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Abstract: In literature, a major part of the prognostic studies considers the mission profile
as a static parameter when evaluating the system Remaining Useful Life (RUL). However, in
practice, the way in which a system operates significantly impacts the future evolution of its
degradation. Therefore, this paper aims at evaluating the impact associated with the utilization
of three different methods to characterize future operating conditions within the implementation
of probability-based prognostic algorithms, namely Long-short term memory (LSTM), Markov
Chain and Constant (or time-invariant) usage. These three methods are compared together in
terms of both prognostic accuracy and essential update times when investigating the Time-of-
Discharge (ToD) of an electric bicycle Lithium-Ion (Li-Ion) battery.
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NOMENCLATURE

Abs. Error Absolute Error

BF Bayesian Filtering

EoD End-of-Discharge

Li-Ion Lithium-Ion

LSTM Long-short term memory

PDF Probability Density Function

PF Particle Filter

PFP Particle-filtering-based Prognostics

PHM Prognostics and Health Management

PI Width Probability Interval Width

RNNs Recurrent Neural Networks

RUL Remaining Useful Life

SIS Sequential Importance Sampling

SOC State-of-Charge

SoH State-of-Health

ToD Time-of-Discharge

ToF Time-of-Failure

UAVs Unmanned Aerial Vehicles
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1. INTRODUCTION

Due to the increasing requirements of reliability and safety
of industrial systems, it is essential to implement the
suitable as well as, efficient and accurate Prognostics
and Health Management (PHM) solutions for a reliable
State-of-Health (SoH) and Remaining Useful Life (RUL)
estimation. These solutions must be able to represent the
dynamics of the defined health index, along with a proper
characterization of all relevant sources of uncertainty, such
as modeling, future inputs, and prediction method (Celaya
et al., 2012; Sankararaman, 2015). Prognostic algorithms
play a major role due to their capability of estimating the
components RUL, whereby they yield valuable information
for both decision-makers (Kordestani et al., 2019).

One key challenge in the design of prognostic algorithms is
their computational burden. Note that real-time execution
is desirable, even mandatory, for some systems, such as
mission re-planning in Unmanned Aerial Vehicles (UAVs)
and terrain robots. Unfortunately, these systems often
have limited computational resources on-board. Therefore,
for such applications, the main goal of prognostic designers
is to develop algorithms capable of computing effective
predictions within a reasonable computational time. En-
deavoring real-time prognostic algorithms, authors have
explored a great variety of approaches. One of the most
promising attempts is presented in Orchard and Vachtse-
vanos (2009), where authors proposed an algorithm based
on Particle Filter (PF) for computing online prognostic,
which estimates the failure time Probability Density Func-
tion (PDF) based on a state space derived from physical
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laws. This proposal tries to reduce the computational cost
of Monte Carlo’s simulation by using PF and regulariza-
tion. This approach is considered as the state-of-the-art
in model-based prognostic by many researchers within the
PHM community (Jouin et al., 2016; Tamssaouet et al.,
2019; Pola et al., 2015), having applications in many
engineering domains. Most of these reserach efforts show
promising results in terms of prediction capability, but
the computational burden is not treated as a priority, and
moreover, it is even not analyzed. Another interesting ap-
proach to deal with real-time prognostics was introduced
in Yan et al. (2015). This approach computes prognos-
tics through Lebesgue-sampling-based procedure, wherein
prediction steps are discretized in the state space, but not
time space. As a result, significant computation efforts can
be saved; indeed, up-and-coming results are presented for
batteries prognostics in Yan et al. (2015). Nevertheless,
this approach demands a dynamic model in Lebesgue
space whose description could be highly challenging.

On the other hand, a completely different insight is ex-
plored in (Rozas et al., 2020), in which the authors
reduce substantially the computational burden of real-
world implementations of Particle-filtering-based Prognos-
tics (PFP) algorithms by the utilization of a time-varying
prognostics update rate. To be more specific, under con-
ventional PFP implementations, the prognostics algorithm
has to be executed at each sampling time, whereas, under
the approach developed in Rozas et al. (2020), the prognos-
tic outcomes are updated over a time-varying rate that di-
rectly depends on the performance of the latest prognostics
execution. The underlying idea can be described as follows.
If the last prognostics execution has a good performance,
then its corresponding prognostic results will be valid for
a long period, and hence no updates are required. Con-
versely, if the last prognostics execution presents a poor
performance, then a new prognostics execution, so-called
prognostics update, will be shortly required. To evaluate
the performance of the PFP executions, a novel real-time
metric was indeed proposed. The methodology proposed
in (Rozas et al., 2020) is committed to reduce the com-
putational burden of real-world implementations of PFP
algorithms, and was implemented, tested, and validated
successfully in two case studies related to the problem
of battery State-of-Charge (SOC) prognostics. Despite its
promising outcomes, this proposal lacks a discussion about
the relevance of the characterization of future operating
conditions into the prognostics performance. Note that
if we have a most robust characterization of the future
operating profile, it may derive better prognostics results
that require less prognostics updates, and thus lead to
an even more important computational burden reduction.
Consequently, in the present work, we will investigate the
impact of 3 different models of future operating profile
on the prognostic results computed by a PFP algorithm.
The objective is, therefore, to complement the proposal
developed in (Rozas et al., 2020).

Additionally, we should consider that PFP algorithms have
a great diversity of uncertainty sources, which entail a
challenging task in the design and implementation of PFP
algorithms. Being more specific, we have to deal with
four major sources of uncertainty: 1) degradation model
structure and parameters, 2) initial condition for the state

at the time of prediction (typically solved through filtering
techniques such as PF), 3) the prognostic algorithm itself
(which is a simplification of Monte Carlo methods), and
4) future operating profiles (Sankararaman, 2015). Most
authors have extensively proposed methods and solutions
for the first three, but little attention has been paid
in terms of the latter. As a consequence, the present
work will also contribute to the discussion about the
impact of the future operating profile on the uncertainty
characterization.

As a summary, and considering the aforementioned gaps
in the literature, this article seeks to study the effects of
different models of future operating conditions character-
ization on both prognostic accuracy and computational
efficiency. More specifically, with the aim of characterizing
operating profile in the SOC prognostic problem using
PFP, three models are investigated 1) Long-Short-Term
Memory (LSTM), 2) Markov-Chain, and 3) constant (or
time-invariant) usage profile. The motivation of studying
varied models is the fact that future operating conditions
is one of the largest sources of uncertainty for prognostic
algorithms (Daigle and Sankararaman, 2013), thus its ap-
propriate modelling may allow performing more efficient
prognostics in terms of a more accurate Time-of-Failure
(ToF) and RUL estimations (Sankararaman, 2015; Sierra
et al., 2019).

The article is structured as follows. Section 2 aims to
present a theoretical background of the proposed method-
ology such as PFP, the LSTM network, and the prognostic
update procedure developped in Rozas et al. (2020). Sec-
tion 3 investigates the case study for which the proposed
methodology is applied to handle the uncertainty of future
operating conditions and to study the effect of these mod-
eling approaches on the prognostic performance. Section 4
focuses on the analysis of the obtained results. Finally, in
Section 5, conclusions are presented.

2. THEORETICAL BACKGROUND

This section aims to present the theoretical background
based on which the proposed methodology is developed.
In detail, the concepts of Bayesian and Particle filters are
recalled in subsection 2.1. Next, subsection 2.2 is dedicated
to describe the PF based prognostics approach. The LSTM
structure is briefly presented in subsection 2.3. Finally,
subsection 2.4 focuses on the prognostic update procedure.

2.1 Bayesian filtering and Particle Filters

Bayesian Filtering (BF) is a methodology for recursively
estimating the posterior PDF of the state vector xk at
each time step k given the measurements z1:k up to time k.
Thus, the so-called BF problem consists in computing the
PDF p(xk|z1:k). In practical applications, the dynamics
of xk is usually non-linear, time-variant and subject to
non-Gaussian uncertainties, implying that the optimal
solution of the BF problem cannot be solved analytically
(Arulampalam et al., 2002; Särkkä, 2013).

A widely-used method to obtain a sub-optimal solution for
the BF problem is the PF. This method, based on Monte
Carlo simulation, seeks to represent the posterior PDF of
xk, at each time step k, by a set ofNp random samples with
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associated weights, called particles. To accomplish this, the

PF sequentially obtain a set of particles {x(i)
k , w

(i)
k }

Np

i=1,∑Np

i=1 w
(i)
k = 1 from an alternative q(·) PDF, called

importance PDF. Therefore, the posterior PDF of xk is
represented by (Arulampalam et al., 2002):

p(xk|z1:k) =

Np∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (1)

where weights w
(i)
k are updated according to (Sequential

Importance Sampling (SIS) (Arulampalam et al., 2002)):

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k ) (2)

2.2 Particle Filtering-based Prognostics

In PHM, the main objective of failure prognostic algo-
rithms is to characterize future operational risk based on
long-term predictions for the evolution of a set of fault in-
dicators. The PFP algorithm (Orchard and Vachtsevanos,
2009) is a method that uses sequential Monte Carlo to
describe the propagation of uncertainty over time using:
1) a stochastic state-space model of the faulty system,
2) an initial condition for the state at the instant time
at which the prognostic algorithm is executed (extracted
from the filtering stage), and 3) a characterization of the
future operating profiles.

The PFP algorithm presented in Orchard and Vachtse-
vanos (2009) works as follows. Prognostics executed at

time k starts with a set of weighted-particles {xik, wik)}Np

i=1,
where Np is the number of particles, xik is the state of
particle i, and wik is the weight of particle i. Then, the
particles are propagated step by step according to the
stochastic state-space model of the faulty system. For
instance, given τ ∈ {1, ..., n}, if we want to predict the
state-PDF at time k+τ , we need to propagate the particles
from k + τ − 1 to k + τ :

(3)p̂(xk+τ |x̂k+τ−1) ≈
Np∑
i=1

wik+τ−1 · p̂
(
x̂ik+τ |x̂ik+τ−1

)
Note that p̂

(
x̂ik+τ |x̂ik+τ−1

)
is related to the evolution-

equation of the system thus the proper characterization
of the futures operating profile plays a critical role.

2.3 Long-short term memory networks

LSTM network is a class of the Recurrent Neural Networks
(RNNs), which are widely used to model dependencies in
sequential and time-series data. However, RNNs intrinsi-
cally have a vanishing gradient problem, disabling them to
learn long-term dependencies. The LSTM layer proposed
by Hochreiter and Schmidhuber (1997) solves this problem
by offering a more complex internal state representation.
Each cell of the LSTM has a combination of four layers: a
memory and three gates, which provides them the ability
to selectively learn, unlearn, or retain information. First,
the forget gate uses a sigmoid function to determine which
information ht−1 from the previous cell state should be
forgotten by the current cell memory. Next, the input
gate controls the information flow to the memory using

a point-wise multiplication operation of sigmoid and tanh
functions, respectively. Finally, the output gate selects
the inputs xt and memory information ct that should be
transmitted to the next cell state.

2.4 Prognostics update procedure

As previously mentioned, in real-time implementations of
PFP algorithms, we are continuously receiving new mea-
surements, which are used to compute state estimations
by running PF at each sampling time. Considering this
fact, a reasonable question is: should we also execute the
prognostic algorithm at the same rate? This question was
addressed in Rozas et al. (2020), where the authors, mo-
tivated by reducing computational costs associated with
PFP implementations, showed that it is possible to exe-
cute prognostic updates at lower rates while keeping the
standards in terms of prognostic efficacy. Being more spe-
cific, they proposed a strategy that considers time-varying
prognostic update rates. Firstly, it compares the available
state prediction PDF obtained from the last prognostic
execution against the filtering state PDF, estimated by
a real-time prognostic performance metric. Then, if the
metric evaluation exceeds a user-defined threshold, the
prognostic algorithm is executed; otherwise, the latest
prognostic execution remains valid.

Additionally, to implement this time-varying prognostic
update strategy, the authors introduced a real-time metric
to assess prognostic executions. This metric calculates a
λ-probability interval bounded by α and β around the ex-
pectation of the filtering state; computing the probability
of the predicted state in the interval [α, β] as follows:

Mk =
∑

i∈{n=1,...,Np|xn
k,pred

∈[α,β]}

wik,pred (4)

3. CASE STUDY METHODOLOGY

This work aims at comparing different models for the
characterization of future uncertainty in operating con-
ditions, and evaluating the impact of these models on
prognostic results. This impact will be measured in terms
of prognostics update times and prognostics efficacy. In
this section, we will present the case study, three models
for the characterization of future operating conditions, and
the metric used to measure prognostic efficacy.

3.1 Case of study: State-of-Charge prognostic problem in
Lithium-Ion batteries

Lithium-Ion (Li-Ion) batteries are becoming increasingly
popular, being utilized in diverse applications. The op-
eration of these battery-driven systems strongly depends
on the SOC indicator, which represents the percentage of
energy available in the battery. Thus, having information
about both the current SOC and predictions of its fu-
ture evolution could be useful, even imperative, to make
decisions about the operation of these systems. Particu-
larly, users are interested in prognosticating the End-of-
Discharge (EoD) time, which is the moment at which that
energy will be depleted (failure prognostic problem). Mo-
tivated by the previous point, our case of study is focused
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on the SOC prognostic for the battery of an electric bicycle
during real-life usage.

To accomplish our goal, we apply the methodology pre-
sented in Pola et al. (2015), which uses a state-space
model to describe the Li-Ion battery voltage over time
as a function of (1) the SOC, (2) the battery internal
impedance, and (3) the discharge current, that can be
considered as the system’s operating condition. As a result,
we obtain the following state-space model:

State transition equations:

x1(k + 1) = x1(k) + ω1(k) (5)

x2(k + 1) = x2(k)− v(k) ∗ i(k)∆t E−1crit + ω2(k) (6)

Measurement equation:

v(k) = vl + (vo − vl)eγ(x2(k)−1) + αvl(x2(k)− 1)

+ (1− α)vl(e
−β − e−β

√
x2(k))− i(k) ∗ x1 + n(k)

(7)

where x1 and x2 are the internal resistance of the battery
and the SOC, respectively. Parameters α, β, v0, vl, γ and
Ec are characteristic of each battery, which can be esti-
mated off-line following the procedure described in Pola
et al. (2015). Parameters values in the case study presented
in this paper are Ec = 1279900[J], vl = 33.481 [V],
v0 = 41.405 [V], α = −0.005, β = 11.505, and γ = 1.553.

It is noteworthy to remark that the discharge current
is solely available during the filtering stage because we
cannot predict which will be the exact future usage. Thus,
for SOC prognostic purposes, we have to utilize a model
to characterize the evolution of this operating condition.
Particularly, this case of study considers the operation of
an electric bicycle; thus, the discharge current strongly
depends on the type of route.

3.2 Characterizing future operating conditions

To characterize future operating conditions at prognostic
stage, three models (LSTM, Markov Chain, and Constant
model) are tested. These models are now presented.

LSTM: To train the LSTM using L measurements of
the discharge current I (from 1 to tp), we consider a
sliding window of a length l to obtain L − l + 1 training
sequences. Each window is associated with one target, i.e.
the l + 1th measurement. Once the model tuned, it is
used to generate long-term predictions of future operating
conditions, as shown in Algorithm 1. To achieve this,
the last measurement sequence (i.e. from L − l to L-th
measured current) is utilized to predict the output L+ 1,
which is added to the sequence with a noise ω. This is
repeated recursively until horizon time (Tmax) is reached.

Markov Chain: The implementation of Markov Chain
for the system inputs requires the estimation of transition
probabilities, and the definition of maximum and mini-
mum discharge currents. For this purpose, battery dis-
charge current data is segmented by regular time intervals.
Each interval contains a fixed number of samples Nw.
This segmentation generates m time intervals such that
m = [L/Nw], where L is the number of measurements
available at the moment. Then, for each j-th interval

Algorithm 1 Future current profile prediction using
LSTM

inputs: Current previously measured {I1, ..., Itp}
Output: Current predicted IPred = {Itp+1, ..., ITmax}

1: LSTMTrained ←Train LSTM with {I1, ..., Itp}
2: I = {I1, ..., Itp}
3: for i = tp + 1, ..., Tmax do

4: Ii = LSTMTrained(Î = {Ii−l, ..., Ii−1}) + ωi
return IPred = {Itp+1, ..., ITmax

}

(j = 1, . . . ,m), the minimum (i
(j)
low = min{i′(k)}) and

maximum (i
(j)
high = max{i′(k)}) discharge current values

are computed, where k = 1, . . . , Nw, is a time index valid
within the j-th window. Next, on each interval, current
measurements are quantized into two possible values de-

fined by i
(j)
low and i

(j)
high. These values define the low-energy,

and high-energy consumption states of the Markov Chain
that characterizes the j-th interval. Discharge current data

satisfying i′ > (i
(j)
low + i

(j)
high)/2 are quantized as i

(j)
high.

Otherwise, they are quantized as i
(j)
low. For each interval, it

is possible to compute transition probabilities pij between
low-energy and high-energy consumption states. These
transition probabilities are estimated using maximum like-
lihood as described in Pola et al. (2015).

Constant: This model is a simplistic approach, which
assumes that the future exogenous inputs can be charac-
terized as a constant value equals to the average of the last
thirty measurements.

3.3 Assessing prognostic efficacy

Following the study in Rozas et al. (2020), to evaluate the
prognostic efficacy, two figures of merit will be utilized.
These metrics allow assessing the prognostic capability in
terms of the EoD. These figures of merit are defined as:

(1) Absolute Error (Abs. Error):

|E[EoDpredicted]− EoDground−truth|·100%

EoDground−truth
,

where E[EoDpredicted] is expectation for the time
when the predicted SOC reaches the critical discharge
threshold, whereas EoDground−truth is the “ground
truth” value associated with the moment in which
this event happens.

(2) Probability Interval Width (PI Width): It corre-
sponds to the width of 95% probability interval for
the predicted EoD.

Prognostic results are considered to be effective if both
metrics are close to zero.

4. RESULTS

The results are summarized in Figure 1. On the one hand,
Figure 1(a) shows the outcomes associated with the fil-
tering stage. One can find that SOC is being estimated
appropriately because SOC filtering is always close to
Ground Truth, more specifically, the mean error between
both quantities is less than 2 %. On the other hand,
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Figures 1(b),(c),(d), and (e) depict prognostic-related out-
comes regarding both (1) the time-varying prognostic up-
date strategy implemented with three different models to
characterize future operating conditions and (2) “Conven-
tional” implementation, which considers that the prognos-
tic algorithm has to be executed at each sampling time.

Figure 1(b) shows the evaluation of the real-time prog-
nostic performance metric (further details in Section 3.3)
over time. The trends of these three models are almost
identical, in the sense that the metric assessment is high
after each prognostic update, and then, as time progresses,
it decreases until reach the threshold, which was defined
as 0.85 in this implementation. However, the Constant
model exhibits a higher prognostic update rate that is
evidenced by observing Figure 1(c), which summarizes
the cumulative number of prognostic updates computed
at each time. This phenomenon could be explained due
to the oversimplistic approach considered in the Constant
model, which is not able to properly characterize actual
future inputs. As a result, the states predicted are not
consistent with the filtering states and, consequently, more
prognostic updates have to be computed.

Figures 1(d) and (e) exhibit the results associated with
the evaluation of the two figures of merit previously de-
fined (see Section 3.3), namely, Abs. Error and PI Width.
Firstly, it is relevant to observe in Figure 1(d) that both
Markov Chain and LSTM models present similar promis-
ing results in terms of the Abs. Error, which is, most
of the time, less than 2%. But, even more important,
the difference between these two models, that use the
same time-varying prognostic update strategy, and Con-
ventional implementation is not significant. Thus, they
allow us to considerably reduce the computational costs
by executing prognostic at a time-varying rate while keep-
ing acceptable prognostic efficacy in terms of Abs. Error.
Indeed, in the case of study, we should have needed 2500
prognostic executions under the conventional prognostic
update approach. However, using time-varying updates,
we compute less than 10 updates. On the other hand, the
Constant model presents a higher Abs. Error. In fact, it
was saturated to 4% in the first 1000 s in order to show all
of the quantities on the same scale, but real values exceed
by 20 %. In fact, the poor performance of the Constant
model is due to oversimplified assumptions.

Observing Figure 1(d), it presents results regarding PI
Width. As to the previous figure, both LSTM and Markov
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Fig. 1. Summary of results in terms of real-time prognostic performance metrics
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Chain models exhibit similar behavior, which is close to
the Conventional approach. Consequently, both models
keep acceptable prognostic efficacy in terms of PI Width,
even so, they demand significantly less computational re-
sources. Furthermore, we note that PI Width is decreasing
as time progresses. This phenomenon is expected, con-
sidering that the prognostic uncertainty increases as a
function of the prognostic horizon. Thus, the shorter the
prognostic horizon, the smaller the prognostic uncertainty.

At this point, it is also meaningful to discuss the training
time of the models implemented to characterize future
exogenous inputs. Measuring directly the computing time
in Matlab, the training time for LSTM and Markov
Chain were 1s and 0.1s, respectively. It is not significant
to consider the training time of the Constant model
since the calculations are very basic. Considering these
times, the first two methods are certainly more time-
consuming at the training stage than the former. However,
as previously noted, they produce more exact predictions
as well as also less prognostic updates. Therefore, the
extra time invested in training paid off at the prognostic
stage. Nevertheless, the previous conclusion cannot be
generalized because defining which model is the most
adequate to characterize future operating conditions for
prognostic purposes strongly depends on the signal shape.
For instance, if the input is mostly constant, a model for
characterizing future operating conditions that utilizes an
average of the past n samples could be as effective as
a more complex one that employs advanced tools, e.g.,
LSTM or Markov Chain. Hence, in such a case, a simple
model might be the most recommendable alternative.

5. CONCLUSIONS

First of all, it is noteworthy that the model utilized to
characterize future operating conditions plays a major role
not only in the prognostics efficacy but also in the number
of prognostic updates. On the one hand, as observed in the
case of Constant model, an over-simplistic model could be
easier to train, however, offers a poorer characterization of
future operating conditions, which triggers two negative
effects: (1) a reduction in the prognostics efficacy and
(2) an increment in the number of prognostics updates
required. On the contrary, as reviewed in the cases of
LSTM and Markov Chain models, a complex model could
be more time-demanding at the training stage but offers
outstanding results for prognostic purposes. Nevertheless,
if the exogenous input shape is simple (e.g., constant),
both complex and simplistic models might have the same
performance. Thus, prognostic designers must consider the
signal shape in the definition of a model to characterize it.

Last but not least, this paper also highlights the per-
formance of time-varying prognostics update procedure
that is a feasible method to effectively reduce computa-
tional costs associated with the implementation of PFP
algorithms. In fact, in the case of study, we should have
needed 2500 prognostic executions under the conventional
prognostic update approach. However, using time-varying
updates, we compute less than 10 updates, while being as
effective as the conventional approach.
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