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Abstract: The paper proposes a trajectory design method for overtaking maneuvers, in which
several performances are incorporated. Thus, it leads to a multi-objective optimization task. It
is based on a simple mathematical representation of feasible trajectories by using a potential
field approach. The solution of the complex computations in the optimization is approximated
by neural networks. The proposed solution is based on the idea that there are a large number
of collision free feasible trajectories. The goal of the method is to find the trajectory, which is
suitable for the specified objectives. The result of the paper is an integrated decision for both
longitudinal and lateral directions, such as longitudinal acceleration command and the values
of the defined path. The effectiveness of the method is presented through CarMaker simulation
environment.
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1. INTRODUCTION AND MOTIVATION

The development of automation in overtaking maneuvers
can contribute to the avoidance of emergency in traffic
scenarios. Through the automation the elimination of
accident caused by the human errors can be achieved.
Moreover, the trajectory of the overtaking maneuver must
be carefully selected, considering the human requirements,
the traffic environment and the dynamical properties of
the automated vehicle.

In the field of overtaking control of autonomous vehicles
several different approaches have been developed. The
advantage of the Model Predictive Control (MPC)-based
approaches is that they consider the prediction about
the surrounding vehicles in the design of the current in-
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tervention. For example, in Berntorp [2017] a technique
for path planning together with collision avoidance with
the application of overtaking was found. Moreover, in the
method the surrounding vehicles were considered through
stochastic approaches. However, a drawback of the MPC-
based methods can be their high computation require-
ments, which motivates the application of further control
methods. In the work of Karlsson et al. [2019] a compu-
tationally efficient modeling approach for the challenges
of overtaking maneuvers was developed. Another mixed
integer programming method, in which the complexity
of the computation and the number of variables were
reduced, was proposed by Molinari et al. [2017]. In another
method proposed by Nguyen et al. [2017] the overtaking
task was solved through a stochastic predictive control
method while the longitudinal and lateral velocities of the
surrounding vehicles were predicted. In You et al. [2019]
Bézier curves for trajectory planning were used. In Zhang
et al. [2018] a decision making was proposed by using
reinforcement learning frameworks to obtain overtaking
maneuvers. In Petrov and Nashahibi [2014] a nonlinear
adaptive controller for a two-vehicle automated overtaking
maneuver as a tracking task was presented.

The contribution of this paper is a trajectory design
method for overtaking maneuver, in which several objec-
tives can be incorporated. It is achieved by two ways:
first, all of the feasible trajectories are represented by a
distinct potential value, which induces a simplified search
algorithm in the optimization process. Second, the solution
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of the complex computations is approximated by neural
networks. The goal of the method is to find a collision-
free trajectory, which is also suitable for the appropriate
performance specifications.

The structure of the paper is the following. Section 2
presents the formulation of the feasible trajectories. Sec-
tion 3 introduces the potential field functions for various
performances. The optimization task of the trajectory de-
sign and the machine-learning based training process are
proposed in Section 4. The algorithm is illustrated through
simulation examples in Section 5. Finally, in Section 6 the
contributions of the paper are concluded.

2. FORMULATION OF TRAJECTORY SCENARIOS
FOR OVERTAKING

The purpose of this section is to determine the set of
feasible overtaking trajectories, which is the basis of the
selections of the appropriate trajectory.

The trajectory of the overtaking maneuver is formed as a
piecewise-clothoid function, which contains four clothoid
segments, which are connected to each other. The tra-
jectory is depicted by three main parameters, such as
the start and final longitudinal positions xs, xf of the
overtaking section and the final lateral position of the end
of the curve y. Different lateral displacements are taken
into account to provide a general model for path planning
(e.g. overtaking a bicycle or a truck). The start of the curve
is determined by xs and the current lateral position of the
vehicle yv, while end of the curve is described by the pair
xf , y.

The advantage of the piecewise-clothoid formulation is
that it guarantees a continuous, smooth and bounded
trajectory. The points of the trajectory can be computed
through the general form (Gray [1993]) as

x(s) = a
√
πS

(
s√
π

)
, (1a)

y(s) = a
√
πC

(
s√
π

)
, (1b)

where S(·) and C(·) are Fresnel sine and cosine, a is
a scaling factor and s represents arc value during the
clothoid. The trajectory is computed based on (1) between
the start point with xs, yv and the end point xf , y. The
final trajectory is built up with 4 segments, in which
the parameter of the clothoid sharpness α is selected for
the same. It results in that the overtaking trajectories
are symmetrical on their center. Thus, the value of the
trajectory curvature κ is computed as

κ = sα. (2)

Due to comfort requirements the gradient of the line
between the start and the end points must be limited.
The maximum gradient is determined by the requested
maximum lateral acceleration of the vehicle, which is
computed as

alat,max ≥ v2longκmax, (3)

where κmax is the maximum curvature of the clothoid and
vlong is the actual velocity. Using κmax, (1) and (2) the
maximum value of the gradient can be calculated. Due to

the Fresnel sine and cosine expressions in (1) the compu-
tation can be performed via a recursive method. The value
of alat,max is selected based on the suggestions of empir-
ical studies, e.g. Xu et al. [2015] defines the comfortable
value on the lateral acceleration as alat,max,1 = 1.8m/s2,
a medium comfort value as alat,max,2 = 3.6m/s2, while
alat,max,3 = 5m/s2 is the maximum for extreme scenarios.

The set of candidate start and end points for the selection
of the feasible trajectories depicts a parallelogram, as it
is illustrated in Figure 1. The parallelogram is gridded in
longitudinal and lateral directions with n and m equidis-
tant segments. Through the increase in the number of the
grid points the number of the feasible trajectories increases
dramatically, for example the selection of n = m = 3
results in 18 trajectories, while n = m = 4 or n = m = 5
leads to 40 and 75 trajectories, as presented below. Thus,
it is recommended to minimize the size of the grid. The
maximum horizon of xs and xf must be selected to avoid
the insufficiently high time requirement of the overtaking
maneuver.

xf,1 xf,2 xf,3 xf,n

xs,1 xs,2 xs,3 xs,m

ym−1

y0

y1

Fig. 1. Candidate start and end points of the trajectories

The set of feasible trajectories are determined by the
candidate start and end points. Due to the acceleration
constraint (3) the requirement against the feasible trajec-
tories is

i ≤ j ∀ xs,i, xf,j , i ∈ [1;m], j ∈ [1;n]. (4)

Using the criteria (4) an adjacency matrix χ0 between the
candidate start and end points is formed as

χ0 =


xs,1, xf,1, y1 xs,1, xf,2, y1 ... xs,1, xf,n, y1
xs,1, xf,1, y2 xs,2, xf,2, y1 ... xs,2, xf,n, y1
xs,1, xf,1, y3 xs,2, xf,2, y2 ... xs,3, xf,n, y1

...
...

. . .
...

xs,1, xf,1, ym xs,3, xf,2, ym−1 ... xs,m, xf,n, y1

 ,
(5)

which contains the feasible trajectories. For example, the
trajectory xs,i, xf,j , y0 represents that the vehicle changes
the lane, xs,i, xf,j , ym−1 represents pure straight motion
while the further trajectories represent a lateral motion
with slight lateral displacement. χ0 has the size m

∑n
i=1 i

due to the constraint (4).

In general case, the road can have more than 2 lanes, which
induces that the set of feasible trajectories is increased.
Considering that the overtaking maneuver is designed
for the change of only one lane, the adjacency matrix
is extended for left and right lane directions. Thus, the
general adjacency matrix χ is resulted as the extension

χ =

[
χ0|(xs,i,xf,j ,yk
χ0|xs,i,xf,j ,−yk

]
, (6)

where k ∈ [0;m− 1] and χ has the size 2 ·m
∑n
i=1 i.

Figure 1 illustrates an example on the feasible trajectories
for a 2 lane scenario with n = 4, m = 3 and the considered
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maximum acceleration is alat,max = 3.6m/s2. The resulted
adjacency matrix χ has the size 3 · (1 + 2 + 3 + 4), which
results in 30 distinct trajectories.

0 20 40 60 80 100 120 140

-1

0

1

2

3

4

5

Fig. 2. Illustration of the feasible trajectories

3. PERFORMANCE REQUIREMENTS AGAINST
THE OVERTAKING TRAJECTORY

The trajectory of the overtaking maneuver must guarantee
several performances, which are posed by the safety and
comfort requirements. In this section these performances
are defined, such as the requirement on the lateral accel-
eration, the consideration of the surrounding vehicles, the
avoidance of the lane departure and the holding of the
safe vehicle inter-distance. These performances describe
potential fields, which are taken parts in the trajectory
optimization process (see e.g. Switkes et al. [2004]).

3.1 Requirement on traveling comfort

An important component of the traveling comfort in
overtaking maneuvers is the lateral acceleration, which
must be minimized. Although in the determination of
the feasible sets alat,max has already been considered (see
(3)), it is also necessary to minimize the value of alat. It
motivates that the handling of lateral acceleration must
be incorporated in the performance requirements. The
lateral acceleration can be computed along the feasible

trajectories. For a given j ∈
[
1; 2 · m

∑n
i=1 i

]
trajectory

the maximum acceleration is computed as

alat,j(s) = v2longκ(s), (7a)

alat,j,max = max
(
alat,j(0) . . . alat,j(L)

)
, (7b)

where L is the length of the trajectory and κ is resulted
by the clothoid curves of trajectory j, see Section 2. Thus,
every feasible trajectory of χ is represented by a value
alat,j,max.

The performance of the traveling comfort is represented
by a potential field, whose discrete function Pa(j) is char-
acterized by alat,j,max for all trajectories. The following
sigmoid function, which is commonly used in autonomous
decision making process (see e.g. Wissing et al. [2017]),
weights the trajectories according to their maximal lateral
acceleration values

Pa(j) =
2

1 + e−ξ·alat,j,max
− 1, (8)

where the value of ξ is a tuning defined parameter.

3.2 Avoidance of the surrounding vehicles

An important safety performance is to guarantee the
avoidance of the surrounding vehicles during the motion
of the automated vehicle. For this purpose a potential
function is used, which has longitudinal and lateral compo-
nents. The potential field describes the probability of the
collision based on the predicted motions of the vehicles.
It is considered that there are N number of vehicles in
the surrounding of the automated (ego) vehicle, which are
indexed with k. All of the vehicles is characterized by a
potential field function Pk with longitudinal and lateral
components.

The values of the potential field functions are computed for
discrete points around the neighborhood of a given trajec-
tory, where ego vehicle can have position. An illustrative
example is found in Figure 3.

Linear approximation

Points of the grid

Feasible trajectory j

of the trajectory

for evaluation

Fig. 3. Evaluation of the trajectory j for vehicle k

First, the longitudinal component of the potential field
function is formed. During the prediction it is assumed
that vehicle k has a constant velocity, while ego vehicle
has a constant acceleration on the prediction horizon.
Its reason is that the measurement of the acceleration of
vehicle k can be difficult, while the actual velocity can be
estimated through the sensors of the automated vehicle.
The longitudinal velocity of vehicle k is vk and the inter-
distance between the vehicles is dk.

The formulation of the potential field function is based
on the idea that the change of the inter-distance on the
predicted horizon is examined. During the analysis the
inter-distance is transformed to an equivalent time value
∆ti. It expresses that ego vehicle can reach vehicle k during
∆ti, which is equivalent to the reduction of the inter-
distance to zero. The advantage of this approach is that
it contains the velocity and the inter-distance information
jointly about the vehicles, which makes the formulation
less complex.

The actual inter-distance dk between the vehicles is di-
vided into l number of equidistant segments, such as
0 . . . i·dkl . . . dk, where index i is between 0 and l. Distance
i·dk
l is performed by vehicle k during the time i·dk

lvlong
.

During the same time value, the inter-distance is predicted
to

∆si = vk
i · dk
lvlong

− 1

2
along

( i · dk
lvlong

)2
+ dk −

i · dk
l

(9)

The inter-distance ∆si is transformed to time value ∆ti
based on the kinematic motion equations of the vehicle.
Considering the constant velocity for vehicle k and con-
stant acceleration for the ego vehicle the equivalent time
to reduce ∆si to zero is
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∆ti =
−(vlong − vk) +

√
(vlong − vk)2 + 2along∆si
along

.

(10)

The potential field function of vehicle k in longitudi-
nal direction for ∆tj,i is defined by exponential function
(Rasekhipour et al. [2017]), such as

Plong,k,j(∆ti) = min
(
bζ(1− ζ

1
∆tj,i ), 1

)
, (11)

where b and ζ are design parameters. The value of the
potential function for a trajectory j is represented by a
discrete value, which is limited to 1 due to normalization
reasons. Second, it is necessary to calculate the function of
the potential field in lateral direction. An applicable form
of the Gaussian function is used by Papoulis [1965], where
the expected value of the distribution function for a given
surrounding vehicle is

Plat,k,j(y) =
1

σ
√

2π
e

(y−c)2

2σ2 , (12)

where c is a parameter and the standard deviation can
be computed using the width of the vehicle yv, such as

σ =
√
yv
4 . The value of Plat(y) is in a normalized form.

The potential field function for vehicle k is resulted by the
multiplication of Plong,k,j and Plat,k,j,i (see (11) and (12)).
The values of the potential field function for vehicle k and
trajectory j in a given point i, y is computed as

Pk,j(∆ti, y) = Plong,k,j(∆ti)Plat,k,j(y). (13)

The result of the computation is the maximum value of
Pk,j(∆ti, y) for all ∆ti, y pairs on the grid of Figure 3,
such as

Pk,j = max(Pk,j(∆t1,−yv) . . .∆tz, yv)). (14)

Figure 4 shows an example of the potential field function.
Vehicle k is in front of the ego vehicle with ζ = 0 and
yv = 2m settings. The time difference between the two
vehicles varies between 1s and 0s.

0
4

0

0.2

0.2 2
0.4

y (m)

0.4

t (s)

P
k (

-)

0.6 0

0.6

0.8

0.8

-21

1

Fig. 4. Example on the function of the potential field for
the motion of a surrounding vehicle

3.3 Avoidance of the lane departure

During the motion of the vehicle it is necessary to guar-
antee that the vehicle has a safe distance from the edge
of the road. Moreover, under normal circumstances the
straight motion of the vehicle is requested in the center of
the lane. The role of the potential field Plane is to focus

on these performance requirements. In Rasekhipour et al.
[2017] a quadratic function is recommended as a potential
field. In this paper it is extended on a way to consider at
least two lanes on the road, which leads to the nonlinear
function

Pw(y,Wr) = (
y2 + 1

W 2
r

+ 0.1)(cos(
yπ

0.5Wr
) + 1), (15)

where Wr is the width of one lane. The presented formula
guarantees that the potential field function has minimum
in the center of the lanes. Pw value is normalized to
eliminate the impact of Wr such as

Plane(y) =
Pw(y,Wr)

Pw(y, 0.5Wr)
. (16)

3.4 Tracking the reference velocity

Finally, the impact of the longitudinal decision making is
incorporated in the performance of the velocity tracking.
The reference velocity on the given road segment is defined
as vref . Since the motion of ego vehicle is considered
to have constant acceleration, the velocity of the vehi-
cle vlong,L at the end of the prediction horizon L can
computed through the kinematic relations. The function
of the potential field penalizes the difference between the
reference velocity and the predicted velocity as

Pv(along) = min

(
|vref − vlong,L(along)|

ε
, 1

)
, (17)

where ε is a normalizing factor, which represents a max-
imum difference between the velocities. The function is
limited to 1 for the comparison with the further potential
field functions.

4. DESIGN OF MULTI-OBJECTIVE TRAJECTORY

The design of the vehicle trajectory is computed based
on the potential fields, which are related to each per-
formances. The selection of the trajectory is based on a
multi-objective optimization problem, whose cost function
contains the weighted sum of the potential field functions.
In this section the optimization problem and its solution
are proposed. The cost function of the optimization is
formed as

P (xs, xf , y, along) = q1Pa(j(xs, xf , y))+

+ q2

N∑
k=1

Pk,j(xs, xf , y, along) + q3Plane(y) + q4Pv(along),

(18)

where q1, q2, q3 and q4 are design parameters to guarantee
the priorities between the performances. Since, the poten-
tial fields are normalized to 1, the tuning parameters help
to give more attention to safety.

The optimization problem based on (18) is formed as

min
xs,xf ,y,along

P (xs, xf , y, along) (19a)

subject to

(xs, xf , y) ∈ χ, (19b)

which means that xs, xf , y triad must be selected from
the set of feasible trajectories. The calculation of P in
the discrete points around the trajectories requires only
operations with low computational complexity.However,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15778



the online solution of the problem (19) can require lots
of time if the number of the surrounding vehicles or the
size of χ are increased.

The reduction of the computation time is achieved through
the application of machine-learning. Through the method
a neural network is generated, whose role is to learn the
cost function P for various vehicle dynamic scenarios. For
the determination of the number of neurons and hidden
layers the so-called k-fold cross validation method can be
used. The training process of the neural network is based
on samples, whose set is divided into two subsets: the role
of the training set is to train the neural network, while
test set is for validation purposes. In this case, the rectified
linear unit (ReLU) and the log-sigmoid functions are used
as an activation function. 5The trained neural network
consists of 4 hidden layers, which consists of 20-25-30-20
neurons. In the training process the Levenberg-Marquardt
algorithm is used, see M. Hagan and Beale [1996].
Data set for training and test purposes is generated over
5000 different scenarios, where the following parameters
are varied randomly:

• actual and reference velocity of ego vehicle,
• lateral position, acceleration of the ego vehicle,
• velocities and inter-distances related to the surround-

ing vehicles,
• lateral positions and width values of the surrounding

vehicles.

The prediction horizon is divided into n = m = 6
segments. Using these inputs the potential field functions
are computed and saved. Neural network is trained with
different parameters, as it is presented in 4, where FR and
FL represent the front right and front left vehicle, d the
distance from the given vehicle and v is the velocity and
the lateral positions (y) and the width of the obstacles (w)
are also given.

Parameters Case 1

vlong , vref (m/s) 30.4, 29

y (m), along (m/s2) 0, -1.15

dFR (m), vFR (m/s) 50, 26.6

yFR, wFR (m) -0.6, 1.7

dFL (m), vFL (m/s) 21.8, 15.6

yFL, wFL (m) 4.4, 0.75

Table 1. Parameters of the test scenarios

In Figure 5 the result of the neural network can be
compared to the previously computed potential field of the
algorithm. The minimum value of the surface is at the sixth
row and at the first column. According to the definition of
χ matrix, the ego vehicle do not start overtaking, because
the preceding vehicle is far from it.

5. SIMULATION EXAMPLE

The effectiveness of the presented algorithm is illustrated
through two examples, which have been simulated in
CarMaker vehicle dynamics simulation software. During
the simulation the tracking of the calculated route and
velocity profile have been tracked through the built-in
automated PID-based driver models. The control inputs
are the steering angle and the pedal position.
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2 00
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Fig. 5. Result of case 1

5.1 Longitudinal approaching scenario

In this scenario the effectiveness of the method is illus-
trated, when the overtaking is not possible. It results in
that the preceding vehicle must be followed after an ap-
proaching maneuver. During the simulation it is necessary
to make decision in longitudinal direction, in order to avoid
the collision, when the situation cannot be solved by only a
lateral control. Since the overtaking is not executable, the
vehicle starts decreasing its velocity, see Figure 6(a). The
difference between the two vehicles are 15m, which satisfy
the predefined safety requirements, see Figure 6(b).
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Fig. 6. Results of the longitudinal approaching scenario

5.2 Complex overtaking scenario

In Figure 7 a complex overtaking scenario is presented, in
which there are two surrounding vehicles.

Fig. 7. Simulation example scenario

The initial velocity of the ego vehicle is set to 31m/s and
the reference velocity is selected to vref = 30m/s. Figure
8 shows the steering input, the velocity and the lateral
position of the vehicle in the given scenario. The velocity
of the vehicle during the simulation is presented in Figure
8(c). As an important performance, the lateral acceleration
of the vehicle is illustrated in Figure 8(d). It can be seen
that the acceleration value is inside of the comfortable
range ±1.8m/s2.

The various sections of the overtaking maneuver are illus-
trated in Figure 9. On the left side of the illustration the
given situation can be seen, while on the right side the
actual potential field, which is computed by the proposed
algorithm.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15779



0 5 10 15

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
S

te
e

ri
n

g
 a

n
g

le
 (

ra
d

)

(a) Steering angle

0 5 10 15

Time (s)

-1

0

1

2

3

4

5

L
a

te
ra

l 
p

o
s
it
io

n
 (

m
)

(b) Lateral position

0 5 10 15

Time (s)

27

27.5

28

28.5

29

29.5

30

30.5

31

V
e
lo

c
it
y
 (

m
/s

)

(c) Velocity of the vehicle

0 5 10 15

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

La
te

ra
l a

cc
el

er
at

io
n 

(m
/s

2
)

(d) Lateral acceleration

Fig. 8. Results of the complex scenario

Figure 9(a) shows the scenario (t = 1.5) before the
overtaking has been started. The surrounding vehicles are
far from the ego vehicle, which means that Plane has the
highest impact on P . Due to the shape of P the straight
motion is preferred. There are high values in the upper
triangle of the matrix, because the final positions of that
trajectories are outside the road, which must be avoided.
In Figure 9(b) (t = 3.6s) the start of the overtaking
maneuver is shown. In the function of P the surrounding
vehicles have high impact via Pk and the lateral motion is
started. Finally, in Figure 9(d) at (t = 10.6s) the end of
the overtaking maneuver can be seen, and the minimum
of the function represents the returning maneuver to the
right lane.

6. CONCLUSIONS

The results of the method illustrated that the automated
vehicle with the proposed trajectory design method is able
to handle the motion of surrounding vehicles in longitudi-
nal and lateral directions. The simulations presented that
the selected trajectory is comfortable with smooth profile
and low lateral acceleration, while the collision with the
surrounding vehicles is avoided. The proposed solution
can be a promising method for the control strategy of the
automated vehicles in the layer of the trajectory design.
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