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Abstract: In this paper, we propose a novel approach for the identification from data of
an unknown nonlinear function together with its derivatives. This approach can be useful,
for instance, in the context of nonlinear system identification for obtaining models that are
more reliable than the traditional ones, based on plain function approximation. Indeed, models
identified by accounting for the derivatives can provide a better performance in several tasks,
such as multi-step prediction, simulation, and control design. We also develop an optimality
analysis, showing that models derived using this approach enjoy suitable optimality properties
in Sobolev spaces. We finally demonstrate the effectiveness of the approach with a numerical
example.
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1. INTRODUCTION

Consider a nonlinear discrete-time system, represented in
the following input-output regression form:

yt+1 = fo (xt) + ξt+1 (1)

xt = (yt, . . . , yt−mu+1, ut, . . . , ut−mu+1)

where ut ∈ U ⊂ Rnu is the input, yt ∈ Rny is the output,
ξt ∈ Ξ ⊂ Rnξ is a disturbance and t ∈ Z is the discrete
time index. The sets U and Ξ are compact with non-
empty interior. The regression function fo is supposed to
be unknown. In this paper, we consider the problem of
obtaining from a batch of experimental data an estimate

f̂ of fo such that (i) f̂ approximates fo, and (ii) the first

derivatives of f̂ approximate the first derivatives of fo.

The key motivation for considering this problem is the
following. In general, when estimating a regression model
that is to be used for control, e.g., of the type ŷt+1 =

f̂(yt, . . . , yt−mu+1, ut, . . . , ut−mu+1), it is of paramount
importance to capture the sensitivities of the output with
respect to the commands ut, . . . , ut−mu+1, and these are

given, to first order approximation, by the derivatives of f̂
w.r.t. these variables. Failing to get these sensitivities with
sufficient precision may result in a model that responds to
commands in a poor way.

The literature appears to be quite scarce on the topic of
approximating from data a function and its derivatives.
The existing methods are based on different classes of
approximators, including radial basis functions (Mai-Duy
and Tran-Cong, 2003), neural networks (Xie and Cao,
2011; Pukrittayakamee et al., 2011; Avrutskiy, 2018), and
deep neural networks (Czarnecki et al., 2017). The numer-
ical results presented in these papers clearly show that
using the information about the function derivatives leads
to significant improvements of the model accuracy and
generalization capabilities. This literature is interesting

and effective in showing the potential of techniques re-
lying on derivative identification. However, only a limited
number of works carry out a theoretical analysis about
the approximation properties of these techniques (Hornik
et al., 1990; Xie and Cao, 2011; Czarnecki et al., 2017),
and the provided results are often non-constructive, in
the sense that they just prove existence of the required
approximating function. Also, we observe that the existing
techniques allow for the identification of a model, but they
do not provide a description of the uncertainty associated
with this model and its predictions.

In this paper, we propose a novel identification approach
addressing all the mentioned issues. The approach allows
the identification of a function together with its deriva-
tives, and it is completely based on convex optimization.
We develop a theoretical optimality analysis, showing that
models obtained using the proposed approach enjoy cer-
tain optimality properties in Sobolev spaces. We finally
present a numerical example, concerned with multi-step
prediction of the Chua chaotic circuit. This example shows
that the approach may provide significantly more accu-
rate and reliable models than the traditional ones based
on plain function approximation (i.e., identified without
considering the derivatives).

2. NOTATION AND PRELIMINARIES

A column vector x ∈ Rnx×1 is denoted by x =
(x1, . . . , xnx). A row vector x ∈ R1×nx is denoted by

x = [x1, . . . , xnx ] = (x1, . . . , xnx)
>

, where > indicates
the transpose. The `p norm of a vector x = (x1, . . . , xnx)
is defined as usual and denoted with ‖x‖p. The 2-norm
(maximum singular value norm) of a matrix Φ ∈ Rm×n
is denoted by ‖Φ‖2, and the ∞-norm is denoted by
‖Φ‖∞

.
= maxi=1,...,m

∑n
j=1 |Φij |. The Lp norm of a func-

tion with domain X ⊆ Rnx and codomain in R, is defined

as ‖f‖p
.
=
[∫
X
‖f (x) ‖ppdx

] 1
p , for p ∈ (1,∞), and as
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ess supx∈X ‖f (x) ‖∞ for p = ∞. These norms give rise
to the well-known `p and Lp ≡ Lp(X) Banach spaces.
The S1p Sobolev norm of a differentiable function with
domainX ⊆ Rnx and codomain in R, is defined as ‖f‖Sp

.
=∑nx

i=0 ‖f (i)‖p, where f (i)
.
= f for i = 0, and f (i)

.
= ∂f

∂xi
for

i > 0. Note that the superscript (i), with i > 0, here
denotes the partial derivative of a function with respect to
the i-th variable, and not the i-th order derivative. The
Sobolev norm gives rise to the S1p ≡ S1p(X) Sobolev
space, also denoted in the literature with W1p or W1,p.

Definition 1. The Sobolev space S1p(X) is the set of
all functions f ∈ Lp(X) such that, for every i > 0,

the derivative f (i) exists and f (i) ∈ Lp(X): S1p(X)
.
={

f : f (i) ∈ Lp(X), i = 0, . . . , nx
}

. 2

Sobolev norms (and related spaces) involving higher order
derivatives can also be found in the literature. The concept
of weak derivative, which is a generalization of the stan-
dard derivative, is often used. In this paper, the interest is
for the case of first order standard derivatives.

3. PROBLEM FORMULATION

Consider a function fo ∈ S1p(X), taking values z = fo(x),
where x ∈ X ⊂ Rnx , X is a compact set, and z ∈ R.
Suppose that fo is not known, but a set of noise-corrupted
input-output data from the unknown function is available:

D =
{
x̃k,
{
z̃ik
}
nx
i=0

}L
k=1

(2)

where x̃k ∈ X are the measurements of the function
argument, z̃0k ≡ z̃k are the measurements of the function
output and z̃ik, i > 0, are the measurements of the i-th
partial derivative output. The data (2) can be described
by

z̃ik = f (i)o (x̃k) + dik, i = 0, . . . , nx, k = 1, . . . , L, (3)

where dik are noises and d0k ≡ dk. If the data are generated
by the system (1), we have that z̃0k ≡ z̃k = ỹk+1, and the
noise terms account for the disturbance ξt and possible
measurement errors.

We remark that in real-world applications, only the output
of the function is usually measured, while the outputs
of the derivatives may not be available. This situation is
dealt with in Novara et al. (2019), where an algorithm is
presented for estimating the derivative output samples z̃ik,
i > 0, from the input-output function samples x̃k and z̃k.

Now, assume that the noise sequences di = (di1, . . . , d
i
L)

are unknown but bounded:

‖di‖q ≤ µi (4)

where ‖·‖q is a vector `q norm and 0 ≤ µi <∞. In the case

q = 2, it can be convenient to write µi as µi =
√
Lµ̆i, with

0 ≤ µ̆i < ∞. In some situations, the noise bounds µi are
known from the physical knowledge about the system of
interest and the involved sensors. In other situations, these
bounds are not known and have to be estimated from the
available data. An algorithm is provided in Novara et al.
(2019) for performing this estimation.

In this paper, we consider the problem of identifying

from the data (2) an “accurate” approximation f̂ of the

unknown function fo, such that also the derivatives f̂ (i),

i > 0, of f̂ are “accurate” approximations of the deriva-

tives f
(i)
o , i > 0, of fo. The accuracy is measured by means

of the following identification error e(f̂)
.
= ‖fo − f̂‖Sp,

where ‖ · ‖Sp is a Sobolev norm. In other words, we are
looking for an approximation of the unknown function fo
in the S1p Sobolev space. Besides the goal of obtaining such
an approximation, we also aim at evaluating guaranteed
estimate bounds for fo.

A parametrized structure is adopted for the approximating
function:

f̂ (x) =

N∑
j=1

ajφj (x) (5)

where φj ∈ S1p(X) are given basis functions and aj ∈ R
are coefficients to be identified. The choice of the basis
functions is clearly an important step of the identification
process, see, e.g., (Sjöberg et al., 1995; Novara et al.,
2011). In several cases, the basis functions are known
from the physical knowledge of the system of interest.
In other cases the basis functions are known a priori to
belong to some “large” set of functions, see, e.g., the
examples presented in Section 6 and in (Novara, 2011).
In yet other cases, the basis functions are not known a
priori and their choice can be carried out by considering
the numerous options available in the literature (e.g.,
Gaussian, sigmoidal, wavelet, polynomial, trigonometric,
etc.); see (Sjöberg et al., 1995) for a discussion on the main
features of the most used basis functions and guidelines for
their choice.

Problem 1. From the data set D in (2), identify an esti-

mate f̂ of the form (5), such that:

(i) the Sobolev identification error e(f̂) is small;
(ii) the estimate is equipped with guaranteed uncertainty

bounds on the unknown function fo and its deriva-
tives.

The concept of “small” identification error will be formal-
ized in Section 5, according to suitable optimality criteria.

In the reminder of the paper, for numerical conditioning
reasons, we assume that the components of x in z =
fo(x) have similar ranges of variation. This assumption
can always be met through a suitable rescaling of the
components.

4. IDENTIFICATION METHODS

In this section we propose two methods for solving Prob-
lem 1, both based on convex optimization. In Section 5
it will be shown that functions identified by means of
these methods enjoy suitable optimality properties. In this
section, we suppose that the derivative output samples z̃ik,
i > 0 are available or estimated using the algorithm in
Novara et al. (2019).

A simple yet fundamental observation is that the approx-
imating function (5) and its derivatives are given by

f̂ (i) (x) =

N∑
j=1

ajφ
(i)
j (x) , i = 0, . . . , nx. (6)

On the basis of this observation we can present the first
identification method.

Method 1. -

(1) Define
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z̃i
.
=

 z̃
i
1
...
z̃iL

 , Φi
.
=

 φ
(i)
1 (x̃1) · · · φ(i)N (x̃1)

...
. . .

...

φ
(i)
1 (x̃L) · · · φ(i)N (x̃L)

 . (7)

(2) Estimate the vector a = (a1, . . . , aN ) of model coef-
ficients in (6) by solving the following convex opti-
mization problem:

a = arg min
α∈RN

‖α‖r (8)

s.t. ‖z̃i − Φiα‖q ≤ µi, i = 0, . . . , nx, (9)

where the integers r, q indicate suitable vector norms.

The rationale behind this method can be explained as
follows: the constraints (9) ensure that the resulting model
(6) is consistent with the available information on the
noises corrupting the data. If the optimization problem is
not feasible, it means that either the chosen basis function
set is not sufficiently rich or the noise bounds ‖di‖q ≤ µi

are too small. The minimization of the coefficient vector
`r norm in (8) is carried out for regularization reasons,
allowing also to limit the issue of overfitting. Typical norms
that can be used are the `2 and `1 norms. In particular,
the `1 norm allows one to obtain a sparse coefficient vector
a (see, e.g., (Fuchs, 2005; Tibshirani, 1996; Tropp, 2006;
Donoho et al., 2006)), resulting in a low-complexity model.
This is an important property, especially in view of the
model implementation on real-time processors.

We now present the second identification method.

Method 2. -

(1) Define z̃i and Φi as in (7).
(2) Estimate the vector a = (a1, . . . , aN ) of model coef-

ficients in (6) by solving the following convex opti-
mization problem:

a = arg min
α∈RN

nx∑
i=0

λi‖z̃i − Φiα‖2q + Λ‖α‖r (10)

where the integers r, q indicate suitable vector norms,
and λi ≥ 0,Λ ≥ 0 are given weights.

Problem (10) is aimed at minimizing a tradeoff between
the model fitting error on the identification data and a
regularization term. For r = 1, (10) is a Lasso problem, see,
e.g., (Tibshirani, 1996); for r = 2, it becomes a classical
Ridge regression problem, see, e.g., (Gruber, 1998). Note
that, for suitable values of the parameters µi, λi and Λ,
the optimization problems (8) and (10) are equivalent to
each other.

Remark 1. It is worth to stress the fact that Method 1 and
Method 2 are here considered in terms of the guarantees
they provide for the ensuing models, and that this paper’s
contribution lies in the specific models that lead to Sobolev
space identification through Method 1 and Method 2,
and in their analysis, and not in the actual numerical
solution of problems in (8) or (10). These problems indeed
have a well-known regularized regression structure, and
a pletora of efficient numerical methods already exist for
their solution. ?

5. OPTIMALITY ANALYSIS

In Section 4, two identification methods have been pre-
sented, allowing us to derive parameterized approxima-
tions of the unknown function fo. In this section, following

a Set Membership approach (Milanese and Vicino, 1991),
(Milanese et al., 1996), (Schweppe, 1973), (Chen and
Gu, 2000), (Milanese and Novara, 2011), (Sznaier et al.,
2009), we show that such approximations enjoy suitable
optimality properties in Sobolev spaces. The analysis and
results developed here are extensions to Sobolev spaces of
those regarding approximation in Lp spaces presented in
(Milanese and Novara, 2004, 2011).

Consider that the function fo and its derivatives are
unknown, while instead we have the experimental infor-
mation given by (2) and (3), and the prior information
given by the inclusion fo ∈ S1p(X) and the noise bounds
‖di‖q ≤ µi. It follows that fo ∈ FFSS , where FFSS is the
so-called Feasible Function Set, defined below.

Definition 2. The Feasible Function Set FFSS is defined
as FFSS

.
= {f ∈ S1p(X) : ||z̃i − f (i) (x̃) ||q ≤ µi, i =

0, . . . , nx}, where f (i) (x̃)
.
= (f (i) (x̃1) , . . . , f (i) (x̃L)). 2

In words, the Feasible Function Set is the set of all func-
tions consistent with the prior assumptions and with the
available data. The Feasible Function Set thus summarizes
all the experimental and a-priori information that can be
used for identification. If at least a function exists that
is consistent with the assumptions and the data (i.e., if
FFSS 6= ∅), we say that the assumptions are validated.
Otherwise (i.e., if FFSS = ∅), we say that the assumptions
are falsified; see (Milanese et al., 1996; Chen and Gu,
2000).

Definition 3. The prior assumptions are considered vali-
dated if FFSS 6= ∅. 2

The following theorem gives a sufficient condition for prior
assumption validation.

Theorem 1. FFSS 6= ∅ if the optimization problem (8)-(9)
is feasible.

Proof. See Novara et al. (2019). 2
If the optimization problem (8)-(9) is not feasible, it
means that either the chosen basis function set is not
sufficiently rich or the noise bounds ‖di‖q ≤ µi are
too small. In the case where reliable noise bounds are
available, a sufficiently rich basis function set has to be
found, considering the numerous options available in the
literature (e.g., Gaussian, sigmoidal, wavelet, polynomial,
trigonometric). If no basis functions are found for which
the optimization problem is feasible, a relaxation of the
noise bounds is needed.

In the reminder of the paper, it is assumed that the prior
assumptions are true and, consequently, fo ∈ FFSS . Under
this assumption, for a given approximation ĝ of fo, a
tight bound on the identification error e(ĝ) is given by
the following worst-case error.

Definition 4. We define the worst-case identification error
as WE(ĝ,FFSS)

.
= supf∈FFSS

‖f − ĝ‖Sp, where ‖ · ‖Sp is

the Sobolev norm. 2

An optimal approximation is defined as a function fop
which minimizes the worst-case approximation error.

Definition 5. An approximation fop is FFSS -optimal if
WE(fop,FFSS) = inf ĝ WE(ĝ,FFSS)

.
= R(FFSS), where

R(FFSS) is called the radius of information and is the
minimum worst-case error that can be achieved on the
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basis of the available prior and experimental information.
- 2

In other words, an optimal approximation is the best ap-
proximation that can be found on the basis of the available
prior and experimental information (this information is
summarized by the Feasible Function Set). Finding op-
timal approximations is in general hard and sub-optimal
solutions can be looked for. In particular, approximations
called almost-optimal are often considered in the litera-
ture, see, e.g., (Traub et al., 1988), (Milanese et al., 1996).

Definition 6. An approximation fao is FFSS -almost-opti-
mal if WE(fao,FFSS) ≤ 2 inf ĝ WE(ĝ,FFSS) = 2R(FFSS).
- 2

The following result gives sufficient conditions under which
an approximation (possibly obtained by the methods of
Section 4) is almost-optimal.

Theorem 2. Assume that:
i) the optimization problem (8)-(9) is feasible.

ii) the approximation f̂ given in (5)-(6) has coefficients aj
satisfying inequalities (9).

Then, the approximation f̂ is FFSS-almost-optimal.

Proof. See Novara et al. (2019). 2
This theorem shows that an approximation obtained by
Method 1 is always almost-optimal. Instead, an approx-
imation obtained by Method 2 is almost-optimal if its
coefficients satisfy inequalities (9).

In Novara et al. (2019), the optimality analysis is ex-
tended to the case where an additional Lipschitz con-
tinuity assumption is made. This assumption allows us
to prove stronger optimality properties with respect to
those discussed above. Moreover, in Novara et al. (2019),
tight uncertainty bounds are derived, for the unknown

function fo and its derivatives f
(i)
o , i = 1, . . . , nx. These

bounds quantify the modeling error and the prediction
uncertainty. They can be useful in real-world applications
for several purposes, such as robust control design (Free-
man and Kokotovic, 1996), (Qu, 1998), prediction interval
evaluation (Milanese and Novara, 2005), and fault detec-
tion (Novara, 2016). Based on the uncertainty bounds, an
algorithm for the estimation of the noise bounds µi is also
presented in Novara et al. (2019).

6. EXAMPLE: MULTI-STEP PREDICTION FOR THE
CHUA CHAOTIC CIRCUIT

The Chua circuit is a simple electronic circuit showing a
chaotic behavior, see (Chua et al., 1986). It is composed
of two capacitors, an inductor, a locally active resistor
and a nonlinear resistor. The circuit continuous-time state
equations are the following:

ẋ1 = α(x2 − x1 − ρ(x1))

ẋ2 = x1 − x2 + x3 + u+ ξc

ẋ3 = −βx2 −Rx3
y = x1

(11)

where the states x1 ∈ R and x2 ∈ R represent the voltages
across the capacitors, x3 ∈ R the current through the
inductor, u ∈ R is an external input, y ∈ R is the system
output, ξc ∈ R is a disturbance, and α ∈ R, β ∈ R and R ∈
R are parameters. In this example, the following nonlinear
resistor characteristic and parameter values are assumed:

ρ(x1) = −1.16x1 + 0.041x31, R = 0.1, α = 10.4, β = 16.5.
With this parameter values and nonlinearity, the system
exhibits a chaotic behavior and thus prediction is an
extremely hard task.

The system (11), discretized via the forward Euler method,
can be written in the following input-output regression
form:

yt = b1yt−1 + b2yt−2 + b3yt−3
+ b4ρ(yt−1) + b5ρ(yt−2) + b6ρ(yt−3)

+ b7ut−2 + b8ut−3 + ξt

(12)

where ξt is a noise accounting for the disturbance
ξc in (11) and bi are suitable parameters. Equiva-
lently, it can be written in the form (1), with xt =
(yt, yt−1, yt−2, ut−1, ut−2).

The system (11) has been implemented in Simulink. The
input u was simulated as a normally distributed random
signal with zero mean and standard deviation (std) 1. The
disturbance ξc was simulated as a normally distributed
random signal with zero mean. Two std values were
considered for this disturbance: 0.01 and 0.05. For each
of these std values, two simulations of duration 60 s were
carried out and, correspondingly, two set of data of the
form (2) were collected with a sampling time Ts = 0.01
s, corresponding to an experiment length L = 6000
for every dataset. The first dataset was used for model
identification, the second one for model validation.

For each std value of the disturbance ξc, the following
prediction models were identified from the identification
dataset.

• One-step predictor identified not using any derivative
information (P1 NOD). The predictor P1 NOD is
given by

yt+1 = f̂ (xt)

xt = (yt, yt−1, yt−2, ut−1, ut−2)
(13)

where f̂ is of the form (5). A basis function set
composed of multivariate monomials has been used,
defined as

{φj}Nj=1 = {
nx∏
i=1

xαi−1i,t ;αi = 1, 2; i = 1, . . . , nx} (14)

where xi,t is the ith component of xt and nx = 5.
This set consists of N = 2nx = 32 basis functions.
The coefficients aj in (5) were identified by Method
2, with q = 2, r = 1, λ0 = 1, λi = 0, i > 0, and
Λ = 50.

• One-step predictor identified using the true derivative
values (P1 D). The predictor P1 D is of the form (13).
The basis functions are the same as those used in
(13). The true derivative values computed from (12)
were used to construct the vector z̃i, i > 0, in (7).
The coefficients aj in (5) were identified by Method
2, with q = 2, r = 1, λ0 = 1, λi = 200, i > 0, and
Λ = 50.

• One-step predictor identified using the estimated
derivative values (P1 ED). The predictor P1 ED is
of the form (13). The basis functions are the same as
those used in (13). The derivative values estimated
by the algorithm in Novara et al. (2019) were used to
construct the vector z̃i, i > 0, in (7). The coefficients
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aj in (5) were identified by Method 2, with q = 2,
r = 1, λ0 = 1, λi = 200, i > 0, and Λ = 50.

• Direct multi-step predictor identified not using any
derivative information (PK NOD). The predictor
PK NOD is given by

yt+k = f̂ (xt)

xt = (yt, yt−1, yt−2, ut+k−2, ut+k−3, . . . , ut−2)
(15)

where f̂ is of the form (5) and k ∈ {3, 5, 7}. The basis
function set is defined as in (14), with nx = 4 + k.
This set consists of N = 24+k basis functions. The
coefficients aj in (5) were identified by Method 2, with
q = 2, r = 1, λ0 = 1, λi = 0, i > 0, and Λ = 50.

• Direct multi-step predictor identified using the es-
timated derivative values (PK ED). The predictor
PK ED is of the form (15). The basis functions are
the same as those used in (15). The derivative values
estimated by the algorithm in Novara et al. (2019)
were used to construct the vector z̃i, i > 0, in (7).
The coefficients aj in (5) were identified by Method
2, with q = 2, r = 1, λ0 = 1, λi = 200, i > 0, and
Λ = 50.

For each std value of the disturbance ξc (std ∈ {0.01, 0.05}),
the identified models were tested on the validation set in
the task of k-step ahead prediction, with k ∈ {3, 5, 7}. The
k-step prediction of models P1 NOD, P1 D and P1 ED
was computed by iterating k times equation (13). The
k-step prediction of models PK NOD and PK ED was
computed directly using equation (15).

The results of these tests are summarized in Tables 1 and 2,
where the Root Mean Square prediction Errors RMSEk are
reported, for k ∈ {3, 5, 7} and std ∈ {0.01, 0.05}. Figure
1 shows the true system output and the 3-step prediction
of the model PK ED (in the case where std = 0.05) for
a portion of the validation set. The uncertainty bounds
computed according to the approach given in Novara et al.
(2019) are also reported in the figure. Note that these
results were obtained using Method 2. Similar results can
be obtained using Method 1 (they are not reported here
for the sake of brevity).

The main observation arising from these results is that
the models identified by the proposed method, using
the information about the derivatives, are significantly
more accurate (about one order of magnitude) than those
identified not using this information. A second observation
is that the models identified using the estimated derivative
values show a performance similar to those identified using
the true derivative values. A third observation (important
in general but less important than the other two in the
context considered in this paper) is that the direct k-step
predictors are in general more accurate than the iterated
1-step predictors.
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