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Abstract:
Chemical reaction networks based on catalysis, degradation, and annihilation may be used as
building blocks to construct a variety of dynamical and feedback control systems in Synthetic
Biology. DNA strand-displacement, which is based on DNA hybridisation programmed using
Watson-Crick base pairing, is an effective primitive to implement such reactions experimentally.
However, experimental construction, validation and scale-up of nucleic acid control systems is
still significantly lagging theoretical developments, due to several technical challenges, such as
leakage, crosstalk, and toehold sequence design. To help the progress towards experimental
implementation, we provide here designs representing two fundamental classes of reference
tracking control circuits (integral and state-feedback control), for which the complexity of the
chemical reactions required for implementation has been minimised. The supplied ‘minimally
complex’ control circuits should be ideal candidates for first experimental validations of nucleic
acid controllers.

Keywords: Feedback control, Chemical reaction networks, Nucleic acids, Strand Displacement
Circuits, Synthetic Biology

1. INTRODUCTION

Synthetic circuits implemented with DNA strand dis-
placement (DSD) reactions are biologically compatible,
programmable, and have been demonstrated in vivo
(Hemphill and Deiters (2013)), making DSD networks
promising candidates for the construction of synthetic
feedback controllers in biomolecular environments. Feed-
back control systems can be represented with elemen-
tary chemical reaction networks (CRNs), which provide
an abstract layer for the design of mathematical opera-
tors (Buisman et al. (2008)), before being translated to
biomolecular applications. Networks of catalysis, degrada-
tion and annihilation reactions can then be mapped into
equivalent DSD reactions (Soloveichik et al. (2010)), where
the sequences of nucleotides in the DNA strands effectively
program the biochemical interactions and the rates in each
? Funded by BBSRC/EPSRC (BB/M017982/1) and the EPSRC
& BBSRC Centre for Doctoral Training in Synthetic Biology
(EP/L016494/1)

strand displacement reaction (Chen et al. (2013), Zhang
et al. (2018)).

Concentrations of biomolecular species are at first glance
ill-suited to represent signals in feedback theory, since they
are restricted to positive quantities. For example, in a
reference tracking problem the control error between the
reference and the output of the plant can either be positive
or negative, and cannot be represented by a positive
concentration.

An approach that circumvents this limitation is the so-
called dual rail representation of system state variables
with pairs of concentrations, as in Seelig et al. (2006),
where a signal x(t) is represented by the difference between
two concentrations x(t) = x+(t)−x−(t), corresponding to
two chemical species X+ and X−. This dual rail frame-
work provides a representation of negative signals using
positive quantities, which are necessary for computing the
error in a negative feedback control system, and enables
the use of molecular concentrations to design feedback
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control circuits based on linear operators and frequency
or state-space designs, see examples in Oishi and Klavins
(2011); Yordanov et al. (2014); Chiu et al. (2015); Foo
et al. (2017); Paulino et al. (2019).

1.1 Experimental challenges

Examples of successful experimental implementations of
nucleic-acid feedback control circuits have yet to emerge,
however. DSD networks implementing open-loop cascades
for logical or analogue computation have been reported
(Thubagere et al. (2017)), but there is a significant theory-
experiment gap for dynamical circuits implementing nega-
tive feedback, where the transient dynamics impact system
stability and performance, for a variety of reasons.

Although it is possible to predict the toehold affinities
from their nucleotide sequence (Zhang et al. (2018)), the
kinetics are altered by unwanted bindings, which modify
the reaction rate constants and the dynamics (see, for
example, the oscillating circuits in Srinivas et al. (2017)
or the seesaw gate reported in Qian and Winfree (2011)).

The triggering of undesired reactions is another key ex-
perimental challenge, which leads to leakage of outputs
in the absence of input. Potential methods of mitigation
include clamps, which impede the spurious hybridisations
(as in Srinivas et al. (2017) and Wang et al. (2017)), or
compartmentalisation and localisation strategies as pro-
posed in Dannenberg et al. (2015), Chatterjee et al. (2017),
and Joesaar et al. (2019), which keep apart strand com-
plexes that may trigger leak reactions. Furthermore, leak-
age is aggravated at high concentrations, and therefore
the reacting species are typically kept at low concentra-
tions (Wang et al. (2018)), which together with limits
on hybridisation rates (Zhang et al. (2018)), places upper
bounds on the speed of these circuits. Localisation can also
help here, by placing adjacent gates, which can interact
without diffusion at faster rates, as discussed in Qian
and Winfree (2011). Finally, even if spurious reactions are
avoided, it may still be necessary to manage the sequence
of reactions, which compete for common reactants, either
through compartmentalisation, or with timescale separa-
tion (as adopted in Cherry and Qian (2018)).

1.2 Minimising complexity

All of the above experimental challenges can be mitigated
by designs that reduce the number of reactions in the
circuit. Fewer reactions decrease the number of designs
for the template strands, which demands less work to
characterise and tune the kinetics. Fewer species also
decreases the chance of unwanted interactions and leakage.
The issue is particularly relevant in feedback systems
employing the dual rail representation of negative signals,
which requires a duplication of most of the reactions (as
discussed in Foo et al. (2017)).

A key challenge for theorists is therefore to design the
least complex circuits, with the fewest number of chem-
ical reactions, which still accurately represent a given
negative feedback control problem, in order to maximise
the likelihood of successful experimental implementation
with currently available technical capabilities. To this end,
minimally complex representations of two fundamental

classes of feedback control systems are proposed here. The
first applies integral control for reference tracking, with
a single tuning parameter, to a stable first order system.
The second example accomplishes reference tracking and
stabilisation of the classic double integrator plant through
static state feedback of the two integrated states. The
controller has two design parameters, and the open-loop
system is marginally stable with two poles at the origin.
Both circuits operate within the dual rail framework, and
parameterise control requirements like steady state track-
ing and transient dynamics.

Note that, by representing the gains and subtractions with
individual CRNs, the state feedback scheme in Paulino
et al. (2019) is already simplified with respect to a classical
PID controller, since it combines the gains with the sub-
traction in the same CRN. Here we reduce the complexity
further by combining gain, integration and subtraction in
the same chemical reactions. This allows us to remove
two catalysis, two degradation, and one annihilation reac-
tions in the integral control problem, with respect to the
approach in Paulino et al. (2019). In the state feedback
controller, we remove four catalysis and one annihilation
reactions, by combining the subtraction with the integra-
tion of the first state, and by selecting a plant that does
not need degradation reactions for its representation. As
we will show, both problems may be implemented using
similar low numbers of chemical reactions - six catalysis,
two degradations and one or two annihilation reactions.

1.3 Chemical reaction networks

We define a CRN as a set of reactions between chemical
species Xj . For example, in the reaction between species
X1 and X2 represented by

a1X1 + a2X2
γ−→ bX3 (1)

the reactants on the left are converted into the product X3

on the right at a rate γ, according to the stoichiometric
coefficients a1, a2 and b. We model the evolution of the
concentration xj of the species Xj using mass action
kinetics (Tóth and Érdi (1989)). For (1), the ordinary
differential equations (ODEs) result in

ẋ1 = −a1γxa11 x
a2
2 (2a)

ẋ2 = −a2γxa11 x
a2
2 (2b)

ẋ3 = bγxa11 x
a2
2 (2c)

Mass action kinetics combined with dual rail representa-
tion enables the use of CRNs to model systems with both
positive and negative signals. For example, the reactions

X+ γ−→ ∅⇒ ẋ+(t) = −γx+(t), x+(t) ≥ 0 (3a)

X−
γ−→ ∅⇒ ẋ−(t) = −γx−(t), x−(t) ≥ 0 (3b)

provide a representation of exponential decay of the signal
x(t) = x+(t)− x−(t), since

ẋ(t) = ẋ+(t)− ẋ−(t) = −γx(t), x(t) ∈ R (4)
The abstract signal x(t) ∈ (−∞,+∞) is represented with
two positive concentrations x+(t) ≥ 0, x−(t) ≥ 0.
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Fig. 1. Illustration of a bimolecular strand displacement

reaction A+B → C +D involving single and double
strands, initiated by overhanging toeholds.

1.4 DNA strand displacement reactions

In a DSD reaction, the signal species are DNA molecules,
composed of binding domains and a toehold used to
initiate strand hybridisation and to tune the reaction
rates. The hybridisation between strands are bimolecular
reactions with unitary stoichiometric coefficients. In Fig. 1
we have the DSD reaction A + B → C + D, where the
hybridisation of the toehold 1 of the incoming strand A to
a complementary toehold 1∗ in B starts branch migration,
displacing the domain 2 and releasing the output strands C
and D. Due to the absence of overhanging complementary
toeholds in the output strands C and D the displacement
is irreversible. Given its irreversibility, and that the output
strand C can participate in other reactions, this enables a
cascade of multiple reactions.

As discussed in Oishi and Klavins (2011) and Chiu et al.
(2015), with the dual rail representation it is possible to
represent linear and feedback systems with CRNs com-
posed of three types of reactions:

• catalysis Xi
γ−→ Xi +Xj

• degradation Xi
γ−→ ∅

• annihilation Xi +Xj
η−→ ∅

which have equivalent representations with DSD reactions
(see for example Soloveichik et al. (2010), Chen et al.
(2013), Srinivas et al. (2017), or Cherry and Qian (2018)).
For analysis and verification, we simulate the DSD cir-
cuitry by programming the species and affinities in Vi-
sual DSD (Lakin et al. (2017)), a specialised CAD tool
for the simulation of strand displacement reactions. The
simulations run in ‘default’ mode, where finite binding and
unbinding rates are considered. The reaction rates in the
CRNs are translated into affinities between the toeholds
that mediate the initial hybridisation between the strands.

2. A MINIMALLY COMPLEX INTEGRAL
FEEDBACK CONTROL SYSTEM

We now propose a representation of an integral feedback
control system, using the fewer number of chemical reac-
tions possible, followed by an implementation in Visual
DSD using strand displacement reactions.

2.1 Integral control of a stable first order system

For this example we consider the following first order
system

Y (s) =
b

s+ a
V (s)⇒ sY (s) = bV (s)− aY (s) (5)

𝑌(𝑠)𝑅(𝑠) +

-

𝑘𝑖
𝑠

𝑉(𝑠) 𝑏

𝑠 + 𝑎

Fig. 2. Reference tracking problem with integral control of
a stable first order plant.
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Fig. 3. Representation of the integral control problem,
with a chemical network of catalysis, degradation and
annihilation reactions.

where V (s) is the integral control action to have the output
Y (s) track a reference R(s), according to Fig. 2. The
closed-loop dynamics are then

Y (s) =
bki

s2 + as+ bki
R(s) (6)

where the integral control ensures steady state track-
ing with Y (0) = R(0). The transient dynamics are de-
fined by the roots of the characteristic polynomial λ =
1
2

(
−a±

√
a2 − 4bki

)
, with a natural frequency ω =

√
bki

and damping coefficient ξ = a
2
√
bki

.

2.2 Representation with chemical reactions

Fig. 3 shows a network of catalysis, degradation and
annihilation reactions used to represent the closed-loop
response, where

V + b−→ V + + Y + , V −
b−→ V − + Y − (7a)

Y + a−→ ∅ , Y − a−→ ∅ (7b)

R+ ki−→ R+ + V + , R−
ki−→ R− + V − (7c)

Y + ki−→ Y + + V − , Y −
ki−→ Y − + V + (7d)

Y + + Y −
η−→ ∅ , V + + V −

η−→ ∅ (7e)

The reactions (7a-7b) represent the plant, where the
reaction rate b sets the gain and the reaction rate a sets a
stable pole at s = −a.
Instead of using separate CRNs for subtraction and inte-
gration, both operations are combined to reduce the num-
ber of reactions. The additional dynamics used to compute
the error in Paulino et al. (2019) are removed, and the
contributions of the reference and output to the integral
are subtracted in (7c-7d) by crossing the contributions
from Y ± to V ∓. The same reactions apply the control
gain corresponding to the reaction rate ki.

The annihilation reactions in (7e) ensure low (i.e. experi-
mentally feasible) concentrations of the chemical species,
as discussed in Oishi and Klavins (2011).

Writing the respective mass action kinetics guiding the
concentrations of the species, we have
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𝑎) 𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠: 𝑅 𝑅 + 𝑉𝑐𝑖 × 𝑘𝑡 𝑏) 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛: 𝑌 ∅𝑐𝑎 × 𝑘𝑡

𝑐) 𝐴𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑖𝑜𝑛: 𝑉 + 𝑉′ ∅𝑐𝑉𝑉 × 𝑘𝑡

Fig. 4. Examples generated in Visual DSD, of the DSD sets of reactions with dynamics equivalent to catalysis,
degradation and annihilation reactions.

v̇+ = kir
+ + kiy

− − ηv+v− (8a)

v̇− = kir
− + kiy

+ − ηv+v− (8b)

ẏ+ = bv+ − ay+ − ηy+y− (8c)

ẏ− = bv− − ay− − ηy+y− (8d)

We have then for the dual rail quantities y = [Y +]− [Y −],
v = [V +]−[V −], r = [R+]−[R−], that the input-to-output
(I/O) dynamics are v̇ = v̇+ − v̇−, ẏ = ẏ+ − ẏ−, and

v̇ = ki (r − y) (9a)

ẏ = bv − ay (9b)

The I/O dynamics in (9) are linear and we recover the dy-
namics of the closed-loop system in (6). For simplification,
any annihilation reaction between the reference species
R+ +R−

η−→ ∅ is disregarded, assuming the input concen-
trations are low. These will remain constant throughout
the operation of the circuit, and the dynamics in (9)
depend only on the difference r and not the concentration
levels of R+ and R−.

2.3 Representation with strand displacement reactions

To translate the CRNs into nucleic acid chemistry we need
sets of DSD reactions with dynamics equivalent to each of
the three types of reactions, and a mechanism to tune the
reaction rates.

The catalysis and degradation reactions are set based on
Join-Fork templates as in Chen et al. (2013). Fig. 4 shows
examples of sets of DSD reactions equivalent to the uni-
molecular catalysis and degradation reactions introduced
above, using auxiliary templates and intermediary strands.

Each signal species, such as R in Fig. 4a, is a single strand
DNA containing toehold (<tr>) and binding (<hr>) do-
mains. The toehold domain initiates hybridisation to the
multi-stranded complex JoinV R, triggering a cascaded
process to release an intermediary strand sig_hprtq. The
availability of this new strand triggers a cascade of strand
displacements involving the ForkV R complex, which re-
leases the signal species V and returns a strand of R
(according to the stoichiometry of R −→ R + V ). The

DSD reactions for the degradation in Fig. 4b are simpler,
since the JoinY complex only needs to irreversibly capture
the signal species Y . Since the bound complex does not
have exposed toeholds, it becomes inert and no longer
participates in the reactions.

The annihilation reactions are set with a single template
per signal, following the cooperative hybridisation ap-
proach from Zhang (2011) and Cherry and Qian (2018).
In the example shown in Fig. 4c, the irreversible capture
of simultaneously present V and V ′ is mediated by the
presence of the template AnnV V . The presence of both
V and V ′ enables the second irreversible reaction into
two waste double stranded complexes Wv and Wv′. The
template complexes and auxiliary single stranded species
are made available at a high concentration Cmax to avoid
their irreversible consumption from significantly impacting
the dynamics.

The programmability of the DSD reactions results from
the nucleotide sequences in the toeholds, which initi-
ate strand hybridisation. As investigated in Zhang et al.
(2018), the affinities between the base pairs define some-
what predictably the hybridisation kinetics, although, as
described in Srinivas et al. (2017), other factors can also
influence the effective reaction rate constants. For the
purpose of our analysis, the rates of the DSD reactions are
tuned by assigning degrees of complementarity between
toeholds as in Yordanov et al. (2014) (see also Lakin et al.
(2017)), where mismatches in the nucleotide sequences
weaken the binding affinities. For example, the toehold
<tr*ci> in the complex JoinV R in Fig. 4a has a degree of
complementarity to the signal toehold <tr> of 0 < ci ≤ 1.
If kt is the maximum binding rate between complementary
toeholds <tr> and <tr*>, then the reaction mediated by
<tr> and <tr*ci> is slowed down to kt× ci.
The implementation of the DSD reactions follows the six
catalysis and two degradation from the CRN in (7), but
with only one annihilation reaction. From the analysis
with Visual DSD, we can remove the reaction Y + +
Y − −→ ∅ to simplify further the implementation, since the
concentrations of Y + and Y − remain sufficiently low.
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Table 1. Parameterisation for the Visual DSD
simulation of the integral control circuit

Description Values Units
Cmax Initial concentrations of template

and auxiliary species
105 nM

kbnd Toehold maximum binding
rate for auxiliary strands
(<tp>,<tq>)

10−3 (nMs)−1

kubnd Unbinding rate 0.1 (s)−1

kt Toehold maximum binding
rate for signal species
(<tr>,<ty>,<tv>)

10−4 (nMs)−1

ca Toehold degree of complementar-
ity for the degradation of Y ±

2.5× 10−3 −

cb Toehold degree of complementar-
ity for catalysis reaction in the
plant

10−3 −

ci Toehold degree of complementar-
ity for feedback catalysis imple-
menting integral control

5× 10−2 −

cV V Toehold degree of complementar-
ity for the annihilation reaction

0.25 −

The DSD reactions are set using the templates from Fig. 4,
and the circuit is initialised with high concentrations of
fifteen double stranded DNA templates and twenty single
stranded auxiliary species. The simulation with Visual
DSD is set with Cmax = 105 nM (auxiliary strands are
consumed irreversibly and not replenished), a maximum
toehold binding rate 10−3 (nMs)−1, and unbinding rate
0.1 s−1. See all the parameters in Table 1.

The simulations in Fig. 5 show that the reference tracking
behaviour of the output y = [Y +]− [Y −] and evolution of
the concentrations in the DSD reactions are in agreement
with the output and concentrations of the CRN in (8) ob-
tained by mass-action kinetics. The circuit based on DSD
reactions shows the desired tracking behaviour, although
the transient dynamics are more damped, probably due
to the presence of the additional auxiliary species and
bimolecular reactions.

3. A MINIMALLY COMPLEX STATE FEEDBACK
CONTROL SYSTEM

In static state feedback, the controller modifies the closed-
loop dynamics using only gains on the state of the plant
and does not add dynamics to the open-loop system. For
the plant, we use the simplest second order system, a
double integrator. Besides output feedback, we thus have
an extra state for feedback. The plant is more challenging
than in the previous example, since it is marginally stable,
with two poles at the origin, and thus besides the reference
tracking requirement, the closed-loop system also needs to
stabilise the open-loop system.

3.1 State feedback control of a double integrator

The process to be controlled is the classic double integrator[
ẋ
ẏ

]
=

[
0 0
q 0

] [
x
y

]
+

[
q
0

]
r (10)

where each integration has a gain q (Fig. 6). With the
negative state feedback control law v = r − k1x− k2y, we
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Fig. 5. Simulations for the integral control example: a)
comparison of the output y for the plant open-loop
step response, closed-loop dynamics, CRN mass ac-
tion kinetics and DSD reactions; b) comparison of the
concentrations in the CRN and DSD representations.

𝑌(𝑠)𝑅(𝑠) +

𝑞

𝑠

𝑋(𝑠)
𝑘2

𝑘1
-

-
𝑉(𝑠) 𝑞

𝑠

Fig. 6. Block diagram representation of a double integrator
plant stabilised by static state feedback.

have two parameters to tune the dynamics of the closed-
loop state space[

ẋ
ẏ

]
=

[
−qk1 −qk2
q 0

] [
x
y

]
+

[
q
0

]
r (11)

The closed-loop frequency response results in a second
order system with the transfer function

Y (s) =
q2

s2 + qk1s+ q2k2
R(s) (12)
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where the transient response is defined by the poles λ =
q
2

(
−k1 ±

√
k21 − 4k2

)
.

The closed-loop system has only three parameters: one
for the plant and two gains for the controller. From (12),
we have q, which sets the timescale of the system, a
static gain 1/k2, a natural frequency ω = q

√
k2, and

damping coefficient ξ = k1
2
√
k2
. For steady state reference

tracking, we need k2 = 1, which means that any error or
deviation in this parameter introduced by implementation
will impact the steady state error. It follows also that for
an overdamped response ξ > 1⇒ k1 > 2.

3.2 Representation with chemical reactions

As in the previous example, the CRN representation is
further simplified by combining the sum of the feedback
contributions and reference with the integration of the
first state. In this way, we avoid the additional dynamics
of representing the sum with the steady state solution of
additional reactions, as proposed in Paulino et al. (2019).

Accounting for the dual rail representation, the CRN
results in eight catalysis and two annihilation reactions,
given by

R+ q−→ R+ +X+ , R−
q−→ R− +X− (13a)

X+ q−→ X+ + Y + , X−
q−→ X− + Y − (13b)

X+ qk1−−→ X+ +X− , X−
qk1−−→ X− +X+ (13c)

Y + qk2−−→ Y + +X− , Y −
qk2−−→ Y − +X+ (13d)

X+ +X−
η−→ ∅ , Y + + Y −

η−→ ∅ (13e)

The chain of two catalysis reactions (13a-13b) represent
the double integrator in the plant. The marginal stability
of the integration can be related with the marginal stabil-
ity of the stoichiometry in the catalysis reactions, where
the produced species need to be bound for stability. The
reactions in (13c-13d) implement the negative gains, by
crossing the contributions between the dual rail species
(Fig. 7a). Finally, the annihilation reactions are put in
place in (13e), to ensure the concentrations are kept at
feasible levels.

The mass action kinetics for the chemical network results
in

ẋ+ = q
(
r+ + k2y

− + k1x
−)− ηx+x− (14a)

ẋ− = q
(
r− + k2y

+ + k1x
+
)
− ηx+x− (14b)

ẏ+ = qx+ − ηy+y− (14c)

ẏ− = qx− − ηy+y− (14d)

From the reversed contributions in (14a-14b), the negative
gains in the I/O dynamics of ẋ = ẋ+−ẋ− and ẏ = ẏ+− ẏ−
are given by

ẋ= qr − qk2y − qk1x (15a)

ẏ = qx (15b)

In (15) we recover the linear closed-loop dynamics.
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Fig. 7. Network of chemical reactions with dual rail repre-
sentation, using a) catalytic degradation or b) degra-
dation reactions.

The combined effect of crossed catalysis reactions X± qk1−−→
X±+X∓ and the fast annihilation X+ +X−

η−→ ∅ results
in the catalytic degradation proposed in Yordanov et al.
(2014). Hence, the autorepressing gain is the same as
X±

qk1−−→ ∅ (for fast η � qk1), and alternatively we can
replace the catalysis in (13c) with degradation reactions.

This results in the CRN from Fig. 7b with six catalysis,
two degradation, and two annihilation reactions given by

R+ q−→ R+ +X+ , R−
q−→ R− +X− (16a)

X+ q−→ X+ + Y + , X−
q−→ X− + Y − (16b)

X+ qk1−−→ ∅ , X− qk1−−→ ∅ (16c)

Y + qk2−−→ Y + +X− , Y −
qk2−−→ Y − +X+ (16d)

X+ +X−
η−→ ∅ , Y + + Y −

η−→ ∅ (16e)

The mass action kinetics are now different, with

ẋ+ = q
(
r+ + k2y

− − k1x+
)
− ηx+x− (17a)

ẋ− = q
(
r− + k2y

+ − k1x−
)
− ηx+x− (17b)

but the I/O dynamics of ẋ are the same as in (15a).
The CRN representation is compared with the linear
design in Fig. 8, showing the prescribed reference tracking
behaviour, and the matching between the linear control
design and the trajectories of the dual rail signals resulting
from I/O dynamics of the CRN.

3.3 Representation with strand displacement reactions

For the DSD representation, the crossed feedback between
X+ and X− is replaced by degradation reactions, and the
architecture from Fig. 4 is applied to obtain DSD reactions
equivalent to the CRN in (16). Furthermore, from the
analysis with Visual DSD, the circuit can operate without
the annihilation reaction X+ + X−

η−→ ∅, since these
concentrations remain low. Depending on the experimental
set-up, this is yet another possible simplification.

With these simplifications, although we have state feed-
back of a more complex marginally stable second order
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Table 2. Parameterisation for the Visual DSD
simulation of the state feedback circuit

Description Vales Units
Cmax Initial concentrations of template

and auxiliary species
105 nM

kbnd Toehold maximum binding
rate for auxiliary strands
(<tp>,<tq>)

10−3 (nMs)−1

kubnd Unbinding rate 0.1 (s)−1

kt Toehold maximum binding
rate for signal species
(<tr>,<ty>,<tx>)

10−4 (nMs)−1

cq Toehold degree of complementar-
ity for reactions in the plant

8× 10−3 −

c1 Toehold degree of complementar-
ity for the degradation of X±

8× 10−3 −

c2 Toehold degree of complementar-
ity for feedback catalysis of Y ±

8× 10−3 −

cY Y Toehold degree of complementar-
ity for the annihilation reaction

1 −

system and more degrees of freedom, the implementation
has the same level of complexity as the previous integral
control problem, with six catalysis, two degradation, and
one annihilation reactions. The simulation in Visual DSD
has fifteen double stranded complexes and twenty auxiliary
single stranded species initialised at Cmax = 105 nM (ir-
reversibly consumed without replenishment), with a max-
imum toehold binding rate 10−3 (nMs)−1, and unbinding
rate 0.1 s−1. See all the parameters in Table 2.

The DSD circuit shows reference tracking behaviour
(Fig. 8) while the I/O dynamics of the CRN matches well
the linear design, the transient dynamics with the DSD
reactions are slower. Comparing the CRN concentrations
with the concentrations in the Visual DSD simulation, we
also see slower dynamics for Y ± and lower equilibrium
levels for X±, indicating a higher damping of the state x
(Fig. 9). Although further tuning is necessary, the dynam-
ics are close to the desired state feedback design, and also
indicate that indeed the annihilation reaction for X± may
not be necessary due to the limiting degradation.

For the DSD network, we adopted the construction in (16),
where catalysis reactions responsible for the state feed-
back are replaced with the degradation reactions in (16c),
which use the simpler template complexes in Fig. 4b,
and fewer species. However, there may be advantages in
building the circuit relying only on catalysis reactions
(and annihilation). When introducing the catalytic degra-
dation scheme, Yordanov et al. (2014) argue that spatial
localisation of the catalysis reactions could allow faster
degradation rates.

4. CONCLUSIONS

There currently exist mature theoretical frameworks for
the design of linear feedback controllers with chemical
reaction networks. Systematic procedures and software
tools provide a translation to equivalent reactions based
on nucleic acid chemistry, which should be amenable
to experimental implementation. However, the readiness
level of this technology has not followed the theoretical
developments, and we are lacking experimental validation
of such systems.

0 0.5 1 1.5 2 2.5

105

-0.1

-0.05

0
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0.15

Fig. 8. Steady state tracking response of the linear design
and the I/O dynamics of the representations with
chemical reactions and DSD reactions.
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Fig. 9. Comparison of the concentrations for the abstract
CRN, and the DSD implementation. The steady state
conditions for the output species Y ± are similar in the
CRN and DSD representations, although smaller for
X± in the DSD circuit.

We propose here two control problems, which can be
represented with very few CRN and DSD reactions, as
minimally complex candidates for future experimental
validation of feedback circuits using strand displacement
reaction networks. The reduced number of reactions puts
these DSD networks within the current capabilities for
experimental investigation, while still capturing important
features of general linear feedback control systems.

Although simple, the examples are representative of stan-
dard control designs, and the circuits are interesting for
future experimental investigation of the dependence of
closed-loop dynamics on toehold design, and integration
of the annihilation reactions. Future experimental testing
could also give insight into the effects of crosstalk and
leakage on feedback stability and performance, and provide
data for developing sharper uncertainty models for taking
these effects into account during the design process.
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