacturing process (Shi et al. (2015), Zhu et al. (2019)). As
for the triggering strategy of MJSs, most results are related

to event-driven such as Lin et al. (2019) and Cheng et al.
(2018)). It is difficult to fuse the self-triggered scheme into
MJSs synthesis. A recent attempt of self-triggered control
for MJSs was proposed in (Xie et al. (2018)). However, in
(Xie et al. (2018)), only constant disturbances have been
considered that limits the application of the method.

However, not only the time-varying but also the finite
frequency domain characteristics of the external distur-
bance should be taken into consideration in controller
design. In many engineering processes, whether it is system
disturbance or reference input signal, its energy often con-
centrates only on some finite frequency bands. As a result,
finite frequency specifications take an important role on
MJSs analysis and synthesis, and a considerable amount of
related literature has been published including H∞ control
(Luan et al. (2019)), fault detecting (Zhou et al. (2018)),
filter design (Wan et al. (2019)), and so on. However,
the aforementioned work ignored the effect of transition
probabilities when finite frequency analysis which lead-
s to the conservativeness. Moreover, to optimize system
performance in frequency domain, different performance
indexes are required. Therefore, how to design controllers
to ensure the multi-frequency performance for MJSs is of
importance in both theory and practice. Furthermore, how
to implement the control law in a resource-friendly pattern
would be a challenging and interesting issue.

Based on the aforementioned discussion, this paper ad-
dresses the issue of multi-frequency controller design for
MJSs based on a self-triggered strategy. The main con-
tributions are summarized in the following: (1) a novel
self-triggered scheme is proposed to adjust the sampling
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and updating intervals according to the last measurement;
(2) the desired multiple range frequency performances are
guaranteed via the designed self-triggered controllers. Con-
sequently, the designed controllers ensure the controlled
MJSs satisfying the predefined multiple range frequency
performances and reduce the communication and compu-
tation usages, simultaneously.

The paper is organized as follows. Section 2 formulates the
preliminary introduction. The self-triggered strategy and
H∞ controller restricted to multiple range frequency per-
formances are developed in Section 3. Section 4 presents
a two-mode cart-spring system to verify the effectiveness
of the proposed method. Finally, Section 5 concludes the
paper.

Notations: Rn and In represent the n-dimensional Eu-
clidean space and unit matrix, respectively. X is a neg-
ative define matrix if X < 0. AT and ‖A‖ represent
the transpose and the spectral norms of A, respectively.
He{·} denotes A + AT. The Kronecker product operator
and expectation operator are expressed as ⊗ and E {·},
respectively. The nullspace and the range space of A are
denoted as = (A) and < (A), respectively. A⊥ denotes a
matrix satisfies that =

(
A⊥
)

= < (A) and A⊥A⊥T > 0.

2. PROBLEM PRELIMINARIES

Consider the following continuous-time Markov jump sys-
tem (MJS):{

ẋ(t) = A(r(t))x(t) +B(r(t))u(t)+Bw(r(t))w(t)
z(t) = C(r(t))x(t) +D(r(t))u(t)

, (1)

where x(t), u(t) and z(t) denote the state vector of the sys-
tem, the control input, and controlled output, respectively.
The external disturbance is denoted by w(t) and satisfies∫ T1

0
wT(t)w(t)dt ≤ W , where W is a positive constant,

characterizing the upper energy bound of noises. Further-
more, A(r(t)), B(r(t)), Bw(r(t)), C(r(t)) and D(r(t)) are
real defined mode-dependent matrices with appropriate
dimensions. To simplify the presentation, system matrices
A(r(t)), B(r(t)), Bw(r(t)), C(r(t)) and D(r(t)) are shown
by Ai, Bi, Bwi, Ci and Di, respectively. The random
process {r(t), t ≥ 0}, which can take values on a finite
set S = {1, 2, . . . , s}, is a Markov chain with the following
transition probability:

Pr{r(t+ ∆t) = j|r(t) = i} =

{
πij∆t+ o(∆t), i 6= j
1 + πii∆t+ o(∆t), i = j

,

where ∆t > 0, lim
∆t→0

o(∆t)/∆t → 0, πij ≥ 0 for i, j ∈ S,

i 6= j and πii = −
s∑

j=1,i6=j
πij for each mode i.

To fully analyse the effects of transition probabilities
to the finite frequency specifications, a derandomization
technique is introduced as follow.

Define indicator function 1A by (Benjelloun et al. (1997))

1A(ω) =

{
1 if ω ∈ A
0 otherwise

.

Denote

qi(t) = E
{
‖x(t)‖1{r(t)=i}

}
, (2)

Combining (1) and (2) gives

dqj(t) = E
{
x(t)d1{r(t)=j} + dx(t)1{r(t)=j}

}
= Aiqj(t)dt+

s∑
i=1

πijqj(t)dt+Biu(t)dt+Bwiw(t)dt,
(3)

Defining

q(t) =
(
q1

T(t) · · · qsT(t)
)T

, ũ(t) =
(
uT(t) · · · uT(t)

)T
,

w̃(t) =
(
wT(t) · · · wT(t)

)T
, z̃(t) =

(
zT(t) · · · zT(t)

)T
,

then MJS (1) could be transformed to (Luan et al. (2018)){
q̇(t) = Aq(t) + Bũ(t) + Bww̃(t)
z̃(t) = Cq(t) +Dũ(t)

, (4)

where
A = diag{A1, A2, . . . , As}+ Π⊗ In,
B = diag{B1, B2, . . . , Bs}, Bw = diag{Bw1, Bw2, . . . , Bws},
C = diag{C1, C2, . . . , Cs}, D = diag{D1, D2, . . . , Ds},

Π =


π11 π21 · · · πs1
π12 π22 · · · π11

...
...

. . .
...

π1s π2s · · · πss

.

Remark 1 : The transition probabilities are assumed to be
known in this paper, and the accuracy of the proposed
algorithm depends on the precision of matrix Π.

According to the self-triggered scheme in (Heemels et al.
(2012)), the control input of the extended system (4) is
defined as

ũ(t) = Kq(tk), t ∈ [tk, tk+1) , (5)

where tk is the last sampling instant, Ki is the control gain
of the subsystem i, and K = diag{K1,K2, . . . ,Ks}. Then,
for t ∈ [tk, tk+1), the closed-loop self-triggered system
based on system (4) could be formulated as:{

q̇(t) = (A+ BK)q(t) + BKetk(t) + Bww̃(t)
z̃(t) = Cq(t) +Dũ(t)

, (6)

where etk(t) := q(tk) − q(t), t ∈ [tk, tk+1) represents
the measurement errors. The main objective of this paper
is designing controllers (5) to ensure the stability of the
closed-loop self-triggered system (6) and the multiple
range frequency performances as follows:
a) disturbance attenuation ability constraint

|Gz̃w̃(jω)| = sup
|w̃(t)|6=0

‖z̃(t)‖2
‖w̃(t)‖2

< γ, (7)

b) control consumption index

|Gũw̃(jω)| = sup
|w̃(t)|6=0

‖ũ(t)‖2
‖w̃(t)‖2

< ρ. (8)

3. MAIN RESULTS

In this section, a self-triggered mechanism for the derived
extended deterministic system (6) is proposed. Under this
paradigm, sufficient conditions that ensure the required
multiple range frequency performances are deduced while
saving the resources usages.
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3.1 Self-triggered implementation for MJS

The key of self-triggered policy is the calculation of the
next execution instant only based on the last measure-
ment. The function of the self-triggered execution interval
is denoted by τ(q(tk)). To obtain the aforementioned func-
tion, the following event-triggering condition is employed

etk(t)Φetk(t) ≥ εqT(t)Φq(t). (9)

The specific algorithm of self-triggered execution intervals
function is detailed in Theorem 1.

Theorem 1. For given scalars λ, ε and the appropriate
dimensions matrices K, and Φ = diag{Φ1,Φ2, . . . ,Φs},
the self-triggered policy is constructed if the following
execution intervals function is existed

τ(q(tk)) = tk+1 − tk =
1

M1
ln

[
M1N

M2
+ 1

]
, (10)

whereM1 =
∥∥∥√ΦA

√
Φ
−1
∥∥∥,N =

√
ε(1−λ)

1−ε(1−λ−1)q
T(tk)Φq(tk),

M2 =
[∥∥∥√ΦA

∥∥∥+
∥∥∥√ΦBK

∥∥∥] ‖q(tk)‖+W
∥∥∥√ΦBw

∥∥∥.

Proof. According to (6), we obtain the following property
for ∀ t ∈ [tk, tk+1)

d
∥∥∥√Φetk(t)

∥∥∥
dt
≤
∥∥∥√ΦA

√
Φ
−1
∥∥∥∥∥∥√Φetk(t)

∥∥∥+W
∥∥∥√ΦBw

∥∥∥
+
[∥∥∥√ΦA

∥∥∥+
∥∥∥√ΦBK

∥∥∥] ‖q(tk)‖ .

.(11)

Let y(t) =
∥∥∥√Φetk(t)

∥∥∥, (11) could be formulated as

dy(t)

dt
≤M1y(t) +M2, (12)

Considering dh(t)
dt = M1h(t) +M2, and applying Lemma 1

(see the Appendix), one gets∥∥∥√Φetk(t)
∥∥∥ ≤ M2

M1

[
eM1(t−tk) − 1

]
. (13)

Considering 1 − ε(1 − λ−1) > 0 and t ∈ [tk, tk+1),
a combination of condition (9) and Lemma 2 (see the
Appendix) gives

∥∥∥√Φetk(t)
∥∥∥ <√ ε(1− λ)

1− ε(1− λ−1)
qT(tk)Φq(tk). (14)

Then, the system (6) is triggered if the above inequality
is violated. Combining (13) and the triggering threshold
leads to

eM1(t−tk) − 1 ≥ M1N

M2
. (15)

By taking natural logarithm, condition (10) could be easily
derived from (15), which completes the proof.

Remark 2 When the execution interval function τ( • )
related to the current measurement q(t), the proposed
self-triggered strategy degenerates into the event-triggered
schemes. In comparison, continuously monitoring of the
system states with extra hardware is not necessary for the
developed self-triggered policy.

3.2 Controller design restricted to multiple range frequency
performances

Based on the self-triggered scheme derived in Theorem 1,
the following Theorem provides an algorithm to design
controller meeting the desired multiple range frequency
specifications.

Theorem 2. For predefined finite frequency indices γ, ρ,
and given frequency ωl and ωh, if symmetric matrices W̄ ,
Pl, Ph, Ql > 0, Qh > 0, and matrices K̄, Φ̄, Yl, and Yh are
existed, such that−Ql 0 Pl 0

0 I 0 0
Pl 0 ω2

lQl 0
0 0 0 −γ2I

 < He

 −W̄Rl
Yl
Vl

C2W̄Rl

 , (16)

Qh 0 Ph 0
0 I 0 0
Ph 0 −$2

hQh 0
0 0 0 −ρ2I

 < He

−W̄Rh
−Yh
Vh
K̄Rh

 , (17)

(
Λ BK̄
∗ Φ

)
< 0, (18)

where
Vl = AW̄Rl+BwYl+BK̄Rl, Vh = AW̄Rh+BwYh+BK̄Rh,

Φ̄ = W̄−1ΦW̄−1, Λ = W̄AT +AW̄ +
(
BK̄
)T

+ BK̄ + εΦ̄.

Then, the self-triggered system (6) is said to be stochas-
tically stable and meets the desired multiple range fre-
quency performances. The controller gains are given by
K = K̄W̄−1.

Proof. From GKYP Lemma, low-frequency constraint (7)
is equivalent to(

Ā Bw
I 0

)T

Ξ

(
Ā Bw
I 0

)
+

(
C D
0 I

)T

Ω

(
C D
0 I

)
< 0,(19)

where Ā = A+ BK.

By Schur complement Lemma and reconstruction, condi-
tion (16) can be transformed to

ΓWΛ + (ΓWΛ)T + (JΞJT +HΩHT) < 0, (20)

where

Γ =
[
−I Ā Bw

]T
,Λ = [ 0 I 0 ] , J =

[
I 0 0
0 I 0

]T

, H =[
0 C 0
0 0 I

]T

, Ξ =

[
−Ql Pl
Pl ω2Ql

]
,Ω =

[
I 0
0 −γ2I

]
.

According to Lemma 3 (see the Appendix), equation (20)
is equivalent to

Γ⊥(JΞJT +HΩHT)Γ⊥T < 0, (21)

ΛT⊥(JΞJT +HΩHT)ΛT⊥T < 0. (22)

Combining equations (21) and (22) results in equation
(19), which implies the finite frequency index (7) can be
ensured by condition (16). That means the self-triggered
system (6) meets the required disturbance attenuation
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level in the low-frequency bands. Similarly, the desired
control consumption index (8) could be guaranteed by
condition (17).

In the sequel, the stochastic stability of the self-triggered
system is proved. Consider Lyapunov candidate function

V (q(t)) = qT(t)Pq(t).

For w̃(t) = 0, we have

V̇ (x(t)) = q̇T(t)Pq(t) + qT(t)P q̇(t)

= ηT(t)

[
ĀTP + P Ā PBK

∗ 0

]
η(t),

(23)

where Ā = A+ BK, ηT(t) = ( qT(t) eT(tk) ).

According to the self-triggered policy (10), one has the
following inequality for t ∈ [tk, tk+1)

V̇ (q(t)) ≤ ηT(t)Θη(t), (24)

where Θ =

[
ĀTP + P Ā+ εΦ PBK

∗ −Φ

]
.

Pre-multiply and post-multiply inequality (18) by
diag

{
W̄−1, I

}
implies Θ < 0, where W̄−1=P . According-

ly, V̇ (x(t)) ≤ 0. Thus, it can be deduced that

lim
t→∞

q(t) = 0,

which ensures the stability of the closed-loop system (6).
This means the original MJS (1) is stochastically stable.
This completes the proof.

Remark 3 In Theorem 2, the transition probabilities of
original MJSs are fused with extended system matrix A.
In this way, the effect of randomness on the finite frequency
performance is analyzed. Furthermore, the low and high-
frequency performances both included in the proposed
algorithm.

4. SIMULATION

To verify the effectiveness and applicability of the pro-
posed method, a two-mode cart-spring system is employed
and the system parameters and initial conditions are given
in Table 1.

Table 1. System parameters

Mode 1 Mode 2

Ai

 0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 0 0

  0 0 1 0
0 0 0 1
−2 2 0 0
2 −2 0 0


Bi

(
0 0 0 1

)T (
0 0 0 1

)T
Bwi

(
0 0 1 0

)T (
0 0 1 0

)T
Ci

(
0 1 0 0

) (
0 1 0 0

)
Π =

(
−0.8 0.8
0.2 −0.2

)
, ωl = 2,ωh = 10,ε = 0.2

By solving LMIs (16)-(18), the controller gains and self-
triggering parameters are obtained:

K1 = ( 4.8210 −4.8932 −1.8415 6.2955 ) ,

K2 = ( 0.2901 −0.2462 0.3160 −1.2891 ) ,

Φ1 =

 0.4029 0.4212 −0.0428 0.1826
0.4212 0.5538 0.1318 −0.1608
−0.0428 0.1318 −0.0206 −0.2051
0.1826 −0.1608 −0.2051 0.3944

 ,

Φ2 =

−0.0510 0.0533 0.0534 −0.0588
0.0533 −0.0590 0.0063 0.0141
0.0534 0.0063 0.2202 −0.3008
−0.0588 0.0141 −0.3008 0.2316

 .

The predefined indices are γ = 0.5, ρ = 1.45. The ini-
tial condition and extra noise are considered as x0 =

[ 0.5 0.2 1.5 1.4 ]
T

and w(t) = 0.1e1−t, respectively.
Putting controller gains into MJS (1) and implementing it
by the proposed self-triggered policy with the calculated
triggering matrices, Fig. 2 to Fig. 7 show the simulation
results of the considered example.

Fig. 1. State responses of the open-loop MJS.

Fig. 2. State responses of the self-triggered MJS.

In particular, the state responses of the open-looped and
the controlled system are shown in Fig. 1 and Fig. 2,
respectively. It could be seen that the closed-loop system is
stable under the designed controller while the free system
is unstable. Fig. 3 presents the execution intervals of
the self-triggered MJS. We could see that the intervals
increase as the state of the controlled system close to the
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Fig. 3. Execution intervals of the self-triggered policy.

equilibrium point, which decreases the sampling time to
save resources.

Fig. 4. Frequency responses of the self-triggered MJS.

The frequency responses of the controlled system are
shown in Fig. 4. The shadow area represents the controlled
energy-consuming constraint and disturbance suppression
index in high- and low-frequency bands, respectively. The
red dashed line represents the low-frequency performance
|Gz̃w̃(jω)| while the blue solid line denotes the high-
frequency performance |Gũw̃(jω)|. It is obvious from Fig. 4
that both the expected low- and high-frequency specifica-
tions are guaranteed, which proves the effectiveness of the
proposed approach. Moreover, the curve |Gz̃w̃(jω)| does
not meet the constraint γ on the high frequency in Fig.
4. This displays the merit of the proposed method that
there is no need to satisfy the constraints in full frequency
bands to leave some margin for other performance of the
controlled system.

5. CONCLUSIONS.

The self-triggered control issue of MJSs under multiple
range frequency restrictions is addressed in this paper.
The self-triggered strategy is developed to implement the
extended system in a resources-saving pattern. Under
this scheme, the sampling and updating are self-adjusting

according to the degree of the system stability. Then,
a self-triggered controller is designed to guarantee the
expected multiple range frequency specifications while
reduces the resources occupation. Finally, an example is
applied to verify the validity of the proposed algorithm.
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Appendix

Lemma 1 (Khalil 2002) (Comparison Lemma) For all t ≥
0, consider continuous functions u(t), v(t) and f(t, u(t)),
if

u̇ (t) = f (t, u (t)) , u (t0) = u0,

v̇ (t) ≤ f (t, v (t)) , v (t0) = v0,

then, v(t) ≤ u(t) for all t ≥ 0, v0 ≤ u0.

Lemma 2 (Petersen et al. 1986): The following inequality
holds for arbitrary real matrices X, Y of appropriate
dimensions and any positive scalar λ > 0,

XTY + Y TX ≤ λXTX + λ−1Y TY.

Lemma 3 (Iwasaki et al. (1994)) Given matrices Γ, Λ and
Ψ with appropriate dimensions and with Ψ symmetrical,
there exists a matric F such that

ΓFΛ + (ΓFΛ)
T

+ Ψ < 0,

if and only if the following holds

Γ⊥ΨΓ⊥T < 0, ΛT⊥ΨΛT⊥T < 0.

Lemma 4 (Iwasaki et al. (2005)): Considering the self-
triggered system (6), the following two expressions are
equivalent for a symmetric matrix Ω:
1) The inequality of finite frequency meets(

G(ejω)
I

)T

Ω

(
G(ejω)
I

)
< 0 ∀ω ∈ Θ.

2) There exist matrices satisfying

(
A B
I 0

)T

Ξ

(
A B
I 0

)
+

(
C D
0 I

)T

Ω

(
C D
0 I

)
< 0,

where ω denotes the frequency range, Ξ and Ω takes differ-
ent values for different frequency ranges and performances.
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