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Abstract: Motivated by the work of Cai and Hu (2018), this paper considers the dual objective
control problem of a flywheel energy storage system targeting simultaneous state-of-energy
balancing and reference power tracking. It is first shown that, in the presence of flywheel
damping, the steady state solution subject to the dual control objective exists and is defined by
a virtual dynamic system. Second, under the identical damping condition, it is proven that the
control law proposed in Cai and Hu (2018) can still solve the dual objective control problem.
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1. INTRODUCTION

Energy storage systems play a key role in modern power
system providing flexibility when there are imbalances
between supply and demand, among which flywheel energy
storage system (FESS) is one of the most popular energy
storage systems (Arani et al., 2017). FESS has energy
fed in the rotational mass of a flywheel, stores it as
kinetic energy, and releases out upon demand, which
not only has high power and energy density, but also
realizes energy conversion with high efficiency yet no
environmental pollution (Liu and Jiang, 2007; Molina,
2012; Jin, 2007; Mousavi et al., 2017). FESS also has some
other advantages including fast response, low maintenance
and geographical free (Amiryar and Pullen, 2017), which
makes it a promising solution for energy problems.

So far, there have been extensive results for the control
of a single flywheel system. In Chang et al. (2014), active
disturbance rejection techniques together with a nonlin-
ear control method developed from the traditional PID
control was proposed to improve the performance of the
flywheel designed for DC microgrids. In Ghanaatian and
Lotfifard (2019), based on model predictive control, an
optimal nonlinear controller for a flywheel was synthesized
against modeling uncertainties and external disturbances.
In Nguyen et al. (2011), a novel control scheme using
SPWM as well as a boost converter was studied to protect
critical loads on distribution feeders. On the other side,
there has been less effort on the control of a FESS, which
usually employs two or more flywheels in order to provide
sufficient power. The result of Elsayed and Mohammed
(2014) shows that three small flywheels perform better
than one large flywheel. The control scheme for FESS with
multiple flywheels may vary depending on the mechanism

? This work was supported in part by the National Natural Science
Foundation of China under Grant 61803160, in part by Science
Research Programme (General Programme) of Guangzhou under
Grant 201904010242, and in part by Student Research Programme
of South China University of Technology.

of cooperation. The centralized control method, or called
master-slave arrangement, includes one master flywheel
and some slave flywheels operating under the control of
the master flywheel. While, the entire FESS might be
inoperable when the master unit fails (Hockney et al.,
2003). In Sun et al. (2015), a distributed DC-bus signaling
based cooperative control strategy was proposed to realize
the power balancing of multi paralleled flywheels coupled
in a common DC bus. The FESS can adjust its operation
automatically according to variation of DC bus voltage.
The strategy is able to maintain a stable DC bus voltage
and eliminate some adverse effects.

Motivated by the work of Cai and Hu (2018), this paper
considers a dual objective control problem of a FESS
targeting simultaneous state-of-energy (SOE) balancing
and reference power tracking. In particular, on one hand,
the SOEs, defined as the ratio of the stored energy and the
energy capacity, of all the flywheels should be balanced
so as to keep the maximum power capacity of the FESS;
on the other hand, the power output of the FESS should
track the given reference which is set up by some upper
level control. Note that Cai and Hu (2018) considered the
fundamental case of general energy storage units, and in
contrast, a specific FESS is considered in this paper. It
turns out to be much more difficult to solve the dual
objective control problem for FESS dual to the damping
of flywheels. First, the steady state solution subject to
the dual control objective in Cai and Hu (2018) is static
and can be identified straightforwardly. However, for the
case of FESS, whether the steady state solution exits or
not remains unknown. Second, if the steady state solution
exists, how to achieve the dual control objective is still
challenging. The contribution of this work are twofold.
First, we have shown that, in the presence of flywheel
damping, the steady state solution subject to the dual
control objective exists and is defined by a virtual dynamic
system. Second, under the identical damping condition, we
have proven that the control law proposed in Cai and Hu
(2018) can still solve the dual objective control problem.
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2. PROBLEM FORMULATION

We consider a FESS consisting of N flywheels. The system
dynamics of the ith flywheel are given as (Zhang and Yang,
2017):

Iiω̇i = −Bviωi + Tei (1)

where Ii, ωi, Bvi and Tei denote moment of inertia,
angular velocity, damping coefficient and electrical toque,
respectively. In here, Tei is taken as the control input for
the ith flywheel.

The energy stored in the ith flywheel can be calculated by

Ei =
1

2
Iiω

2
i . (2)

Define Pi = −Ėi. Then

Pi = −Iiωiω̇i
= Bviω

2
i − Teiωi

(3)

where the first part Bviω
2
i denotes the power loss due to

damping, and the second part −Teiωi denotes the power
injected into the grid. In what follows, define Pi,loss =
Bviω

2
i and Pi,out = −Teiωi.

Let ωi,min, ωi,max denote the minimum and maximum ad-
missible angular velocity of the ith flywheel, respectively.
Then the energy capacity of the ith flywheel is given by

Eci =
1

2
Iiω

2
i,max. (4)

Thus, the SOE of the ith flywheel is given by

φi =
Ei
Eci

=
ω2
i

ω2
i,max

= γiω
2
i (5)

where γi = 1/ω2
i,max.

By (1) and (5),

φ̇i =
2γi
Ii

(−Bviω2
i + Teiωi)

= −2γi
Ii

(
Bvi
γi

φi + Pi,out)

= −2Bvi
Ii

φi −
2γi
Ii
Pi,out.

(6)

Let PFESS =
∑N
i=1 Pi,out denote the power output of the

FESS, and PREF ∈ R denote the reference for PFESS . As
in Cai and Hu (2018), to achieve reference power tracking,
we introduce a command generator (CG) in the following
generic form

ẋ0 = f0(t) (7)

whose specific dynamics will be detailed later.

The FESS (1) can be viewed as a multi-agent system
ΣN associated with which we can define a graph 1 G =
(V, E), where V = {1, . . . , N} and E ⊆ {V × V}. For
i, j = 1, . . . , N , (i, j) ∈ E if and only if the jth flywheel
can receive the information from the ith flywheel. Adding
CG to ΣN defines an extended multi-agent system ΣN+1.
Let node 0 represent the CG and an augmented graph
Ḡ = (V̄, Ē) is defined as V̄ = {0, 1, . . . , N} and Ē = E ∪
{{0} × V} where for i = 1, . . . , N , (0, i) ∈ Ē if and only
if the ith flywheel can receive the information from the
CG. Let Ā = [aij ] ∈ R(N+1)×(N+1) be the weighted

1 See NOTATION of Cai and Hu (2018) for a summary of graph
notation.

adjacency matrix of Ḡ, L ∈ RN×N be the Laplacian of
G and H = L+ diag {a10, . . . , aN0}.
Now, the problem considered in this paper can be de-
scribed as follows.

Problem 1. Given systems (1), (7), and the communica-
tion network Ḡ, find the control input Tei, such that the
state of the closed-loop system is bounded and satisfies

lim
t→∞

(PFESS(t)− PREF ) = 0 (8)

and

lim
t→∞

(φi(t)− φj(t)) = 0 (9)

for i, j = 1, . . . , N .

Remark 1. Though Problem 1 can be seen as an extension
of the result of Cai and Hu (2018) in that it also considers
the SOE balancing and reference power tracking problem,
when taken into consideration the specific dynamics of
flywheel, an additional damping term − 2Bvi

Ii
φi in Eq. (6)

greatly increases the difficulties in solving this problem. In
particular, as will be seen shortly, the steady state power
output of each flywheel will no longer be static, but follow
time-varying trajectory generated by a virtual dynamic
system.

Some assumptions for solving Problem 1 are listed as
follows.

Assumption 1. For i = 1, . . . , N , ωi(0) ∈ [ωi,min, ωi,max].

Assumption 2. The graph Ḡ contains a spanning tree with
the node 0 as its root and the graph G is connected.

Assumption 3. The graph Ḡ contains a spanning tree with
the node 0 as its root and the graph G is undirected and
connected.

3. EXISTENCE OF THE SOLUTION

In this section, we will answer the fundamental question
that whether the steady state of the FESS exists subject
to the dual control objectives (8) and (9). In particular,
we have the following result.

Lemma 1. The steady state of the FESS satisfying the
following constraints

PREF =

N∑
i=1

Pi,out (10a)

φi = φj , i, j = 1, . . . , N (10b)

φ̇i = φ̇j , i, j = 1, . . . , N (10c)

exists and is defined by φi(t) ≡ φ(t) for i = 1, . . . , N and
all t ≥ 0, where

φ̇ = − 2∑N
j=1

Ij
γj

PREF −
2
∑N
j=1

Bvj
γj∑N

j=1
Ij
γj

φ. (11)

Proof: By equation (6) and (10c), for j = 2, . . . , N , we
have

2γ1

I1
(P1,out +

Bv1

γ1
φ) =

2γj
Ij

(Pj,out +
Bvj
γj

φ). (12)

Thus,
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Pj,out =
γ1Ij
γjI1

(P1,out +
Bv1

γ1
φ)− Bvj

γj
φ

=
γ1Ij
γjI1

P1,out +

(
Bv1Ij
γjI1

− Bvj
γj

)
φ

=
γ1Ij
γjI1

P1,out +
Bv1Ij −BvjI1

γjI1
φ.

(13)

Therefore, by (10a), we have

PREF = P1,out +

N∑
j=2

Pj,out

= P1,out +

N∑
j=2

γ1Ij
γjI1

P1,out +

N∑
j=2

Bv1Ij −BvjI1
γjI1

φ

=

N∑
j=1

γ1Ij
γjI1

P1,out +

N∑
j=2

Bv1Ij −BvjI1
γjI1

φ.

(14)

In the steady state, for i = 1, . . . , N , by equation (6), we
have

φ̇ = −2γi
Ii

(Pi,out +
Bvi
γi

φ). (15)

Thus, we have

φ̇ = −2γ1

I1
(P1,out +

Bv1

γ1
φ). (16)

Substituting (14) into (16) gives

φ̇ = −2γ1

I1

PREF −∑N
j=2

Bv1Ij−BvjI1
γjI1

φ∑N
j=1

γ1Ij
γjI1

+
Bv1

γ1
φ


= − 2∑N

j=1
Ij
γj

PREF + 2

∑N
j=2

Bv1Ij−BvjI1
γjI1∑N

j=1
Ij
γj

− Bv1

I1

φ

= − 2∑N
j=1

Ij
γj

PREF

+ 2

∑N
j=2

Bv1Ij−BvjI1
γjI1

−
∑N
j=1

Bv1Ij
I1γj∑N

j=1
Ij
γj

φ

= − 2∑N
j=1

Ij
γj

PREF −
2
∑N
j=1

Bvj
γj∑N

j=1
Ij
γj

φ.

(17)
If φi(t) ≡ φ(t), i = 1, . . . , N , then (10b) and (10c) are
satisfied. Moreover,

φ̇i = −2Bvi
Ii

φ− 2γi
Ii
Pi,out

= − 2∑N
j=1

Ij
γj

PREF −
2
∑N
j=1

Bvj
γj∑N

j=1
Ij
γj

φ
(18)

and thus

Pi,out =
Ii
γi

 1∑N
j=1

Ij
γj

PREF +

∑N
j=1

Bvj
γj∑N

j=1
Ij
γj

φ− Bvi
Ii
φ


(19)

which concludes that
∑N
i=1 Pi,out = PREF . 2

Remark 2. It might be interesting to check the equilibrium
point of system (17), which is

φ∗ = − PREF∑N
j=1

Bvj
γj

. (20)

Clearly, φ∗ is meaningful only if φ∗ ∈ [0, 1], i.e.,

−
∑N
j=1

Bvj
γj
≤ PREF ≤ 0. On this special equilibrium

point, the power absorbed from the grid happens to meet
the power loss on the flywheel due to damping. On the

other hand, if PREF > 0 or PREF < −
∑N
j=1

Bvj
γj

, PREF
should be reset from time to time so that the SOEs of the
flywheels keep to stay in the admissible range.

4. CONTROL LAW DESIGN

In this section, we will show that under certain condition,
the control scheme proposed in Cai and Hu (2018) can still
solve Problem 1.

4.1 identical system parameters

First, we consider the situation where the system param-
eters of all the flywheels are identical. For simplicity, for
i = 1, . . . , N , let Ii = I, Bvi = Bv, and γi = γ.

The CG is designed to be

ζ̇0 = 0, ζ0(0) = PREF /N (21)

where ζ0 ∈ R.

The control law for the ith flywheel is designed to be

ζ̇i = µζ

N∑
j=0

aij (ζj − ζi) (22a)

Tei =
1

ωi

kφ N∑
j=1

aij(φj − φi)− ζi

 (22b)

where ζi ∈ R and µζ , kφ > 0. We have the following result.

Theorem 1. Given systems (1) and (21), under Assump-
tions 1 and 2, Problem 1 can be solved by the control law
(22).

Proof: For i = 1, . . . , N , let ζ̄i = ζi − ζ0 and ζ̄ =
col(ζ̄1, . . . , ζ̄N ) 2 . Then by (21) and (22a), we have

˙̄ζ = −µζHζ̄. (23)

Under Assumption 1, by Lemma 1 of Su and Huang (2012),
all the eigenvalues of H have positive real parts. Therefore,

lim
t→∞

ζ̄(t) = 0. (24)

Substituting (22b) into (6) gives

φ̇i = −2Bv
I
φi +

2γ

I

kφ N∑
j=1

aij(φj − φi)− ζi

 . (25)

Let φ = col(φ1, . . . , φN ), ζ = col(ζ1, . . . , ζN ). Then we
have

φ̇ = −2Bv
I
φ− 2γkφ

I
Lφ− 2γ

I
ζ

= −2Bv
I
φ− 2γkφ

I
Lφ− 2γ

I
ζ̄ − 2γζ0

I
1N .

(26)

2 For xi ∈ Rni , i = 1, . . . ,m, col(x1, . . . , xm) = [xT
1 , . . . , xT

m]T .
1n = col(1, . . . , 1) ∈ Rn. 0n = col(0, . . . , 0) ∈ Rn.
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Let φ̄ = Lφ. Then we have

˙̄φ = −2Bv
I
Lφ− 2γkφ

I
L2φ− 2γ

I
Lζ̄ − 2γζ0

I
L1N

= −2Bv
I
φ̄− 2γkφ

I
Lφ̄− 2γ

I
Lζ̄

, −Aφφ̄−
2γ

I
Lζ̄

(27)

where Aφ = 2Bv
I IN +

2γkφ
I L. Then by Lemma 1.18 of Ren

and Cao (2011), all the eigenvalues of Aφ have positive
real parts and thus Aφ is Hurwitz. Since limt→∞ ζ̄(t) = 0,
it follows that limt→∞ φ̄(t) = 0. Note that by Lemma 1.3
of Ren and Cao (2011), under Assumption 2, φ̄ = 0 if and
only if φi − φj = 0 for i, j = 1, . . . , N . Therefore,

lim
t→∞

(φi(t)− φj(t)) = 0. (28)

Then, by (22b) and (28), noticing that

PFESS − PREF =

N∑
i=1

Pi,out −Nζ0

=− kφ
N∑
i=1

N∑
j=1

aij(φj − φi) +

N∑
i=1

ζi −Nζ0

=− kφ
N∑
i=1

N∑
j=1

aij(φj − φi) +

N∑
i=1

ζ̄i

(29)

gives limt→∞(PFESS(t)− PREF ) = 0.

2

4.2 non-identical system parameters

Next, we consider the general situation where the system
parameters are non-identical. To solve Problem 1, the
following assumption is further needed.

Assumption 4. For i = 1, . . . , N , Bvi/Ii = ρ where ρ is
some constant.

The CG is designed to be

η̇0 = α(PREF − PFESS) (30)

where η0 ∈ R, α > 0.

The control law for the ith flywheel is designed to be

ξ̇i =

N∑
j=1

aij(φj − φi) (31a)

η̇i = µη

N∑
j=0

aij (ηj − ηi) (31b)

Tei =
1

ωi

kφ N∑
j=1

aij(φj − φi) + kξξi − kηηi

 (31c)

where ξi, ηi ∈ R, µη, kφ, kξ, kη > 0. We have the following
result.

Theorem 2. Given systems (1) and (30), under Assump-
tions 1, 3 and 4, Problem 1 can be solved by the control
law (31).

Proof: Let ξsum =
∑N
i=1 ξi, P̄REF = PREF + κξξsum, η̃i =

ηi−P̄REF /(κηN), i = 0, 1, . . . , N , η̃a = col(η̃0, η̃1, . . . , η̃N ).

Then by the proof of Theorem 2 of Cai and Hu (2018), the
origin of the following system is exponentially stable

˙̃ηa =


0 −αkη · · · −αkη

µηa10

... −µηH
µηaN0

 η̃a , H̄η̃a (32)

and thus H̄ is Hurwitz. Moreover, limt→∞(PFESS(t) −
PREF ) = 0 exponentially.

Substituting (31c) into (6) gives

φ̇i =
2γi
Ii

(Teiωi −
Bvi
γi

φi)

=
2γi
Ii

kφ N∑
j=1

aij(φj − φi) + kξξi − kηηi −
Bvi
γi

φi


=

2γikφ
Ii

N∑
j=1

aij(φj − φi) +
2γikξ
Ii

ξi −
2γikη
Ii

ηi − 2ρφi.

(33)

Let ΓI = diag{γ1/I1, . . . , γN/IN}, φ = col(φ1, . . . , φN ),

ξ = col(ξ1, . . . , ξN ), η = col(η1, . . . , ηN ), ξ̄ = ξ − P̄REF
κξN

1N ,

η̃ = col(η̃1, . . . , η̃N ). Then

φ̇ = −2ρφ− 2kφΓILφ+ 2kξΓIξ − 2kηΓIη

= −2ρφ− 2kφΓILφ+ 2kξΓI

(
ξ̄ +

P̄REF
kξN

1N

)
− 2κηΓIη

= −2ρφ− 2kφΓILφ+ 2kξΓI ξ̄ − 2kηΓI

(
η − P̄REF

kηN
1N

)
= −2ρφ− 2kφΓILφ+ 2kξΓI ξ̄ − 2kηΓI η̃

= −2ρφ− 2kφΓILφ+ 2kξΓI ξ̄ − 2kηΓ̄I η̃a
(34)

where Γ̄I = ( 0N ΓI ).

Let φ̄ = Lφ. Then we have

˙̄φ = −2ρLφ− 2kφLΓILφ+ 2kξLΓI ξ̄ − 2kηLΓ̄I η̃

= −2ρφ̄− 2kφLΓI φ̄+ 2kξLΓI ξ̄ − 2kηLΓ̄I η̃
(35)

and

˙̄ξ = ξ̇ = −Lφ = −φ̄. (36)

Since L is positive semidefinite under Assumption 3, Ψ ,
ρΓI + kφΓILΓI is positive definite. Let ψmin denote the
minimum eigenvalue of Ψ. Since H̄ is Hurwitz, let Π̄ > 0
be such that

Π̄H̄ + H̄T Π̄ = −αIN
where

α = 1 +
||kηΓILΓ̄I ||2

2ψmin
.

Let

V =
1

4
φ̄TΓI φ̄+

kξ
2
ξ̄TΓILΓI ξ̄ + η̃Ta Π̄η̃a. (37)

Then we have
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V̇ = −φ̄T (ρΓI + kφΓILΓI)φ̄+ kξφ̄
TΓILΓI ξ̄

− kηφ̄TΓILΓ̄I η̃a − kξ ξ̄TΓILΓI φ̄− α||η̃a||2

≤ −ψmin||φ̄||2 +
ψmin

2
||φ̄||2

+ (
||kηΓILΓ̄I ||2

2ψmin
− α)||η̃a||2

= −ψmin

2
||φ̄||2 − ||η̃a||2 ≤ 0

(38)

which in turn implies that φ̄ and L1/2ΓI ξ̄, and therefore
LΓI ξ̄ is bounded, and so is V̈ . Then, by Barbalats’ Lemma,

lim
t→∞

V̇ (t) = 0,

and thus limt→∞ φ̄(t) = 0. Again, by by Lemma 1.3 of Ren
and Cao (2011), under Assumption 3, φ̄ = 0 if and only if
φi − φj = 0 for i, j = 1, . . . , N . Therefore,

lim
t→∞

(φi(t)− φj(t)) = 0. (39)

2

Remark 3. The key to the success of the control laws (22)
and (31) lies in that the damping of the flywheels are
identical, which in essence eliminates the effect of damping
on the SOE balancing objective.

Remark 4. In both control laws (22b) and (31c), it is
required that ωi(t) 6= 0 for all t ≥ 0, which can be
easily guaranteed in practice. On one hand, for flywheels
with large inertial, the change of the angular velocities of
flywheels is rather slow. On the other hand, the reference
angular velocity, as indicated by (17), can be adjusted by
resetting PREF from time to time, so that the angular
velocities of all the flywheels will remain in the admissible
range. Such results can be seen in the numerical simula-
tions presented in the next section.

5. SIMULATION

In this section, we consider an FESS consisting of fifteen
flywheels. The communication network associated with
the FESS is shown in Fig. 1. The initial SOE for the
ith flywheel is given by φi(0) = 0.9 − 0.005 ∗ (i − 1),
i = 1, 2, . . . , 15 and let PREF = 30kw.

For the case of identical system parameters, we set Bv =
10−4, I = 300kg·m2, ωi,max = 103rad/s and the control
gains are selected to be kφ = 2 ∗ 105, µζ = 10. The initial
state for the controller is ζi(0) = 0, i = 1, 2, . . . , 15.

For the case of non-identical system parameters, the di-
rected edges of G are reset to be undirected, and we
set Ii = 300 − 0.5 ∗ (i − 1)kg·m2, Ii/Bvi = 3 ∗ 106,
ωi,max = 1000 ∗

√
1− 0.01 ∗ irad/s, i = 1, 2, . . . , 15. The

control gains are selected to be α = 1, µη = 1000, kφ = 2∗
105, kξ = 1, kη = 100. The initial state for the controller
is η0(0) = 0, ξi(0) = 0 and ηi(0) = 0, i = 1, 2, . . . , 15.

The profiles of SOE, power outputs of each flywheel, and
the power output error Pe = PREF − PESS of the entire
FESS under control law (22) and (31) are shown in Fig. 2
and Fig. 3, respectively. From the figures we learn, in both
cases, reference power tracking and SOE balancing have
been achieved simultaneously.

1

CG

2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 1. Communication network.

Fig. 2. The case of identical system parameters.
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Fig. 3. The case of non-identical system parameters.

6. CONCLUSION

This paper has considered the dual objective control
problem of a FESS targeting simultaneous state-of-energy
balancing and reference power tracking. It is first shown
that, in the presence of flywheel damping, the steady state
solution subject to the dual control objective exists and is
defined by a virtual dynamic system. Second, under the
identical damping condition, it is proven that the control
law proposed in Cai and Hu (2018) can still solve the dual
objective control problem. In the future, we might further
consider the same dual objective control problem without
the identical damping assumption.
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