
Hierarchical Attack Identification for
Distributed Robust Nonlinear Control

Sarah Braun ∗,∗∗ Sebastian Albrecht ∗ Sergio Lucia ∗∗,∗∗∗

∗ Siemens Corporate Technology, 81739 Munich, Germany
(e-mail: sarah.braun@siemens.com)

∗∗ Technische Universität Berlin, 10587 Berlin, Germany
∗∗∗ Einstein Center Digital Future, 10117 Berlin, Germany

Abstract: Developing tools for attack identification in large-scale networked control systems
is a research area of increasing significance for the secure and reliable operation of autonomous
control systems. Due to scalability limits and privacy issues of individual subsystems, attack
identification methods should not rely on global model knowledge. We address systems of
interconnected nonlinear subsystems with coupled dynamics or constraints in a distributed
control setup. The local controllers share information about the coupling variables of the
subsystems and are designed to be robust towards attacks and uncertain influences through
neighboring subsystems. We present a scalable hierarchical attack identification method which
monitors the evolution of the coupling variables after an attack occurred in some unknown
subsystem. Based on the mutual exchange of local sensitivity information among the subsystems,
the propagation of the attack through the network is approximated. The propagation equations
are used to formulate a quadratic program whose solution determines the attack signal that
explains the observed network evolution best. The developed approach is applied to the IEEE 30
bus system to illustrate attack identification in power systems with faulty buses.

Keywords: attack identification, distributed and nonlinear control, robust model predictive
control, cyber-physical systems, power systems

1. INTRODUCTION

Many relevant technologies such as energy grids, traf-
fic networks or building systems involve the operation
of large-scale networked control systems, which typically
consist of several interacting subsystems. In safety-critical
infrastructures, potential system faults and deliberate at-
tacks have to be approached by suited prevention and
defense mechanisms to ensure a secure operation. For this
purpose, the controllers should be robust towards distur-
bances and supplemented with monitoring methods that
reveal attacks. For both system control and attack iden-
tification, distributed approaches that require only partial
model knowledge are more suitable than classical cen-
tralized approaches since they decrease the computational
complexity and support privacy between the subsystems.
To approach a secure operation of large cyber-physical
systems in a scalable manner, we present a hierarchical
method for attack identification based on partial model
knowledge and limited information transmission in a dis-
tributed robust control setup.

Many distributed control strategies, in particular dis-
tributed model predictive control (MPC), have been de-
veloped for specific industrial applications such as power
systems (Camponogara et al., 2002), multi-vehicle coor-
dination (Dunbar and Murray, 2006) or transportation
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networks (Negenborn et al., 2008). Also algorithmic re-
sults analyzing fundamental theoretical properties like
stability have received significant attention (e.g., Venkat
et al., 2005). For reviews and classifications of exist-
ing distributed MPC approaches we refer to the surveys
of Scattolini (2009) and Christofides et al. (2013). Dis-
tributed methods by definition include some exchange of
information between the subsystems, e.g., about planned
state trajectories, such that each subsystem has more
information about its neighbors’ influences than in a fully
decentralized approach. This typically improves the per-
formance since, to the eyes of a subsystem in a fully
decentralized approach, the evolution of the neighboring
subsystems and thus their influence on its own dynamics
are unknown. If the subsystem obtains some information
about the uncertainty range, it can design its local con-
troller to be robust towards these uncertainties. This is the
underlying idea of the distributed MPC scheme by Farina
and Scattolini (2012), combining the exchange of corridors
around reference trajectories with robust MPC. The future
values of a subsystem’s coupling variables are guaranteed
to lie in these corridors. Several works follow similar ideas,
e.g., Lucia et al. (2015) extend the approach to nonlinear
MPC (NMPC) and present sufficient conditions for Input-
to-State stability and recursive feasibility. They introduce
the notion of contracts for the exchanged corridors and
elaborate on how to obtain them by reachable set analysis.

Apart from neighboring coupling variables we consider a
second, possibly far more significant source of uncertainty
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for each subsystem, namely attacks. We model an attack as
the malicious disturbance of any signal in the local closed-
loop system, taking up the formulation of Pasqualetti et al.
(2013) who define an attack as an unknown signal affecting
a linear control system. They characterize the concepts
of attack detection and identification as the tasks to
reveal the existence and location of an attack, respectively.
As a generic approach towards attack identification they
suggest a sparse recovery problem revealing the input
signal that explains the observed system evolution best.

While many of the available model-based approaches
towards attack identification focus on centralized sys-
tems (see Ding, 2008), also distributed and hierarchical
attack identification methods attain increasing interest.
For linear systems, some existing methods based on lo-
cal model information require special network structures.
For instance, Pasqualetti et al. (2010) focus on networks
with weakly coupled subsystems or leading subsystems
with better communication capabilities. Others analyze
observer-based techniques such as Shames et al. (2011)
who consider second-order linear systems with consensus
control laws, for which they construct a bank of unknown-
input observers to detect and identify faults. Boem et al.
(2018) extend this idea to nonlinear systems and design
local estimators for identification purposes, assuming that
each subsystem knows all possible faults that may occur.

We consider the problem class of distributed networked
systems with nonlinear dynamics and several interacting
subsystems, which are physically coupled through their
local dynamics and in the form of constraints as for-
mally described in Section 2. We present a hierarchical
attack identification method in Section 4 which does not
require global model knowledge. Instead, all subsystems
exchange sensitivity information about their coupling vari-
ables, evaluated at the current iterate. While the local
dynamics or objectives are not revealed such that privacy
is maintained, the sensitivity information allows to approx-
imate the propagation of the attack through the network.
Based on this propagation, the proposed method com-
putes the global disturbed input signal which explains the
observed data best and thus indicates which subsystems
were attacked and which only propagated their neighbors’
errors. In contrast to Boem et al. (2018), we do not assume
the set of possible attacks to be finite and known, which
constitutes a restrictive assumption if one considers mali-
cious attacks rather than system faults. Instead, we solve a
continuous optimization problem for sparse signal recovery
that provides a systematic approach to reveal any possible
attack. The method is strongly connected to the contract-
based distributed NMPC setup in Section 3 since the ex-
changed sensitivities indicate how a subsystem’s coupling
variables are influenced by a deviation of the neighbors’
couplings from the previously stated nominal contract
values. To illustrate the results, we apply attack identi-
fication to the IEEE 30 bus power system in Section 5.

2. PROBLEM FORMULATION

We consider a nonlinear system of systems, exposed to
the risk of attacks, with state x ∈ X ⊆ Rdx , initial state
x0 ∈ X, control u ∈ U ⊆ Rdu and discrete-time dynamics

x+ = f (x, a(u)) , (1)

where the attack function a : U → U indicates how the
input u is modified by the attack and constitutes an a
priori unknown influence on the dynamics. If no attack
is present, a(·) is the identity and u directly controls the
system via x+ = f(x, u) in an undisturbed manner. In case
of an attack, a(u) 6= u holds and the set

Ia := {i ∈ {1, . . . , du} : (a(u))i 6= ui}
contains the attacked components. If an attack disturbs
all du control inputs, i.e., Ia = {1, . . . , du}, it might not
be possible to guarantee a feasible state evolution even
with a robust controller. Therefore, the problem class
of attacked systems (1) will only be manageable for a
subset A ⊆ {F : U→ U} of possible attack functions F .
It is important to note that we do not make any structural
assumptions onA nor do we assume thatA is known to the
identification method we propose. We will later comment
on how A is approximated to design controllers which are
robust towards attacks. We assume that modifications in
the input u by an attack a cannot be measured directly
but only their impact on the state is observable. Even
though we refer to the input u as control, it may represent
any signal such that various types of attacks are modeled.
System (1) consists of a partition P into dynamically
coupled subsystems, each of which is described by

x+
I = fI(xI , aI(uI), zNI

),

zI = hI(xI),
(2)

where xI and uI denote the local state and control in
subsystem I, aI ∈ AI is the unknown local attack function
and fI the differentiable discrete-time dynamics. Intercon-
nections between the subsystems are modeled via coupling
variables zI ∈ RdzI , which are related to the local states xI
by differentiable functions hI . The set of all subsystems
J ∈ P \ {I} influencing the dynamics of I via their cou-
plings zJ is called neighborhood of I and denoted as NI .
Each subsystem I is subject to nonlinear constraints

gI (xI , aI(uI), zNI
) ≤ 0,

which may depend on the neighbors’ couplings zNI
. For the

control and identification methods in Section 3 and 4 to
be efficient, the partition should be chosen such that each
subsystem is of manageable size and for the total number
dz =

∑
I∈P dzI of coupling variables it holds dz � dx.

This setup naturally leads to a hierarchical structure; on a
lower level a set of distributed controllers is employed. On a
higher level, each subsystem I is considered one entity with
associated coupling zI . By observing the error propagation
through the high-level network, we aim to identify the
subsystem containing the attacker by computing a sparse
attack signal which explains the observed behavior.

3. CONTRACT-BASED DISTRIBUTED MPC

In this section, we describe a distributed control setup to
control system (1), taking into account the uncertainty
that arises due to possible attacks. The local dynamics
of each subsystem I are influenced by two types of uncer-
tainty, namely the couplings zNI

of the neighboring subsys-
tems and their own potentially disturbed control aI(uI),
which differs from the controller input uI if an attack
occurs. In critical infrastructures with safety and reliability
requirements, the local controllers have to provide robust
control strategies such that the constraints are satisfied
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no matter which attack aI and coupling values zNI
oc-

cur. We apply robust NMPC to achieve robust optimal
control in real time. These approaches typically require
the uncertainty to be represented by a set of possible
scenarios such as the attack set AI in which the uncertain
attack aI is contained. We will later elaborate on how we
approximate the unknown, generally infinite set AI for
numerical computations. To provide a set of potentially
occurring realizations for the coupling variables zI , we
consider a setup where each subsystem I at each sampling
time t shares a contract ZI with its neighbors, constituting
a sequence of sets containing the future trajectory of its
coupling variable zI on the considered horizon t, . . . , t+N .
A schematic representation of this setup is given in Fig. 1.

II I III

ZI

ZII ZIII

Fig. 1. Schematic overview of the underlying distributed
control setup based on an illustration from Lucia et al.
(2015). The subsystems are interconnected through
physical couplings or coupled constraints (illustrated
by dashed edges) and share contracts in which the
future coupling values lie (depicted in blue).

A contract takes the uncertain influences of potentially
occurring internal attacks aI and its neighbors’ couplings
zNI

into account. Additionally, each subsystem shares a
nominal coupling trajectory z̄I which is the predicted
undisturbed trajectory that it will follow if no attack
occurs in subsystem I and all neighbors also act according
to their nominal strategies z̄NI

. Closely following the
concepts and notation of Lucia et al. (2015), the contract
of subsystem I for time k calculated at time t is denoted as
ZI(k|t). It is defined considering the reachable set XI(k|t)
of state xI at time k, calculated at time t, which is given as

XI(k|t) := {fI (xI , aI(uI), zNI
) :

xI ∈ XI(k − 1|t), aI ∈ AI , zNI
∈ ZNI

(k|t)}
for a given input uI . The contract ZI(k|t) is derived as

ZI(k|t) := {hI(xI) : xI ∈ XI(k|t)}.
The aforementioned nominal state and coupling values x̄I
and z̄I are computed as

x̄I(k|t) := fI
(
x̄I(k − 1|t), uI(k − 1|t), z̄NI

(k|t)
)

and

z̄I(k|t) := hI
(
x̄I(k|t)

)
with undisturbed input uI(k − 1|t). After the distributed
computation of the control inputs at sampling time t,
subsystem I receives the contract ZJ(k|t) and the nominal
trajectory z̄J(k|t) from each neighbor J ∈ NI and locally
aggregates the contracts and nominal values for the next
sampling time t+ 1 as

ZNI
(k|t+ 1) = ΠJ∈NI

ZJ(k|t) and

z̄NI
(k|t+ 1) = ΠJ∈NI

z̄J(k|t),
extended by ZNI

(t+ 1 +N |t+ 1) = ZNI
(t+N |t+ 1) and

z̄NI
(t + 1 + N |t + 1) = z̄NI

(t + N |t + 1) to have contract
values available at all time steps of the new horizon.
Employing the neighbors’ contracts ZNI

as an uncertainty

interval for the unknown couplings zNI
, the local opti-

mization problem under uncertainty for subsystem I at
sampling time t with horizon N reads as follows:

min
xI(·),uI(·)

t+N−1∑
k=t

lI
(
xI(k), aI(uI(k)), zNI

(k)
)

s.t. xI(k + 1) = fI
(
xI(k), aI(uI(k)), zNI

(k + 1)
)
,

xI(t) = xtI , (3)

gI(xI(k), aI(uI(k)), zNI
(k)) ≤ 0,

uI(k) ∈ UI , xI(k) ∈ XI ,
for all zNI

(k + 1) ∈ ZNI
(k + 1|t), aI ∈ AI ,

for k = t, . . . , t+N − 1,

where xtI is the initial state at time t and lI the local cost
function. As long as the attack sets AI are unknown, so are

the contracts ZI and approximations ÃI of the attack sets
are required. Apart from that, for nonlinear functions fI
it is nontrivial to determine the reachable sets XI(k|t)
(e.g., Sahlodin and Chachuat, 2011). Since they depend
on the choice of the input uI , their computation should be
combined with solving the optimization problem (3). To
compute robust solutions of (3), considering the uncertain
influence through aI(uI) and zNI

, we apply the multi-stage
scheme by Lucia et al. (2013), which offers two advantages
in our setup. First, it is less conservative than classical
min-max-approaches for robust MPC (Campo and Morari,
1987) because it takes into account that future inputs
can be adapted once new measurements will be avail-
able. Second, multi-stage NMPC provides a simple tool
to approximate the reachable sets XI(k|t). It requires the
uncertainty range to be approximated by a given discrete
set Σ0 of sampling values and models the uncertain state
evolution by a scenario tree like the one shown in Fig. 3.
The branches at time k represent all realizations σ ∈ Σk,
where Σk is obtained by considering all possible combina-
tions of samples in Σ0 up to stage k or some predetermined
earlier stageNr, the so-called “robust horizon”. Depending

X̃ (1|t) X̃ (2|t) X̃ (3|t) X̃ (4|t)

x(0|t)

x3(1|t)

x9(2|t) x9(3|t) x9(4|t)

x8(2|t) x8(3|t) x8(4|t)

x7(2|t) x7(3|t) x7(4|t)

x2(1|t)

x6(2|t) x6(3|t) x6(4|t)

x5(2|t) x5(3|t) x5(4|t)

x4(2|t) x4(3|t) x4(4|t)

x1(1|t)

x3(2|t) x3(3|t) x3(4|t)

x2(2|t) x2(3|t) x2(4|t)

x1(2|t) x1(3|t) x1(4|t)

Fig. 2. A scenario tree for the uncertain state evolution on
t, . . . , t + N with N = 4 according to Lucia et al.
(2013). The gray shadow covers the reachable sets
X (k|t) explored by the tree and the ellipses show

the approximations X̃ (k|t) based on different state
realizations xσ(k|t) corresponding to the tree’s nodes.

on the realization σ ∈ Σk, different states xσI (k|t) are
obtained for k = t+ 1, . . . , t+N at sampling time t by
propagating the parent node with a given control input
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and the realization σ ∈ Σk. These state samples provide
an approximation of the reachable set XI(k|t) by

{xσI (k|t) : for all σ ∈ Σk} =: X̃I(k|t) ⊆ XI(k|t),
indicated with ellipses in Fig. 3. A corresponding approx-
imation of the contracts ZI(k|t) can easily be derived as

{hI (xσI (k|t)) : for all σ ∈ Σk} =: Z̃I(k|t) ⊆ ZI(k|t).
To guarantee recursive feasibility (Lucia et al., 2015), it
is necessary to ensure that the information exchanged
at each sampling time is consistent with the information
exchanged in the past. This can be achieved using consis-
tency constraints requiring

ZI(k|t) ⊆ ZI(k|t− 1). (4)

The corresponding constraints on each element hI(x
σ
I (k|t))

of the approximated contracts Z̃I(k|t) read as

min Z̃I(k|t− 1) ≤ hI (xσI (k|t)) ≤ max Z̃I(k|t− 1) (5)

and must be enforced as additional constraints when
solving problem (3) with multi-stage NMPC. For nonlinear
dynamics, the approximated contracts are not guaranteed
to contain the real coupling values in cases where the
actual realization of the uncertainty is not considered in
the scenario tree. Lucia et al. (2014) approach this problem
by a rigorous computation of reachable sets that allows to
give guarantees. In practice, classical multi-stage NMPC
has proven to provide promising results such that the
simpler reachable set computation is typically sufficient.

Since the contracts ZI(k|t) at time t by definition depend
on ZNI

(k|t), which are computed at the previous time step
t− 1, the existence of a set of initial contracts is a critical
requirement (see Lucia et al., 2015).

Assumption 1. (Initial contracts). We assume that there
are initial contracts ZI(k|0) and nominal trajectories
z̄I(k|0) for each I ∈ P, k = 0, . . . , N , such that for
every subsystem I all predicted coupling values are within
ZI(k|0) as long as the same holds for all its neighbors.

Given such a set of initial contracts, we assume that at each
time t a feasible solution of problem (3) together with a
new contract satisfying the consistency constraints (4) can
be computed for each I. Then it holds by construction of
the contracts that the coupling variables at time t+1 lie in
the previous contracts ZI(t+ 1|t) and attain the nominal
value z̄I(t + 1|t) if no disturbances in uI or zNI

occur.
In a distributed control setup one should not assume the
availability of a centralized initial solution and we thus
propose the distributed Algorithm 1 to compute initial
contracts in an iterative offline fashion. It terminates when
the computed contracts for all subsystems are contained
in the ones from the previous iteration.

Remark 1. For convenience, each subsystem locally ap-
plies centralized control to solve problem (3). Also multiple
hierarchical levels are possible in the sense that the subsys-
tems are again subdivided and apply distributed control.

4. HIERARCHICAL ATTACK IDENTIFICATION

While attack detectors monitor the system to recognize the
presence of an attack, attack identification is used to lo-
calize it. Local detectors typically compute an estimate x̂I
of the state xI exploiting local model information and
compare it to a state measurement x̃I (e.g., Boem et al.,

Algorithm 1 Computation of initial contracts

1: For each subsystem I ∈ P:
1.1: Compute initial coupling value z0

I := hI(x
0
I)

1.2: Set Z̃0
I (k|0) = {z0

I}, z̄0
I (k) = z0

I ∀k = 0 : N
and communicate this first contract to neighbors

1.3: Locally build Z̃1
NI
, z̄1
NI

2: For j = 1, . . . , MAX ITER:
2.1: For each subsystem I ∈ P:

2.1.1: Build scenario tree by branching on different

realizations in AI and Z̃jNI

2.1.2: Solve problem (3) for t = 0

2.1.3: Derive contract Z̃jI (k|0) and nominal z̄jI(k|0)
∀k = 0 : N and exchange with neighbors

2.1.4: Locally build Z̃j+1
NI

, z̄j+1
NI

2.2: If Z̃jI (k|0) ⊆ conv(Z̃j−1
I (k|0)) ∀I ∈ P, k = 0 : N ,

Return Z̃I(·|0) := Z̃jI (·|0) ∀I ∈ P
2.3: Increment j, j := j + 1.

2018). If the estimation error ‖x̃I − x̂I‖ exceeds a given
threshold δI , the subsystem reports that an attack has
probably occurred. In this paper, we focus on attack identi-
fication and propose a novel method that can be combined
with any state-of-the-art attack detector.

Since the subsystems are interconnected through the cou-
pling variables zI , the cause for a deviation ‖x̃I− x̂I‖ > δI
does not necessarily have to be an attack aI(uI) 6= uI
in I but can be located anywhere else in the network.
Therefore, a suited identification scheme should not be
fully decentralized but take the mutual interference of
the subsystems and a potential spread of the attack into
account. The basic idea of our attack identification is as
follows. At each subsystem I, we monitor the evolution of
the coupling variables zI and compute the deviation z̃I−z̄I
of the measured value from the nominal value. By solving
a suitably designed signal recovery problem, we want to
find out at which subsystem the observed deviation is only
due to the propagation of its neighbors’ errors and which
subsystem actively disturbs the network. For this purpose,
we derive linear approximations of the attack propagation
through the network at the current point in time.

According to (2), zI is a function of xI , which in turn de-
pends on aI(uI) and zNI

, such that zI implicitly depends
on xI , aI(uI) and zNI

through some function ζI . It holds

zI = ζI(xI , aI(uI), zNI
).

We consider the coupling values zI(t) at one fixed sampling
time t with given nominal contract values z̄I(t|t − 1).
For the sake of brevity, the time index is dropped in the
following. We want to analyze the behavior of zI if small
deviations in aI(uI) and zNI

from the corresponding nom-
inal values āI(uI) and z̄NI

occur, denoting by āI := id the
identity function modeling the nominal case of no attack.
For this purpose, we compute a linear approximation of
ζI(xI , · , ·) in a neighborhood around the nominal value
ζI
(
xI , āI(uI), z̄NI

)
. Recall that the contracts are designed

such that ζI attains the nominal value z̄I if aI = āI and
zNI

= z̄NI
, i.e., ζI

(
xI , āI(uI), z̄NI

)
= z̄I . Denoting the

deviation zI − z̄I of the actual coupling value zI from the
nominal value z̄I as ∆zI and the deviation aI(uI)− āI(uI)
of the potentially disturbed control input aI(uI) from the
undisturbed input āI(uI) as ∆aI , it holds
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∆zI =
∂ζI
∂aI

(
xI , āI(uI), z̄NI

)
∆aI (6)

+
∂ζI
∂zNI

(
xI , āI(uI), z̄NI

)
∆zNI

+ o

(∥∥∥∥( ∆aI
∆zNI

)∥∥∥∥)
for ∆aI ,∆zNI

→ 0 due to Taylor’s theorem. The Jacobian
∂ζI
∂aI

evaluated at (xI , ā(uI), z̄NI
) can be computed by

applying the chain rule as follows:

∂ζI
∂aI

(
xI , āI(uI), z̄NI

)
=
∂hI
∂xI

(xI)
∂fI
∂aI

(
xI , āI(uI), z̄NI

)
and ∂ζI

∂zNI
analogously. The matrices ∂fI

∂aI
, ∂fI
∂zNI

indicate

how the optimal solution xI depends on small perturba-
tions in aI(uI) or zNI

(see (2)) and thus represent sensitiv-
ity matrices. If all subsystems share sensitivity information
in the form of ∂ζI

∂aI
, ∂ζI
∂zNI

evaluated at (xI , ā(uI), z̄NI
), a

linear approximation for the propagation of the attack
through the network can be set up based on equations (6),
omitting the remainder term. If additionally the deviations
∆z̃I := z̃I − z̄I of the measured coupling values from the
nominal values are shared, the problem of attack identifi-
cation can be formulated using the following sparse signal
recovery problem:

min
∆a,∆z

α1‖∆z −∆z̃‖22 + α2‖∆a‖1

s.t. ∆zI =
∂ζI
∂aI

(xI , āI(uI), z̄NI
) ∆aI

+
∂ζI
∂zNI

(xI , āI(uI), z̄NI
) ∆zNI

∀I ∈ P,

(7)

where α1, α2 ∈ R≥0 are weighting factors for the two cost
components. Note that the deviations ∆a in the control
inputs caused by the attack are unknown, whereas ∆z̃
is assumed to be measurable. A solution of problem (7)
tracks the measured deviations ∆z̃ as close as possible
while obeying the approximated error propagation and
taking a minimum possible attack as a basis. This spar-
sity assumption is common in attack identification (e.g.,
Pasqualetti et al., 2013; Liu et al., 2014). To penalize the
number of attacked subsystems, one would replace the `1-
norm ‖∆a‖1 in (7) by the `0-“norm” ‖∆a‖0, counting
the number of non-zero elements. This would, however,
transform problem (7) into a mixed-integer problem, which
is why it is typically relaxed to the `1-norm that can be
expressed by linear constraints. Candès and Tao (2005)
proved sufficient conditions under which the approxima-
tion of the `0-“norm” with the `1-norm is exact.

The identification problem (7) is a quadratic program
with linear constraints and thus computationally easy to
solve. Given an optimal solution (∆a∗,∆z∗), the nonzero
components in ∆a∗ indicate those subsystems I for which
a∗I(u

∗
I) 6= u∗I , i.e., those subsystems in which an attack

occurred. By defining a suitable threshold ε, the identifi-
cation method identifies all subsystems I with ‖∆a∗I‖ > ε
as attacked. Note that problem (7) is a global identifica-
tion problem describing the entire network and not only
referring to one subsystem. Depending on the network
structure, we consider different procedures for conducting
the identification process. For instance, the network may
be equipped with some central superior instance which
collects all sensitivity information, solves problem (7) and
possibly also has the power to exclude suspicious subsys-
tems from the network. As an alternative, all subsystems

could exchange the sensitivity information among each
other such that each can locally solve the identification
problem (7) and share its suspicions with the others. This
requires a decision rule like a majority vote to finally
accuse and possibly exclude some subsystem, which is
a common necessity in distributed approaches towards
attack identification.

The proposed identification method is a hierarchical ap-
proach since no information about the local dynamics fI
or costs lI is used. We think that requiring the subsystems
to publish local evaluations of their solutions’ sensitivities
is within the privacy limits since they do not allow other
subsystems to easily draw conclusions about the local
objectives. Additionally, the approach scales significantly
better than a fully centralized nonlinear method because
typically the number of variables in (7) is considerably
smaller than the number dx + du of variables affecting
the global dynamics. First, this is due to the fact that in
many applications one can model the subsystems and their
couplings such that dz � dx. Second, if one only wants
to figure out which subsystem I disturbed the network
with an attack aI(uI) 6= uI but is not interested in a
specific component (uI)i, the number of variables in (7)

can be further reduced: Instead of ∂ζI∂aI
, the subsystems may

publish a submatrix of full rank by omitting dependent
columns.

5. ATTACK IDENTIFICATION IN POWER SYSTEMS

We consider the problem of attack identification in power
systems and apply our hierarchical method from Section 4
to the IEEE 30 bus system shown in Fig. 3. The contract-
based distributed NMPC approach is implemented based
on the do-mpc environment for multi-stage NMPC (Lu-
cia et al., 2017), which uses CasADi for automatic dif-
ferentiation and optimization (Andersson et al., 2019)
and Ipopt for solving nonlinear problems (Wächter and
Biegler, 2006). The reachable sets and resulting contracts
are approximated with multi-stage NMPC as described
in Section 3. To deal with the size of the scenario tree,
multi-stage NMPC does not use branching on the entire
horizon N but only up to the robust horizon Nr ≤ N
(Lucia et al., 2013). Additionally, we only enforce the
consistency constraints (5) on the approximated contracts

Z̃(k|t) for k = 0, . . . , Nr but not for k = Nr + 1, . . . , N .
This is not sufficient for recursive feasibility but already
yields reliable contracts in our numerical experiments. We
compute the sensitivity matrices from Section 4 based on
finite differences. For each subsystem we use a piecewise
constant discretization to embed the neighbors’ coupling
variables zNI

into the optimal control problem.

The multi-stage scheme requires the user to provide sam-
pling sets of the uncertainty ranges. The contract approx-

imations Z̃I are represented by all combinations of the
componentwise upper and lower bounds and the nominal
coupling values. To obtain discrete representations of the
attack spaces AI for I ∈ P, we choose (sI)

3 sampling ele-
ments from AI for some small number sI ≤ duI

as follows.
We arbitrarily pick sI out of the duI

input components
(uI)i in subsystem I and consider three sample attacks
on (uI)i, namely one attack which does not modify (uI)i
and one attack disturbing (uI)i by decreasing or increasing

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6195



1 43

8

52

6

7

9

10

11

28

12

14 16

15

17

18 19

20

21 22

23

G

24

2526

3029

G

G

G

27

G

13

G

I II

III
IV

V
VI

Fig. 3. Partition of IEEE 30 bus system with six gener-
ators into six dynamically coupled subsystems I–VI.
Dashed edges show transmission lines connecting two
subsystems and thus represent physical couplings.

it by 10% towards its lower or upper bound, respectively.
Choosing sI = duI

and thus branching on potential attacks
on all inputs entails too large scenario trees such that we
choose sI = 1, 2 or 3 for each I.

The considered IEEE 30 bus system consists of 30 buses
and 41 transmission lines. It contains six generator units
located at the buses 1, 2, 13, 22, 23 and 27 and six
constant loads at the buses 3, 7, 14, 19, 26 and 30. The
neighborhood of bus i is denoted by Ni and consists of
all nodes that are connected with i by a transmission line.
We assume that all buses are connected to synchronous
machines and model the behavior of the machine in bus i
using the so-called swing equation, for a detailed derivation
of which we refer to Kundur et al. (1994):

miθ̈i + diθ̇i = Pin,i −
∑
j∈Ni

Pij ,

where θi is the phase angle of bus i, mi and di describe in-
ertia and damping coefficients of the machine, respectively,
Pin,i is the power infeed at bus i and Pij is the active power
flow from bus i to bus j. Neglecting the dynamics of the
transmission lines, the power flow Pij between bus i and
bus j can be modeled as

Pij = |Vi| |Vj | bij sin(θi − θj),
where |Vi| is the voltage magnitude at bus i and bij is
the susceptance of the power line between buses i and j.
Realistic values for these parameters as well as a steady
state of the system, providing initial values for θ and Pin,
are based on Matpower (Zimmerman et al., 2010). The
dynamic coefficients di and mi for the generator buses
are taken following De Tuglie et al. (2008) and Kundur
et al. (1994), while the coefficients for the load buses are
arbitrarily chosen from a range of realistic values.

With kij := |Vi| |Vj | bij , the following optimal control

problem with states θi, ωi := θ̇i and inputs Pin,i for
i = 1, . . . , 30 describes the problem of optimal frequency
control:

min
θ,ω,Pin

‖ω‖22

s.t. θ̇i = ωi,

ω̇i =
1

mi

(
Pin,i − diωi −

∑
j∈Ni

kij sin (θi − θj)
)
,

for all i = 1, . . . , 30. As all parameters are chosen in
a per-unit system with a 200kV base, ω describes the
deviation from the nominal frequency of 60Hz and should
thus be minimized. To solve the problem in a distributed
manner, we define six subsystems I–VI consisting of three
to seven buses as indicated in Fig. 3. Transmission lines
running between two subsystems are shown as dashed lines
in Fig. 3 and indicate the subsystem neighborhoods NI .
For every subsystem, those phase angles θi are defined
as coupling variables that have at least one incident edge
leaving the subsystem. The couplings of subsystem III, for
instance, are given as zIII = (θ12, θ15, θ16), influencing the
neighbored subsystems I, IV and V. Initial contracts for
the distributed control setup from Section 3 are computed
offline with Algorithm 1, which converges after four iter-
ations. We consider a time horizon of 20s and discretize
it with time steps of length ∆t = 0.05s. The system is
attacked simultaneously at the load buses 4 and 15 during
the five time steps 2s, . . . , 2.2s. The attackers modify the
inputs Pin,4, Pin,15 to the maximum or minimum possible
load of 0.4 and 0 p.u. We denote the first time step of
the attack as ta := 2s. The resulting disturbed trajectories
for ωi on [0, 20s] for all buses i are shown in Fig. 4, where
the same color is used for all buses that belong to the
same subsystem. Even though only two nodes are attacked,
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Fig. 4. Disturbed trajectories for all 30 bus frequencies
showing the impact of an attack during 2s, . . . , 2.2s.
Due to dynamic couplings, not only the frequencies of
the two attacked buses are affected by the attack but
several ones, also from not attacked subsystems.

Fig. 4 reveals that several ωi of multiple subsystems are
disturbed and thus illustrates how the attack spreads
through the network due to the internal coupling of the
system. The conservativeness of the robust NMPC scheme
prevents the nominal frequency of 60Hz to be reached
exactly, see for example the time [0, 2s] before the attack.
To increase setpoint accuracy, we gradually reduce the
conservativeness of multi-stage NMPC from t = 5s on
by branching on decreasing disturbances, starting at 10%
around the nominal value, until finally non-robust NMPC
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is applied from t = 9s on. Due to the large impact of
the attack, some states still oscillate at the end of the
considered simulation time.

The effects of the attack also clearly show when comparing
measurements z̃I of the coupling values at each subsystem
with the corresponding nominal values z̄I computed at
the previous time step. We assume perfect measurements
z̃I = zI and do not introduce an additional source of noise
in problem (7) apart from the linearization error in the
attack propagation. Fig. 5 illustrates a snapshot of the
high-level network, in which each subsystem is represented
by one node, at the last time step ta + 4∆t at which
the attackers are active. The color of each node indicates
the total absolute deviation ‖∆z̃I‖1 of the subsystem’s
coupling variables from the respective nominal values in a
logarithmic scale. Even though only subsystems III and V
are attacked, the coupling values deviate significantly for
multiple subsystems.
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)
Fig. 5. If some subsystems are attacked, the disturbance

propagates through the network such that the mea-
sured coupling values z̃ deviate from the expected
nominal values z̄. The figure shows a snapshot of a
partition of the IEEE 30 bus system at one point in
time, where the node colors indicate the total coupling
deviation in each subsystem on a logarithmic scale.

The deviations ∆z̃ in the coupling variables together with
the exchanged sensitivity matrices ∂ζI

∂aI
, ∂ζI
∂zNI

are the basis

for the attack identification method from Section 4, which
solves the signal recovery problem (7). While the global
model contains dx = 60 states and du = 30 control inputs,
the considered partition from Fig. 3 yields only dz = 18
coupling variables and the subsystems are of sufficiently
small size to be handled by robust NMPC. Assuming
that instead of the sensitivity matrices ∂ζI

∂aI
only full-rank

submatrices are transmitted as explained at the end of
Section 4, the identification problem (7) contains at most
dz +

∑
I∈P min{duI

, dzI} = 2dz = 36 variables instead of
dx + du = 90, which underlines one of the benefits of
our hierarchical method. A second advantage is that it
is not based on testing a finite number of known possible
attacks, but provides a systematic model-based approach
to identify any possible attack. The identification problem
is solved at each time step, given the respective coupling
deviations and sensitivity matrices evaluated at this time

step. For weighting the tracking cost and the sparsity cost
in (7), we use α1 = 108 and α2 = 1. In order to evaluate the
proposed identification method, we compare the computed
solution ∆a∗(t) at each time step t with the actual devia-
tion ∆a(t) = a(u(t))−u(t) caused by the really occurring,
unknown attack a. For all time steps t = ta, . . . , ta + 4∆t
at which the attackers are active, Fig. 6 shows the actual
total deviation ‖∆aI(t)‖1 for each subsystem as a bar in
the upper half of the figure, and the presumed deviation
‖∆a∗I(t)‖1 according to the solution of (7) with a lighter
bar in the lower half. A logarithmic scale is chosen to
visualize also small values in ∆a∗. The solutions ∆a∗(t)
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Fig. 6. Comparison of the actual, but unknown deviations
∆a(t) and the computed presumed deviations ∆a∗(t)
in per unit on a logarithmic scale for five time steps
during which the system is attacked. While there are
small differences between reality and presumption,
partly suspecting the benign subsystem VI, the pro-
posed method clearly identifies the disturbing subsys-
tems III and V with presumed deviation values ∆a∗

that are very close to the actual deviations ∆a.

serve as a basis for suspecting individual subsystems at
each point t in time. As explained in Section 4, we in-
troduce a threshold ε, e.g., we choose ε = 0.01, and
declare each subsystem I as suspicious at time t for which
‖∆a∗I(t)‖1 exceeds ε. Hence, it is crucial that ∆a∗I ≈ ∆aI
not only for the attacked subsystems (being subsystems
III and V in the considered example), but also for the
remaining subsystems. If the former is not true for some
attacked subsystem, the attack might not be identified
at time step t. If the latter is not true, some subsystem
which actually does not actively disturb the network might
be suspected. Fig. 6 shows that the computed solutions
∆a∗(t) for each t = ta, . . . , ta + 4∆t are very similar to the
actual, unknown deviations ∆a(t). All differences between
∆a and ∆a∗ are in the order of 10−3. Small discrepancies
can for example be seen at time steps ta + ∆t, ta + 2∆t
and ta+ 4∆t when the benign subsystem VI gets assigned
deviation values ∆a∗VI(t) ∈ [0.005, 0.007]. Despite these
small inaccuracies, Fig. 6 clearly reveals that the devi-
ations ∆a∗VI assigned to subsystem VI are significantly
smaller compared to those of the attacked subsystems III
and V. With the chosen threshold ε = 0.01, in all time
steps the attacked subsystems are identified while none of
the benign subsystems is suspected.

Remark 2. It should be noted that the computation of the
sensitivities in the propagation equations (6) only requires
the exchange of nominal trajectories z̄I but not necessarily
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full contracts ZI . As a consequence, the proposed attack
identification can also be applied with a non-robust NMPC
scheme as long as nominal trajectories are exchanged and
thus constitutes a powerful method towards system re-
silience in its own right. However, we think that in many
safety critical applications it is reasonable to apply robust
schemes for guaranteed constraint satisfaction. To decrease
the entailed conservativeness and speed up computation
times, one can scale “how robust” the controllers are de-
signed, for example by choosing more or less conservative
approximations of the attack set A or even by applying
non-robust MPC at time periods during which attacks are
considered highly unlikely.

6. CONCLUSION

We have designed a novel attack identification algorithm
for systems of systems which is based on the mutual
exchange of sensitivity matrices that allow to approximate
the propagation of an attack through the network. It is
combined with a distributed predictive control scheme
which leads to a scalable control method. The hierar-
chical attack identification, while requiring information
from all subsystems, is formulated as a smaller-size con-
vex quadratic program that can be solved efficiently. An
important advantage of the proposed scheme is that it is
not based on testing a finite possible number of attacks
but provides a systematic, model-based approach towards
attack identification. By successfully identifying attacks in
the IEEE 30 bus system, we verified the potential of the
proposed method for a practically relevant scenario.
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