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Abstract: The problem of extending an existing state-feedback controller by an integrator is
considered. A structural insight into the design of such controllers is presented for the linear case,
which allows to preserve the performance of the given controller in a certain sense. Using this
insight, a second order homogeneous state feedback controller with discontinuous integral action
is proposed, which can reject arbitrary slope bounded, i.e., Lipschitz continuous, perturbations.
By means of Lyapunov methods, stability conditions for the closed loop system and a bound for
its finite convergence time are derived. Numerical simulations illustrate the results and provide
further insight into the tuning of the proposed approach.
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1. INTRODUCTION

Controllers with integral action are an important tool for
achieving satisfying disturbance rejection. Typically, the
integral part allows to compensate for constant or, with
multiple integrators, polynomial-like disturbances. In the
context of sliding mode control, discontinuous integral
action allows to compensate for the much larger class
of slope bounded (i.e., Lipschitz continuous) disturbances
by means of a continuous control signal. Prominent ex-
amples in that regard are the super-twisting algorithm
and the sub-optimal algorithm, which are proposed in
Levant (1993) and Bartolini et al. (1998), respectively.
Compared to first order sliding mode techniques, which
reject bounded perturbations using discontinuous control
signals, these algorithms reduce the so-called chattering
effect introduced by the presence of actuator dynamics
or time discretization, see, e.g., Shtessel et al. (2014) and
Pérez-Ventura and Fridman (2019); they are limited to
sliding surfaces with relative degree one, however.

Recent research has thus focused on designing controllers
with integral action in ways that may be generalized to
higher relative degrees. Some key results in that regard
are found in Kamal et al. (2016); Laghrouche et al. (2017)
and Mercado-Uribe and Moreno (2018), for example.

In this paper, a new approach for the design of homoge-
neous controllers with discontinuous integral action is pro-
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posed for the case of relative degree two. The idea is based
on a structural insight that is first presented for the linear
time invariant case. Using this idea, a homogeneous state-
feedback controller is extended by an integral term that
preserves the nominal performance in the unperturbed
case. This allows to separate the parameters into groups
corresponding to either the nominal or the integral part,
which simplifies tuning. It furthermore allows to guarantee
finite-time stability of the perturbed closed loop for all
positive integrator gains that are sufficiently large. The
proposed technique is demonstrated by extending a control
law for the double integrator σ̈ = u, which is discussed,
e.g., in Bacciotti and Rosier (2001) and has the form

u = −k1 |σ|
1
3 sign(σ)− k2 |σ̇|

1
2 sign(σ̇). (1)

For the controller thus proposed, quantitative results for
the minimum integrator gain and for the maximum conver-
gence time are derived. Their validity and the controller’s
performance are illustrated by means of simulations.

The paper is structured as follows. After some prelimi-
naries in Section 2, the principal structural insight and
idea that motivates the proposed controller structure is
first explained for a linear state-feedback controller in
Section 3. Then, this idea’s application to the second
order homogeneous control law is discussed. The main
result, which consists of the proposed control law along
with stability conditions and a convergence time bound, is
presented in Section 4. The actual stability analysis along
with some insight into the closed-loop performance is given
in Section 5, and Section 6 presents simulation results and
discusses the tuning of the proposed controller. Section 7,
finally, draws conclusions and provides a brief outlook.
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2. PRELIMINARIES

Throughout the paper, the abbreviations byep = |y|p sign(y)

and bye0 = sign(y) are used. Simultaneous transposition
and inversion of a matrix M is written as M−T. The
derivative of a scalar valued function f(x) with respect
to the vector x ∈ Rn is denoted by the row vector
∂f
∂x = [ ∂f∂x1

. . . ∂f
∂xn

].

A system’s origin is called finite-time stable, if it is
asymptotically stable and the state is equal to zero after
some finite time T . The smallest T , for which this is the
case, as a function of the initial state is called the system’s
convergence time.

3. MOTIVATION – LINEAR CASE

In this section, a motivation for the approach proposed
in this paper is presented by considering a linear time in-
variant plant with a constant disturbance. An interesting
structural insight into the design of a state-feedback con-
troller with integral part for such a system is presented. In
Sections 4 and 5 it will be shown that an extension of this
idea to nonlinear homogeneous state-feedback controllers
can handle arbitrary slope-bounded disturbances.

Consider a linear time invariant system

ξ̇ = Aξ + b(u+ w) (2)

with parameters A ∈ Rn×n and b ∈ Rn×1, state vector
ξ ∈ Rn, scalar control input u, and constant disturbance
w. Suppose that a state-feedback control law of the form

u = −kTξ (3)

with parameter vector kT ∈ R1×n is given, which expo-
nentially stabilizes the origin in the disturbance-free case.
The task of extending this control law by an integral term
is considered. This extension is designed in such a way that
all original closed-loop eigenvalues are retained, i.e., such
that all eigenvalues of the Hurwitz matrix A− bkT are
also eigenvalues of the final closed loop. In this sense, the
performance of the given controller is thus preserved.

For the state-feedback controller with integral part, con-
sider the ansatz

u = −kT
s ξ + kiv, (4a)

v̇ = y (4b)

with an output y = gTξ of the system and constant
parameters ki ∈ R and kT

s ,g
T ∈ R1×n. Denoting the

difference of ks and k by kih := ks − k and collecting
ξ and v in the extended state vector ζ := [ξT v]T, the

closed-loop system is given by ζ̇ = (Â− b̂k̂T)ζ with

Â =

[
A− bkT 0

gT 0

]
, b̂ =

[
b
0

]
, k̂ = ki

[
h
−1

]
. (5)

Due to the block triangular form of Â, one can see that it
has one eigenvalue at zero and shares all other eigenvalues
with the matrix A− bkT. Since the latter should also be
closed-loop eigenvalues, only the eigenvalue at zero needs

to be reassigned. In order to achieve this, the vector k̂T

has to be chosen as the left eigenvector of Â for the zero

eigenvalue, i.e., k̂TÂ = 0 has to hold. All such eigenvectors
are given by

k̂T =
λ

gT(A− bkT)−1b

[
gT(A− bkT)−1 −1

]
(6)

with a scalar parameter λ 6= 0. As one can see from

k̂T(Â− b̂k̂T) = −(k̂Tb̂)k̂T = −λk̂T, (7)

this parameter specifies the location of the (negative)

eigenvalue that is assigned to Â − b̂k̂T instead of zero.
All other eigenvalues remain unchanged, since

(Â− b̂k̂T)V = V(A− bkT) (8)

holds with V = [I (A−bkT)−Tg]T. These considerations
prove the following result.

Proposition 1. Let a positive parameter λ and a nominal
state-feedback gain kT ∈ R1×n be given such that the
matrix A − bkT is Hurwitz. Then, for any output vector
gT ∈ R1×n, the extended control law

u = −kTξ − kihTξ + kiv, (9a)

v̇ = gTξ (9b)

with

hT = gT(A− bkT)−1, ki =
λ

hTb
(10)

asymptotically stabilizes the plant (2) for any constant
disturbance w, and the closed-loop eigenvalues are given
by −λ and the eigenvalues of A− bkT.

Remark 2. The structure of (9) can be interpreted intu-
itively by relating the state functions hTξ and gTξ to the
unperturbed, nominal closed loop ξ̇ = (A−bkT)ξ. Along
the trajectories of this system,

d

dt
hTξ = hTξ̇ = hT(A− bkT)ξ = gTξ (11)

holds, i.e., hTξ is a state function of the integral of
gTξ for the nominal closed loop. The integrator state v
subtracts the same integral computed for the actual closed
loop. Thus, with the initial condition v(0) = hTξ(0) for
the integrator, the nominal behavior is recovered in the
disturbance-free case, because then v(t) = hTξ(t) holds
for all t. If the integrator is initialized differently or if
w 6= 0, then the integrals’ values tend towards each other,
recovering the nominal performance at least exponentially.

4. MAIN RESULT – HOMOGENEOUS CASE

The application of the presented idea to the homogeneous,
finite-time stabilizing state-feedback controller (1) is now
studied. Consider the second order integrator chain

ẋ1 = x2, (12a)

ẋ2 = u+ w (12b)

with a control input u and a matched disturbance w. Its
state variables x1, x2 are aggregated in the state vector
x = [x1 x2]T. The disturbance w is assumed to be
Lipschitz continuous, i.e., its time derivative ẇ is assumed
to be bounded by

|ẇ| ≤ L (12c)

with some non-negative constant L.

In the disturbance-free case, i.e., for w = 0, this system
may be stabilized in finite time by means of the homoge-
neous state-feedback control law

u = −k1 bx1e
1
3 − k2 bx2e

1
2 (13)

with positive parameters k1 and k2, see Bacciotti and
Rosier (2001).
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To obtain finite-time stability for arbitrary disturbances
that satisfy (12c), the control law is extended by an
integrator with discontinuous right-hand side. Motivated
by the structure of the linear controller (9), the following
homogeneous control law is proposed

u = −k1 bx1e
1
3 − k2 bx2e

1
2 − k3h(x1, x2) + k3v, (14a)

v̇ = g(x1, x2) (14b)

with abbreviations

h(x) =
x2

[
3k1
2 |x1|

4
3 + 2 |x2|2

] 1
4

, (15a)

g(x) =
k1
2 bx1e

1
3 |x2|2 + k2 bx2e

5
2

[
3k1
2 |x1|

4
3 + 2 |x2|2

] 5
4

− k1 bx1e
1
3 + k2 bx2e

1
2

[
3k1
2 |x1|

4
3 + 2 |x2|2

] 1
4

.

(15b)

Fig. 1 depicts the structure of this control law. Similar to
(11), the function g is the time derivative of the continuous
homogeneous function h along the trajectories of the
nominal closed loop, i.e.,

g(x) =
∂h

∂x1
x2 +

∂h

∂x2
(−k1 bx1e

1
3 − k2 bx2e

1
2 ), (16)

and k3 is a positive parameter. One may verify that h is
continuous, and that g is homogeneous with degree zero;
specifically, g(α3x1, α

2x2) = g(x1, x2) holds for all α > 0.
Thus, g is discontinuous (only) in the origin and solutions
of the closed-loop system are understood in the sense of
Filippov (1988). This means that (14b) for x = 0 is to be
read as the differential inclusion

v̇ ∈ [−G,G] (17)

with G = supx∈R2\{0} g(x) = − infx∈R2\{0} g(x). Since g
has homogeneity degree zero, the supremum may be taken
on any curve encircling the origin, e.g., the unit circle.

Contrary to the linear case, (16) does not automatically
guarantee stability, and hence g can not be chosen arbitrar-
ily. Indeed, a Lyapunov based stability analysis will reveal
that, additionally, sign definiteness of ∂h

∂x2
is of importance.

The following main theorem gives conditions for finite-time
stability of the closed-loop system and provides an upper
bound for its convergence time.

Theorem 3. Let positive parameters k1, k2, k3 and a non-
negative Lipschitz constant L be given. Consider the
closed loop system formed by the interconnection of the
perturbed integrator chain (12) and the control law (14)
with functions g and h given in (15). If the conditions

k
3
4
1 >

2k2
3
, k3 >

L

k2

19k
3
4
1

3k
3
4
1 − 2k2

(18)

are satisfied, then the closed loop’s origin is finite-time
stable. Furthermore, if the integrator’s initial condition is
given by v(0) = h(c1, c2) with x(0) = [c1 c2]T and the
initial disturbance is bounded by |w(0)| ≤W , then the
convergence time is bounded from above by

T =

[(
3k1
2 |c1|

4
3 + |c2|2

) 5
4

+ 3k2
2 c1c2

] 1
5

+ 19W
15k3

k2
5

(
1− 2

3k2k
− 3

4
1

)
− 19L

15k3

, (19)

i.e., x(t) = 0 holds for all t ≥ T .

Proof. Given in Section 5.2.

h(x)

g(x)

∫
k3

k1 bx1e
1
3 + k2 bx2e

1
2

x u− −

v

Fig. 1. Structure of the proposed control law with positive
parameters k1, k2, k3, and continuous function h and
discontinuous function g defined in (15).

Remark 4. When tuning the controller, k3 may be in-
creased to handle larger Lipschitz constants L, as can be
seen in (18), and to reduce the convergence time bound T ,
given in (19), down to a minimum value that is determined
by the nominal controller’s parameters k1 and k2.

Remark 5. If x2(0) = 0 and either w = 0 or k3 →∞, then
the convergence time bound simplifies to

T =
1

k
2
3
2

5( 3
2 )

1
4 |x1(0)| 13

(
k2k
− 3

4
1

) 1
3
(

1− 2
3k2k

− 3
4

1

) . (20)

One can see here as well as in (18) that the ratio k2k
−3/4
1

crucially influences the closed-loop’s stability properties
and convergence time. When this ratio is fixed, increasing
k2 reduces the smallest achievable convergence time, while
k2k3 determines the actual gain of the integral term,
i.e., the value of k3G with G as in (17). This gain and
therefore—as also reflected in (18)—the value of k2k3
are responsible for dominating the disturbance’s time
derivative ẇ.

5. PERFORMANCE AND STABILITY ANALYSIS

Closed-loop performance and stability with the proposed
controller may be analyzed by introducing the variable
z := −k3h(x) + k3v + w. Using (16), the closed-loop
dynamics of the interconnection of (12) and (14) are
obtained as

ẋ1 = x2, (21a)

ẋ2 = −k1 bx1e
1
3 − k2 bx2e

1
2 + z, (21b)

ż = −k3
∂h

∂x2
z + ẇ. (21c)

Note that h is everywhere differentiable except in the
origin, where ∂h

∂x2
has a singularity. Therefore, these dif-

ferential equations are valid only for x 6= 0. Nevertheless,
they provide valuable insight into the closed-loop behavior,
and they will be useful for computing the time derivative
of a Lyapunov function candidate for x 6= 0 later on.
A Filippov inclusion for the closed loop, which is well-
defined everywhere but provides less insight, is obtained
by considering the state variable q = k3v+w instead of z.

The dynamics (21) show that the original closed-loop per-
formance with controller (13) is recovered, if w = 0 and
z(0) = 0, i.e., if there is no disturbance and the integrator’s
initial condition is chosen as v(0) = h(x(0)). They further-
more suggest that obtaining stability guarantees may be
possible, if k3

∂h
∂x2

is positive definite; indeed, it will be
shown that this intuition is correct.
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The stability analysis is divided into two parts. First, a
Lyapunov function for the nominal closed loop, i.e., for
(21a)–(21b) with z = 0, is constructed based on a family
of such Lyapunov functions proposed in Cruz-Zavala et al.
(2018). Then, this result is used to construct a Lyapunov
function for the actual closed loop, which allows to prove
the main result.

5.1 Lyapunov Function for the Nominal Closed Loop

The nominal closed loop obtained from (21) for z = 0 is

ẋ1 = x2, (22a)

ẋ2 = −k1 bx1e
1
3 − k2 bx2e

1
2 . (22b)

These dynamics are equivalently obtained when applying
the nominal control law (13) to the plant (12) without
perturbation, i.e., with w = 0.

In Cruz-Zavala et al. (2018), a family of strict Lyapunov
functions for this system is proposed. For their construc-
tion, the following lemma is used, which is a special case
of (Cruz-Zavala et al., 2018, Lemma 7).

Lemma 6. (Cruz-Zavala et al., 2018). For any positive con-
stants α, β, µ, and ν > 1, the function

V (x1, x2) =
(
α |x1|2µ + β |x2|2

) ν
2

+ δ bx1e(ν−1)µ x2 (23)

is positive semidefinite but not positive definite if and only
if

δ2 = βν
( αν

ν − 1

)ν−1
(24)

holds.

The following immediate corollary will be useful later on.

Corollary 7. Let α, β, µ be positive, let ν > 1, define

Ṽ (x1, x2) = α |x1|2µ + β |x2|2 , (25)

and let δ > 0 satisfy (24). Then,

inf
x1,x2∈R

Ṽ (x1,x2)=1

bx1e(ν−1)µ x2 = −1

δ
= − 1√

βν

(ν − 1

αν

) ν−1
2

.

(26)

Proof. One may write V in (23) as

V (x1, x2) = Ṽ (x1, x2)
ν
2 + δ bx1e(ν−1)µ x2, (27)

which is is only positive semidefinite according to Lemma 6.
Thus, one has

0 = inf
Ṽ=1

V (x1, x2) = 1 + δ inf
Ṽ=1
bx1e(ν−1)µ x2, (28)

which yields the claimed result.

Using these relations, a strict Lyapunov function for (22)
of the form

V (x) = Ṽ (x)
5
4 + εx1x2 (29)

is proposed in Cruz-Zavala et al. (2018), where Ṽ is a
weak Lyapunov function for the system and ε is a positive
constant. It is shown that V is positive definite and its
time derivative along the trajectories of (22) is negative
definite if ε is sufficiently small.

The following proposition, which is proven in the ap-
pendix, extends this result by providing a quantitative
analysis.

Proposition 8. Let k1, k2 be positive parameters satisfying

3k
3
4
1 > 2k2 (30)

and consider the function

V (x1, x2) =
(3k1

2
|x1|

4
3 + |x2|2

) 5
4

+
3k2
2
x1x2. (31)

Then, V is positive definite and its time derivative V̇ along
the trajectories of (22) satisfies V̇ ≤ −CV 4

5 with

C =

(
1− 2k2

3k
3
4
1

)
k2. (32)

Proof. Given in the appendix.

In order to use this result for the construction of a
Lyapunov function for the actual closed loop (21), the
following auxiliary result is needed. It uses the positive
definiteness of ∂h

∂x2
to establish a relation between the

partial derivatives of V and h.

Lemma 9. Let k1, k2 be positive parameters and consider
functions h and V defined in (15a) and (31), respectively.
Suppose that (30) is fulfilled. Then,∣∣∣∣

∂V

∂x2

∣∣∣∣ ≤ FV
4
5
∂h

∂x2
(33)

holds with F = 19
3 .

Proof. Given in the appendix.

5.2 Lyapunov Function and Proof for the Main Theorem

The stability result and the convergence time bound in
Theorem 3 can now be proven. To that end, consider the
positive definite function

V (x1, x2, z) = V (x1, x2)
1
5 + β |z| (34)

with V given in (31) and a positive constant β to be
chosen later. If x 6= 0 and z 6= 0, then this function is
differentiable, and its time derivative along the trajectories
of the closed-loop system formed by (12) and (14), or
equivalently system (21), is

V̇ =
1

5
V −

4
5 (Q+

∂V

∂x2
z)− k3β

∂h

∂x2
|z|+ β bze0 ẇ, (35)

where the function Q(x1, x2) denotes the time derivative
of V along the trajectories of the nominal closed-loop (22),
i.e.,

Q(x) =
∂V

∂x1
x2 +

∂V

∂x2
(−k1 bx1e

1
3 − k2 bx2e

1
2 ). (36)

According to Proposition 8 and Lemma 9, the inequalities

Q(x) ≤ −CV (x)
4
5 ,

∣∣∣∣
∂V

∂x2

∣∣∣∣ ≤ F
∂h

∂x2
V (x)

4
5 (37)

hold with C given in (32) and F = 19
3 . Thus, choosing

β = F
5k3

= 19
15k3

, one has

V̇ ≤ −C
5

+
1

5
V −

4
5
∂V

∂x2
z − F

5

∂h

∂x2
|z|+ F

5k3
bze0 ẇ

≤ −
C − F L

k3

5
+

1

5
V −

4
5

∣∣∣∣
∂V

∂x2

∣∣∣∣ |z| −
F

5

∂h

∂x2
|z|

≤ −
C − F L

k3

5
= −

(
1− 2k2

3k
3
4
1

)
k2
5

+
19L

15k3
< 0, (38)

where the upper bound is negative due to (18).
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Fig. 2. Simulation results illustrating the influence of the
parameter k3 for k1 = 6, k2 = 3, initial condition
v(0) = h(x(0)) = 0, and disturbance w(t) = 4 + sin t.

The cases where V is not differentiable are now considered:
For z 6= 0, x(t) = 0 can occur only at isolated time
instants t, because then ẋ2 = z, and thus x2 immediately
becomes non-zero again. For z this is not the case, however,
because one can have z(t) = 0 on time intervals with non-
zero length even if x 6= 0. In this case, the closed-loop
dynamics and the Lyapunov function both reduce to the
nominal case, however, i.e., dynamics are given by (22)

and V = V
1
5 . Therefore, d

dtV ≤ −5−1C holds according
to Proposition 8, which again implies the inequality (38).

From these considerations one concludes that the differ-
ential inequality (38) holds everywhere except at isolated
time instants and in the equilibrium x = 0, z = 0. There-
fore, it may be integrated to establish finite-time stability
and show that the convergence time T for v(0) = h(x(0)),
i.e., for z(0) = w(0) is bounded by

T ≤ 5V (x(0), z(0))

C − F L
k3

=
5V (x(0))

1
5 + F

k3
|w(0)|

C − F L
k3

= T , (39)

which proves the theorem.

6. SIMULATION RESULTS

The proposed controller (14) is applied to the plant (12)
with parameter values k1 = 6, k2 = 3, initial condition
v(0) = h(x(0)), and disturbance w(t) = 4 + sin t. Simula-
tion results for this setup are obtained using forward Euler
discretization with a step size of 10−4.

Fig. 2 illustrates the influence of the tuning parameter
k3 on the closed-loop performance. One can see that
the pure (nominal) state-feedback controller (13) without
integral action, i.e., (14) with k3 = 0, can not reject the
disturbance and converges to zero only in the unperturbed
case. With values k3 = 5 and k3 = 15, chosen using
Theorem 3, convergence to the origin is achieved again
and performance can be seen to approach the nominal case
with increasing values of k3.

Fig. 3 shows that Theorem 3 also yields reasonable con-
vergence time bounds, provided that the parameter k3 is
not too close to the lower limit in (18). One can see that
for k3 = 20 the upper bound T ≈ 13.7 obtained from (19)

0 5 10 15 20
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−2
0

2

4
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an
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s

x1(t)

x2(t)

0 5 10 15 20
−10

−5
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10
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time t

co
nt

ro
li

np
ut u(t)

Fig. 3. Simulation results with parameters k1 = 6, k2 = 3,
k3 = 20, initial condition v(0) = 0, and disturbance
w(t) = 4+sin t and convergence time bound T ≈ 13.7
obtained from (19) with W = 5, L = 1.

with W = 5, L = 1 overestimates the actual convergence
time T ≈ 4.3 only by a factor of three, approximately.

7. CONCLUSION AND OUTLOOK

A new homogeneous state-feedback control law with dis-
continuous integral action for the perturbed double inte-
grator was proposed. It is based on an interesting struc-
tural insight obtained in the linear case, which enables
a performance preserving integral extension of a given
state-feedback controller. Main features of the proposed
approach are its easy tuning, the structurally simple stabil-
ity condition, and the extendability of the idea to arbitrary
order systems. In the future, these extensions and their
stability properties may be studied.
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Appendix A. PROOFS

A.1 Proof of Proposition 8

Introducing the abbreviations ε = 3k2
2 and

Ṽ (x1, x2) =
3k1
2
|x1|

4
3 + |x2|2 (A.1)

one may write the function V as V = Ṽ
5
4 + εx1x2. From

Corollary 7 with α = 3k1
2 , β = 1, µ = 2

3 , ν = 5
2 one finds

inf
Ṽ=1

V (x1, x2) = 1 + ε inf
Ṽ=1

x1x2 = 1− ε

k
3
4
1

(2

5

) 5
4

= 1− 3k2

2k
3
4
1

(2

5

) 5
4

> 1− 2k2

3k
3
4
1

> 0 (A.2)

due to (30), which shows that V is positive definite.

The time derivative of Ṽ along the trajectories of (22) is
˙̃V = −2k2 |x2|

3
2 . One thus obtains for V̇ the upper bound

V̇ =
5

4
Ṽ

1
4

˙̃V + ε(|x2|2 − k1 |x1|
4
3 − k2x1 bx2e

1
2 )

= −5k2
2
Ṽ

1
4 |x2|

3
2 + ε(|x2|2 − k1 |x1|

4
3 − k2x1 bx2e

1
2 )

≤ −5k2 − 2ε

2
|x2|2 − εk1 |x1|

4
3 − εk2x1 bx2e

1
2

= −k2
(
Ṽ +

3k2
2
x1 bx2e

1
2

)
. (A.3)

Consider now the ratio

V̇ (x1, x2)

V (x1, x2)
4
5

≤ −k2
Ṽ (x1, x2) + 3k2

2 x1 bx2e
1
2

(
Ṽ (x1, x2)

5
4 + 3k2

2 x1x2

) 4
5

=: c(x1, x2),

(A.4)
whose upper bound is denoted by the function c. This
function is homogeneous of degree zero, i.e., one has
c(α3x1, α

2x2) = c(x1, x2) for all α > 0. For finding
a uniform upper bound for it, it is thus sufficient to
consider states x1, x2 that satisfy Ṽ (x1, x2) = 1. Thus,
the expression to be bounded becomes

c(x1, x2)|Ṽ (x1,x2)=1 = −k2
1 + 3k2

2 x1 bx2e
1
2

(1 + 3k2
2 x1x2)

4
5

. (A.5)

Consider abbreviations y1 = x1 bx2e
1
2 and y2 = |x2|

1
2 ; one

may note that Ṽ = 1 implies |y1| ≤ Y and y2 ∈ [0, 1] with

Y =

√
− inf
Ṽ=1
bx1e2 x2 =

(1

2

) 5
4

k
− 3

4
1 (A.6)

obtained from Corollary 7 with ν = 4 and α, β, µ as before.
Thus, the function c is bounded by

c(x1, x2) ≤ −k2 inf
|y1|≤Y
y2∈[0,1]

1 + 3k2
2 y1

(1 + 3k2
2 y1y2)

4
5

. (A.7)

By computing the derivative of the expression to be
minimized, one can verify using (30) that it is non-
decreasing with respect to y1 for all admissible values of
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parameter ratio ρ = k2k
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Fig. A.1. Graphical proof of Lemma 9, demonstrating that
f(x) defined in (A.11) is bounded by f(x) ≤ F for all
values of x and all k1, k2 satisfying (18).

y1, y2. Thus, the infimum is obtained for y1 = −Y and
y2 = 0, and therefore

c(x1, x2) ≤ −
(

1−
(1

2

) 5
4 3k2

2k
3
4
1

)
k2 ≤ −C (A.8)

holds with C in (32), which completes the proof.

A.2 Proof of Lemma 9

Using the abbreviation Ṽ defined in (A.1), one may write

h = x2(Ṽ + |x2|2)−
1
4 and V = Ṽ

5
4 + 3k2

2 x1x2. One thus
obtains the partial derivatives

∂h

∂x2
=

Ṽ

(Ṽ + |x2|2)
5
4

, (A.9)

∂V

∂x2
=

5

2
Ṽ

1
4x2 +

3k2
2
x1. (A.10)

Since ∂h
∂x2

is positive definite, it needs to be shown that
the function f defined as

f(x) :=

∣∣∣ ∂V∂x2

∣∣∣
V

4
5
∂h
∂x2

=

∣∣∣5Ṽ (x)
1
4x2 + 3k2x1

∣∣∣ (Ṽ (x) + |x2|2)
5
4

2(Ṽ (x)
5
4 + 3k2

2 x1x2)
4
5 Ṽ (x)

(A.11)
satisfies f(x) ≤ F for all x and all admissible values of
k1, k2. This function is homogeneous with homogeneity
degree zero, i.e., it fulfills f(α3x1, α

2x2) = f(x1, x2) for
all α > 0. Therefore, considerations can be constrained
to values on a circular arc in the state space given by
x1 = cos(ϕ), x2 = sin(ϕ) with ϕ ∈ [−π, π]. Furthermore,
denoting the dependence of f on the parameters k1, k2
explicitly as fk1,k2 , one can verify that it fulfills

f
α

4
3 k1,αk2

(α−1x1, x2) = fk1,k2(x1, x2). (A.12)

Thus, the maximum of f with respect to ϕ is only a

function of the positive parameter ratio ρ := k2k
−3/4
1 ,

which according to (30) is bounded by ρ < 3
2 . Introducing

the function

f(ρ) = sup
|ϕ|≤π

f1,ρ(cosϕ, sinϕ), (A.13)

it needs to be shown that f(ρ) ≤ F holds for all ρ ∈ (0, 32 ).
Fig. A.1 depicts this function obtained from a numerical
evaluation of the supremum in (A.13) on an evenly spaced
grid of 1000 values for ϕ ∈ [−π, π]; one can see graphically
that the claimed inequality indeed holds for all ρ ∈ (0, 32 ),
which concludes the proof.
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