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Abstract: In recent years, actuators based on dielectric elastomers have become popular for
both research and industrial applications. Due to their nonlinear behavior, they are typically
used in on/off actuation. Established feedback control methods such as PID provide an effective
and robust way to drive these actuators under constant setpoint requirements. However, such
control methods exhibit poor trajectory tracking performance. This shortcoming is addressed
in this work with a flatness-based nonlinear control design for a circular membrane actuator
based on dielectric elastomers. By exploiting a nonlinear electro-mechanical model of the device,
a tracking control law is designed in both feed-forward and feedback form. Moreover, it is
shown how the flatness-based feed-forward control may be used to extend a conventional PID
control to improve its tracking performance. The presented methods are validated and compared
experimentally with a real actuator prototype. Tracking accuracy better than 10µm along a
1 mm stroke trajectory (i. e. less than 1%) is shown. This result is a significant improvement
over existing PID control laws.

Keywords: flatness, nonlinear control, feed-forward control, dielectric elastomer, dielectric
elastomer actuator, membrane actuator

1. INTRODUCTION

A dielectric elastomer (DE) transducer consists of a thin
polymer film sandwiched between two compliant elec-
trodes. When a high voltage (usually several kilovolts) is
applied, electrostatic forces attract the electrodes together.
Due to the high mechanical compliance of the DE material,
the polymer is compressed in the direction of the applied
electric field. At the same time, the elastomer expands in
the perpendicular direction, maintaining its volume (see
Fig. 1).

This effect can be used in many different ways to re-
alize a dielectric elastomer actuator (DEA). One exam-
ple considered in this work and introduced by Hodgins
et al. (2013) uses a circular DE membrane in combina-
tion with linear and bistable springs. This arrangement
produces a significant strain that leads to a large out-
of-plane stroke. The light weight, energy efficiency, and
large strains of the DE material come at the expense of a
complex nonlinear behavior due to hyperelasticity, electro-
mechanical coupling, and viscoelasticity. Because of these
effects, modeling and control of DEAs is challenging. As
a result, most current DEA applications use the material
in on/off mode only (see e. g. Giousouf and Kovacs (2013),
Wang et al. (2018)). More sophisticated approaches that
provide variable positioning include open-loop controllers
(e. g. by Gu et al. (2015), Hau et al. (2017), and Zou and
Gu (2019)) as well as closed-loop strategies (such as PID
control by Xie et al. (2005), Druitt and Alici (2013), and
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Fig. 1. Electro-mechanical actuation principle of a DE,
(a) without high voltage and (b) with high voltage

Rizzello et al. (2015a), and further model-based designs by
Hoffstadt and Maas (2017), Cao et al. (2018) and Zhang
et al. (2019)).

Most of these linear and nonlinear controllers have been
validated for position regulation tasks. In many applica-
tions, however, the DEA is required to perform accurate
tracking of a specific trajectory. Examples include pumps
(Wang et al. (2018)), loudspeakers (Heydt et al. (2006)),
and soft robotics (Cao et al. (2018)). For these applications
in particular, a model-based approach that accounts for
nonlinear DE material effects is required.

This paper presents such an approach for a circular
membrane DEA based on the mathematical model from
Rizzello (2016). It will be shown that this model is differ-
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entially flat and can be used to calculate a feed-forward
control. Additionally, by exploiting the flatness property,
a nonlinear tracking controller is designed. After devel-
oping the flatness-based controllers, they are validated
experimentally in a trajectory tracking task for a DEA
prototype. Results are compared with the existing robust
PID approach from Rizzello et al. (2015a). It is also shown
how this last method may be improved by introducing the
flatness-based feed-forward term.

The present contribution is organized as follows. First, a
phenomenological model of the DEA is presented in Sec-
tion 2. In Section 3, the model properties are investigated
and a flat output is introduced. The flatness property is
then exploited to design controllers in both feed-forward
and feedback forms. The details of their implementation
and experimental results are shown in Section 4.

2. DEA MODEL
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Fig. 2. Cross-sectional view of the circular DEA with linear
spring, bistable spring and mass, (a) not actuated and
(b) actuated

The circular membrane DEA takes on a truncated cone
shape (see Fig. 2), with height increasing with applied volt-
age magnitude. Due to axial symmetry, a one-dimensional
motion is assumed and may be described by considering
the balance of momentum on the core of mass m in the
y-direction

mÿ = −FP(y)− FDE(y, ẏ, v, ξ). (1a)

The prestretching spring force and DE force derived in
Rizzello (2016) are summarized in the following.

The force of the prestretch mechanism

FP(y) = kl(y − yl) +

P∑
b=0

kn,b(y − yn,b)b +mg (1b)

is due to a linear spring with stiffness kl and unstretched
length yl, a bistable spring modeled as a polynomial of
degree P with parameters kn,b and yn,b, b = 0, 1, . . . , P ,
and the gravitational force. The force generated by the
DE

FDE(y, ẏ, v, ξ) =
V0y

l20λ
2(y)

(
σm(y) + σe(y, v) + σv(y, ẏ, ξ)

)
(1c)

depends on the volume V0 of the DE as well as the initial
radial length l0. The function

λ(y) =

√
1 +

(
y

l0

)2

(1d)

describes the principal stretch of the membrane in the
radial direction depending on the position y > 0. Three
physical effects contribute to the membrane force:

• The hyperelastic stress

σm(y) =

3∑
i=1

[
βiλ

2i(y)− γiλ−2i(y)
]
, (1e)

is modeled with an Ogden model of order 3 1 .
• The electro-mechanical coupling

σe(y, v) = −ε
(
λ(y)v

z0

)2

(1f)

is based on an ideal DE and is also called Maxwell
stress. It depends on the initial thickness of the
membrane z0, its permittivity ε, and the applied
voltage v.

• The viscoelastic stress

σv(y, ẏ, ξ) = kv (λ(y)− 1− ξ) + ηpλ̇(y, ẏ) (1g)

with viscoelastic state ξ. The parameter kv describes
the stiffness of a spring within the equivalent rheolog-
ical model of the DE. A stretch damping term enters
linearly with the parameter ηp.

Completing the system equations is a first-order model of
the viscoelastic state ξ with time constant τv:

τvξ̇ = λ(y)− 1− ξ. (2)

3. CONTROLLER DESIGN

System equations (1)-(2) will now be used to design a
nonlinear tracking control in open and closed-loop. The
reference to track is planned in terms of the viscoelastic
state ξ since it will be found to be a flat output of
the system. As a result, this quantity has the following
desirable properties 2 :

(I) Its reference trajectory may be chosen freely.
(II) The remaining system variables y and v can be

expressed in terms of ξ and its derivatives.

Property (I) is true since no autonomous differential equa-
tion restricts ξ. Property (II) will be checked in the next
Section for ξ and subsequently used to parameterize the
input v for open-loop and closed-loop control.

3.1 Flatness-based parameterization

Solving (1d) and (2) for the position leads to the expression

y = l0

√(
τvξ̇ + ξ + 1

)2
− 1 =: h0(ξ, ξ̇) (3)

which depends on ξ and ξ̇ only. As a consequence, higher
order derivatives of y can be parameterized by ξ and its
time derivatives according to

y(i) = hi

(
ξ, . . . , ξ(i+1)

)
, i = 0, 1, 2, . . . . (4)

Using (1a), (1c), and (1f), the remaining system variable
v may be found to be

v = ± l0z0√
ε

√
mÿ + FP(y)

V0y
+
σm(y) + σv(y, ẏ, ξ)

l20λ
2(y)

, (5)

1 Further information about (1e) can be found in Rizzello (2016).
2 For an introduction to differential flatness see Rothfuss et al.
(1996)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8879



from which only the positive root will be considered in the
following. Substituting y, ẏ, and ÿ using (4) into (5) yields
an expression for v in terms of ξ and its derivatives:

v = f
(
ξ, ξ̇, ξ̈, ξ(3)

)
. (6)

Since all system variables may be written in terms of ξ
and its time derivatives, it is a flat output for (1)-(2).

3.2 Feed-forward control

One advantage of the flatness-based approach is that a
feed-forward control may be calculated directly by sub-
stitution of a sufficiently smooth flat output reference
trajectory in the corresponding expression for the system
input. In this case for reference t 7→ ξr(t), the feed-forward
control using (6) is

vFF = f
(
ξr, ξ̇r, ξ̈r, ξ

(3)
r

)
. (7)

The latter is the inverse of the model (1)-(2) with respect
to the flat output ξ and thus no integration is required.

3.3 Linearizing tracking feedback controller

A closed-loop controller will be needed to compen-
sate model errors and external disturbances. This con-
troller may be designed by recognizing that the state
ψT = [ξ, ξ̇, ξ̈] is a Brunovský state with respect to the
input v. As a result, an auxiliary variable ν can be in-
troduced as ν = ξ(3) and viewed as a new virtual in-
put (Rothfuss et al. (1996)). Given the error definition
eξ = ξ − ξr, a linear feedback can then be chosen as

ν = ξ(3)r − kD,2ëξ − kD,1ėξ − kPeξ. (8)

The parameters kD,2, kD,1, and kP are selected in such a
way that the eigenvalues of the differential equation of the
error will have negative real parts. To ensure steady state
accuracy, an integral part is also added according to

ν̄ = ν − kI
∫ t

t0

eξ(s)ds. (9a)

The linearizing control law in terms of the physical system
input is then

vLin.,I = f
(
ξ, ξ̇, ξ̈, ν̄

)
. (9b)

At this point it should be remarked that the feedforward
(7) is also included in this tracking controller.

3.4 PID controller with flatness-based feed-forward

The above flatness-based control designs may likewise be
used to improve the performance of existing controllers for
this DEA. As an example, the robust PID controller with
square root compensation from Rizzello et al. (2015a) is
considered in the following. This approach, hereafter re-
ferred to simply as PID, is sketched briefly to demonstrate
the integration of a flatness-based feed-forward term.

The PID control design frames the system (1)-(2) as a
quasilinear parameter varying (qLPV) system with the
state x, the input transformation u = v2, and the position
y interpreted as the varying parameter. An error vector
e = x−xr is defined, which obeys the differential equation

ė = Ā(y)e+ b̄(y)(u− w), (10)

where w = q(y,xr, ẋr) describes the influence of the refer-
ence trajectory t 7→ xr(t) on the error. The parameters of
the PID control

uPID = −κI
∫ t

0

ey(s)ds− κPey − κDėy (11)

with ey = y − yr are then chosen with an optimization
method that includes the suppression of w.

While this strategy effectively treats w as a disturbance,
knowledge of the reference trajectory may be used to
reduce its influence. It can be shown that no equilibrium
points of (10)-(11) exist with ey = 0 unless

w|y=yr = q(yr,xr, ẋr) (12)

is constant, which is not given for arbitrary reference tra-
jectories. Therefore, a significant drawback of the proposed
PID control (11) is its poor performance during transitions
between stationary regimes, as can be seen in Section 4.
To improve the trajectory tracking performance, the PID
control may be extended according to

u = uPID + q(yr,xr, ẋr) (13)

in order to obtain an equilibrium point with ey = 0
independent of the reference trajectory. It may be shown
that the term q(yr,xr, ẋr) coincides with v2FF, i. e. the
flatness-based feed-forward control (7) and accounting
for the input transformation. The corresponding physical
input is then

vPID+FF =
√
uPID + v2FF. (14)

The practical performance of this augmented PID con-
troller will be compared with the original PID controller
(11) and the flatness-based linearizing controller (9) in the
next section.

4. RESULTS

The experimental DEA setup uses a DE membrane
made from SNES-18602-19RT5 from Parker Hannifin.
A LK-G157 laser sensor measures the core position and
an UltraVolt 4HVA24-P1 amplifier provides the actuating
high voltage (see Fig. 3). For the implementation of the
proposed model-based algorithms, the parameters intro-
duced in Section 2 are needed. To this end, parameter
identification is done as in Rizzello et al. (2015b) and
Simone et al. (2018) where various voltage signals (step
functions and sinusoids) are applied and the position y
is measured. The Matlab algorithm fminsearch is then
used to fit the model parameters (see Table 1), with the
exception of those for the prestretch system, to the exper-
imental data. The springs are characterized by separate
force-displacement measurements.

Further controller implementation details and experimen-
tal results are provided in the sequel.

4.1 Controller implementation and reference trajectories

For the implementation of the algorithms, system variables
and their various time derivatives are needed. To this end,
a laser sensor is used to measure the position y. By low-
pass filtering and using the central difference quotient,
a value for the velocity ẏ is calculated out of these
position measurements. Because ξ can not be measured
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Table 1. Parameters of the model

Parameter Value

z0 51µm
l0 12.5 mm
r 10 mm
m 5 g
ε 2.26 ε0
β1 29.67 MNm−2

β2 −17.28 MNm−2

β3 3.19 MNm−2

γ1 53.69 MNm−2

γ2 −57.32 MNm−2

γ3 19.11 MNm−2

τv 1.44 s
kv 15.83 kNm−2

ηp 1.12 kNm−2s

Fig. 3. Circular membrane DEA with prestretch system
used for experiments

directly, a simulator is used to estimate it by numerically
integrating (2). Once a value for ξ is known, (2) can

be used to calculate ξ̇. Thereafter, ξ̈ can be calculated
by differentiating (2) with respect to time and using the

values of y and ẏ to calculate λ̇.

The gains of the feedback linearizing controller (9) are cho-
sen such that the eigenvalues of the error differential equa-
tion are as follows: −45 s−1,−40 s−1, −30 s−1, −3 s−1. The
PID controller parameters κP = 1.1659 (kV)2mm−1, κI =
44.5655 (kV)2mm−1s−1, and κD = 0.0042 (kV)2mm−1s
are chosen for an exponential error decay rate for the qLPV
system (10) of α = −20 s−1.

As seen in (7) and (8), a sufficiently smooth reference tra-
jectory for ξ is needed for a continuous controller output.
To this end, polynomial trajectories in time of degree 9 are
planned to bring the system from one equilibrium point to
another. By using the stationary solution of (2) as well as
function the (1d), the corresponding values for ξr before
and after the transition can be calculated from desired
values for yr. The remaining boundary conditions are set
to zero. For the PID controller, the reference t 7→ yr(t) is
calculated using (3).

Experimental results are shown next for planned trajec-
tories with a 5 second transition time and various stroke
magnitudes.

4.2 Feed-forward control

The resulting input voltages of the feed-forward controller
(7) are shown in Fig. 4 (a). It is remarked how the voltage
overshoots its final value to compensate the viscoelastic
effects of the material. From Fig. 4 (b), it can be seen
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Fig. 4. Feed-forward control results for various stroke
magnitudes. Measured and planned trajectories of the
flat output ξ are shown as solid and dashed lines,
respectively. Tracking and steady-state errors are due
to model and parameter uncertainties.

that there is still a difference between the experimental
viscoelastic response (solid lines) and its reference value
(dashed lines). This means that some residual model and
parameter uncertainties exist. This error in ξ may also be
seen to increase with stroke magnitude. One explanation
may be an unmodeled nonlinear effect due to the elec-
trodes, which results into additional electro-mechanical
hysteresis. Furthermore, a slowly decaying process is ap-
parent in the response that continues to approach its ref-
erence value long after the transition interval. This effect
may be attributed to further viscoelasticity on a larger
time scale than considered in model (2). These effects
motivate the need for a closed-loop controller.

4.3 Tracking feedback controllers

The flatness-based linearizing controller with integral ac-
tion from (9) compensates these effects to yield excellent
tracking performance as shown in Fig. 5. On the other
hand, the PID control (11), while well regulating the final
setpoint value, demonstrates poor performance during the
trajectory transition stage in Fig. 6. Furthermore, this
dynamic error increases with stroke magnitude. By adding
the nonlinear feed-forward control from (14), PID control
tracking accuracy is greatly improved (see Fig. 7). At a
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Fig. 5. Flatness-based linearizing control with integral
action to increase the accuracy for transition and
steady state

stroke of approximately 1 mm, tracking errors are smaller
than ±10µm (except for random peaks of the sensor sig-
nal) and are comparable with the errors of the linearizing
controller with integral action shown in Fig. 5.

5. CONCLUSION

A key aspect of this work was to demonstrate that an
existing phenomenological model of the DEA is a flat
system, whose flat output can be used to calculate feed-
forward and feedback controls. Experimental results val-
idate this approach and demonstrate significantly better
performance compared to a standard PID control for tra-
jectory tracking. The results also show that the system
model represents a good approximation of the complex
DE material. The performance of the proposed controllers
can be further improved by using additional viscoelastic
states. This higher order system is still flat as shown in
Appendix A.

Additionally, it should be remarked that the reference
trajectory can be parameterized in terms of the position
y instead of the viscoelastic state ξ if desired to prevent
an overshoot in y. Since the flat output is not constrained
to any differential equation, its value can be freely chosen.
This means that if a sufficiently smooth trajectory for y is
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Fig. 6. PID controller for various strokes, demonstrates
poor performance during transition

given, the required trajectory for ξ can be calculated, for
example, by numerical integration of (2).
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Appendix A. VISCOELASTIC MODEL EXTENSION

If a DE material is used that shows a more pronounced
viscoelastic behavior, an extended viscoelastic state
ξT = [ξ1, . . . , ξM ] may be introduced with the dynamics

ξ̇ = Aξ + buλ (A.1a)

and

A = diag(−τ−1
vj ; j = 1, . . . ,M) (A.1b)

bT =
[
τ−1
v1 , . . . , τ

−1
vM

]
(A.1c)

as well as the new input uλ = λ(y) − 1. The viscoelastic
stress in (1) is then replaced by

σv(y, ẏ, ξ) =

M∑
j=1

kvj
(
λ(y)− 1− ξj

)
+ ηpλ̇(y, ẏ). (A.2)

The natural question that arises is whether the extended
DEA-model is flat. A key aspect for showing flatness for
the case M = 1 in Subsection 3.1 is the fact that the
position y can be parameterized by the viscoelastic state
and its derivatives. With that in mind, proving flatness of
the overall system with extended viscoelasticity reduces to
finding a flat output of the viscoelastic subsystem (A.1).

The PBH controllability test for (A.1) shows that it is
controllable if and only if all τvj , j = 1, . . . ,M are
unique and nonzero, which is a well-known result for this
particular system structure. If these conditions hold, it
can be inferred that the (linear) model (A.1) is flat for
arbitrary dimension M of the viscoelastic state with a
corresponding flat output

ψ = tTξ, (A.3)

where tT is the last row of the inverse of the Kalman
controllability matrix

C =
[
b, Ab, A2b, . . . , AM−1b

]
. (A.4)

A consequence of the flatness of (A.1) is that the input uλ
and therefore the position y can both be parameterized
by the flat output ψ, which implies flatness of the ex-
tended DEA-model. The flatness-based control strategies
proposed in Section 3 can then be extended accordingly.
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