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Abstract:
This article considers the possibility of using a small number of autonomous vehicles (AV) for
traffic control of the predominantly human-piloted traffic. Specifically, we consider the control
of the AV to act as a moving bottleneck, which will be used to optimize traffic flow properties
such as fuel consumption of the combined human-piloted and autonomous traffic flow.
We use a coupled partial differential equation (PDE)-ordinary differential equation (ODE)
framework to model the bulk traffic flow using a PDE, and the trajectory of an autonomous
vehicle in the flow using an ODE, depending on the downstream traffic density. The autonomous
vehicle acts on the traffic flow as a moving bottleneck via a moving flux constraint. Using
this modeling framework, we consider an optimal control problem which consists in finding the
optimal AV trajectory to minimize fuel consumption of the entire traffic flow. We prove existence
of optimal AV trajectories and we present two different optimal driving strategies depending on
the initial traffic conditions.

Keywords: Autonomous vehicles, Traffic control systems, Intelligent transportation systems,
Control of partial differential equations, Modeling for control optimization

1. INTRODUCTION

Moving bottlenecks on roadways such as slower moving
vehicles or large trucks that drive slower than the remain-
ing traffic are often considered to be obstacles that disrupt
the flow of traffic. However, recently, the notion of using
moving bottlenecks as control agents in the traffic flow
has been proposed (e.g., Ramadan and Seibold (2017);
Čičić and Johansson (2018); Piacentini et al. (2018)). The
idea being that a moving bottleneck might locally disrupt
the traffic flow, but could be used to control the flow of
traffic and optimize a global traffic property such as fuel
consumption. With autonomous vehicle (AV) technology
rapidly advancing and the promise of a small number of
AVs soon being deployed, it is possible that these AVs
could be used as moving bottlenecks to locally control the
flow of traffic and reduce fuel consumption of the entire
traffic stream.

The use of AVs for traffic control in the flow has previously
been explored experimentally by Stern et al. (2018), who
showed that AVs, with a penetration rate as low as 5%,
were capable of stabilizing the traffic flow and substantially
reducing the fuel consumption of the entire traffic stream.
However, this work did not consider vehicle overtaking,
and thus, the AV acted more as a pace vehicle than a
bottleneck.

The use of AVs as a moving bottleneck for traffic control
has been explored by Piacentini et al. (2018) and Čičić and
Johansson (2018). Here the AV speed profile is adjusted
based on the local density. Such analysis is enabled by
the coupled ordinary differential equation (ODE) and
partial differential equation (PDE) modeling framework
introduced by Delle Monache and Goatin (2014). This
model describes the bulk traffic flow using fluid mechanics
models via a PDE, which is coupled with the individual
vehicle dynamics of the moving bottleneck described by
an ODE.

In this work, we consider the control of a single AV in the
flow of human driven traffic and use the AV as a moving
bottleneck to control the traffic flow and reduce the overall
vehicle fuel consumption of the entire traffic stream using
different initial traffic conditions. In the work by Čičić and
Johansson (2018), they introduce a moving bottleneck to
the Cell Transmission Model (CTM). This model is equiv-
alent to a discretization of the LWR model (1a), with f a
piecewise-linear Newell-Daganzo function, using Godunov
Scheme. In the work by Piacentini et al. (2018), they also
consider the model (1). In their optimization problem, the
speed of the autonomous vehicle is greater than 30 km/h
and can only change every five minutes. In our work, the
moving bottleneck is allowed to slow down to zero speed
and become a fixed bottleneck if it is advantageous from
a fuel consumption standpoint. Moreover, the times where
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the autonomous vehicle changes its speed are chosen in a
optimal way. In our simulations, both constant and non-
constant initial traffic density conditions. Thus, the results
by Piacentini et al. (2018) use model predictive control
leading to a non-optimal control strategy. In contrast, the
results presented in this paper seems to be optimal with
respect to fuel consumption.

The remainder of this article is outlined as follows. In
Section 2, the coupled PDE-ODE model is introduced,
and the corresponding Riemann and Cauchy problems are
presented. In Section 2.4 the numerical solver for the PDE
and for the ODE are described, and in Section 3 the control
problem to minimize total fuel consumption via speed
control of the AV as a moving bottleneck is presented. The
results from numerical experiments are in Section 4, which
show that the AV is able to reduce fuel consumption of
the entire traffic stream if properly controlled as a moving
bottleneck. Finally, we conclude in Section 5.

2. DESCRIPTION OF THE MODEL

We briefly outline the coupled PDE-ODE model used to
describe both the macroscopic traffic flow as well as the
dynamics of the moving bottleneck.

Let the constants ρmax and Vmax be respectively the
maximum density and the maximum road speed. We
denote by BV , the set of functions of bounded variation.
We study a strongly coupled PDE-ODE system described
by

∂tρ (t, x) + ∂xf (ρ (t, x)) = 0, t > 0, x ∈ IR, (1a)

ẏ(t) = min{Vd(t), v(ρ(t, y(t)+))}, t > 0, (1b)

f (ρ (t, y(t)))− ẏ(t)ρ (t, y(t)) ≤ Fα (ẏ(t)) , t > 0, (1c)

ρ(0, x) = ρ0(x), x ∈ IR, (1d)

y(0) = y0, (1e)

where ρ = ρ(t, x) ∈ [0, ρmax] denotes the macroscopic
traffic density at time t ≥ 0 and at position x ∈ IR, the
flux function f is defined by

f(ρ) = ρv(ρ),

where v is the mean speed of cars, y(·) stands for the
trajectory of the AV, Vd ∈ BV (IR+, [0, Vmax]) is the
maximum speed of the AV and α ∈ (0, 1). In (1b), the sign
+ stands for ρ(t, x0+) := limx→x0

x>x0

ρ(t, x) with t > 0 and

x ∈ IR, that is to say the speed of the autonomous vehicles
depends on the density of cars in front. The quantity
Fα(ẏ(t)) := αmaxρ∈[0,ρmax](f(ρ) − ẏρ) = αρmax

4Vmax
(ẏ(t) −

Vmax)2 is the reduced maximum flow due to the presence
of the moving bottleneck.

The model (1) was first introduced by Delle Monache
and Goatin (2014) and models the impact of an AV on
the evolution of the traffic flow. Above, The PDE (1a) is
the macroscopic model named LWR model (see Richards
(1956); Lighthill and Whitham (1955)). We assume that
the speed v depends linearly on the density of cars as
follows:

v(ρ) = Vmax

(
1− ρ

ρmax

)
. (2)

The trajectory of the autonomous vehicle is modeled by
an ODE described in (1b). The autonomous vehicle drives
at its desired speed except when the surrounding traffic

is too dense. In this case, the autonomous vehicle reduces
its velocity accordingly. The autonomous vehicle influences
indirectly the evolution of the traffic flow via the moving
flux constraint (1c).

2.1 Notations

V → ρ̌α(V ) and V → ρ̂α(V ) such that ρ̌α(V ) < ρ̂α(V )
are the two solutions of Fα(V ) + V ρ = f(ρ) and let ρ∗

the solution of V ρ = f(ρ) (see Figure 1). We compute
V → ρ̌α(V ), V → ρ̂α(V ) and V → ρ∗ using the fact

that f is strictly concave and v(ρ) = Vmax

(
1− ρ

ρmax

)
. For

every V ∈ [0, Vmax], we obtain:

ρ̌α(V ) = ρmax(Vmax − V )

(
1−
√

1− α
2Vmax

)
, (3)

ρ̂α(V ) = ρmax(Vmax − V )

(
1 +
√

1− α
2Vmax

)
, (4)

ρ∗(V ) = ρmax

(
1− V

Vmax

)
. (5)

Moreover, we denote by σ(ρ1, ρ2) := f(ρ1)−f(ρ2)
ρ1−ρ2 the

Rankine-Hugoniot speed of the front wave (ρ1, ρ2). The
quantity TV (ρ) stands for the total variation of ρ.

ρ

Fα(V )

ρ̌α(V ) ρ̂α(V ) ρ∗(V )

Fα(V ) + V ρ

V ρ

ρmax

f(ρ)

Fig. 1. The flux function f and ρ̌α(V ) 6 ρ̂α(V ) 6 ρ∗(V ).

2.2 The Riemann problem with moving constraints

We consider (1) with Riemann type initial data

ρ0(x) =

{
ρL if x < 0
ρR if x > 0

and y0 = 0. (6)

The definition of the constrained Riemann solver for (1)
and (6) is described in (Delle Monache and Goatin, 2014,
Section 3) and Garavello et al. (2019). We denote by R
the standard Riemann solver for (1a) and (1d) where ρ0 is
defined in (6).

Definition 1. Let V ∈ [0, Vmax]. The constrained Riemann
solver RV : [0, ρmax]2 7→ L1

loc(IR; [0, ρmax]) for (1) and (6)
is defined as follows:

(1) If f(R(ρL, ρR)(V )) > Fα(V ) + VR(ρL, ρR)(V ), then

RV (ρL, ρR)(x/t) =

{
R(ρL, ρ̂α(V ))(x/t) if x < V t,
R(ρ̌α(V ), ρR)(x/t) if x > V t,

and y(t) = V t.
(2) If VR(ρL, ρR)(V ) 6 f(R(ρL, ρR)(V )) 6 Fα(V ) +

VR(ρL, ρR)(V ), then

RV (ρL, ρR) = R(ρL, ρR) and y(t) = V t.

(3) If f(R(ρL, ρR)(V )) < VR(ρL, ρR)(V ), then

RV (ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

An illustration of each case in Definition 1 is given in
Figure 2, Figure 3 and Figure 4.
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x

t

0

ρ̄

ρ̄

ρ̌α(V )

ρ̂α(V ) ẏ = V

Fig. 2. The solution of the constrained Riemann problem
of (1) with ρL = ρR = ρ̄ ∈ (ρ̌α(V ), ρ̂α(V )): case (1)
of Definition 1.

x

t

0

ρR

ρL

ẏ = V

Fig. 3. The solution of the constrained Riemann problem
of (1) with 0 < ρL < ρ̌α(V ) and ρ̂α(V ) < ρR 6 ρmax:
case (2) of Definition 1.

x

t

0

ρL

ρR

ẏ = v(ρR)

Fig. 4. The solution of the constrained Riemann problem
of (1) with ρ∗(V ) < ρL < ρR: case (3) of Definition 1.

2.3 The Cauchy problem

Let us consider an initial position y0 ∈ IR of the AV, a
desired speed Vd ∈ BV

(
IR+; [0, Vmax]

)
of the AV and an

initial density ρ0 ∈
(
L1 ∩BV

)
(IR; [0, ρmax]).

Definition 2. The couple (ρ, y) provides a solution to (1)
if the following conditions hold.

(1) ρ ∈ C0
(
IR+;

(
L1 ∩BV

)
(IR; [0, ρmax])

)
;

(2) y ∈W 1,1
loc (IR+; IR);

(3) ρ is a weak solution of ∂tρ+ ∂xf (ρ) = 0 in IR+ × IR
(4) For every κ ∈ IR and for all ϕ ∈ C1

c (IR2; IR+) it holds∫
IR+

∫
IR

(|ρ− κ|∂tϕ+ sgn(ρ− κ)g(k)∂xϕ) dx dt (7)

+ 2

∫
IR+

(h(k)−min{h(k), Fα(ẏ(t))})ϕ(t, y(t)) dt

(8)

+

∫
IR

|ρ0 − κ|ϕ(0, x) dx > 0 ;

with g(k) = f(ρ)− f(κ) and h(k) = f(κ)− ẏ(t)κ.
(5) For a.e. t > 0, ẏ(t) = min {Vd(t), v (ρ (t, y(t)+))};
(6) For a.e. t > 0, f (ρ (t, y(t)±)) − ẏ(t)ρ (t, y(t)±) ≤

Fα (ẏ(t)).

Theorem 1. (Garavello et al. (2019)) The Cauchy problem
(1) admits a solution in the sense of Definition 2.

Remark 1. The main ideas to prove Theorem 1 are as
follows. Fixing Vd, ρ0 and y0, Garavello et al. (2019)
construct an approximate solution (ρn, yn) of (1) using
a wave-front tracking algorithm described in the next
section. They prove that the couple (ρn, yn) converges, as
n→∞, to a solution (ρ, y) of (1) in the sense of Definition
2. In particular, we have

lim
n→∞

‖ρn(t, ·)− ρ(t, ·)‖L1
loc

(IR) = 0,

and TV (ρ) 6 TV (ρn) 6 TV (ρ0) + 2ρmax + TV (Vd).

2.4 Wave-front tracking algorithm

We briefly describe the solution method used to solve the
coupled PDE-ODE.

Step 1. Let ρ0 and y0 be fixed, we construct a density
mesh Mn on the interval [0, ρmax] and a velocity mesh
Vn on the interval [0, Vmax] such that for every V ∈ Vn,
(ρ̌α(V ), ρ̂α(V )) ∈ (Mn)2 with n ∈ IN\{0} the discretiza-
tion parameter. Moreover, we consider two sequences of
piecewise constant functions (Vn)n∈IN and (ρn0 )n∈IN having
both a finite number of discontinuities such that

lim
n→+∞

‖ρn0 − ρ0‖L1(IR) = 0 and TV (ρn0 ) 6 TV (ρ0),

(9)

lim
ν→+∞

‖Vn−V ‖L1(IR+) = 0 and TV (Vn) 6 TV (V ),

(10)

Step 2: We use the method in Garavello et al. (2019)
to construct an approximate wave-front tracking solution
(ρn, yn) with initial data (ρn0 , y0) and speed Vn. The term
“approximately” means that a rarefaction wave is split
into a fan of rarefaction shocks such that the left and the
right densities of each rarefaction shock belongs to the
state mesh Mn. Thus, for every t > 0, for a.e x ∈ IR,
ρn(t, x) ∈Mn.

3. AV CONTROL PROBLEM

In this section, we present a numerical example to demon-
strate how an AV can be used as a moving bottleneck
to control the flow of traffic and optimize the fuel con-
sumption of the overall traffic flow. The specific scenario
considered in this numerical example is explained, as well
as the numerical strategy for optimizing the AV trajectory.

3.1 Fuel consumption model

The objective of the optimization is to drive the AV in such
a way that it minimizes the fuel consumption of the entire
traffic flow, i.e. the total fuel consumed by all vehicles.
Therefore, it is important to be able to quantify the fuel
consumed as a function of the vehicle density, which can
be integrated over the entire roadway to calculate the total
fuel consumed.

Fuel consumption is related to the speed of vehicles as
shown by Ahn et al. (2002) and Berry (2010). Generally,
fuel consumption increases with the speed of the vehicle,
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Fig. 5. Fuel consumption of a vehicle as a function of
vehicle speed.

with a nonlinear relationship between speed and fuel
consumption. Using the fuel consumption rates of four
different commercially available vehicles, Ramadan and
Seibold (2017) obtained the following best-fit model for
fuel rate K(v) in liters per hour (`/h) as a function of
speed v:

K(v) = 5.7× 10−12v6 − 3.6× 10−9v5 + 7.6× 10−7v4

− 6.1× 10−5v3 + 1.9× 10−3v2 + 1.6× 10−2v + 0.99

for speed v in km/h and fuel consumption rate K in units
of `/h. This relationship is depicted in Figure 5.

Using the relationship between speed and fuel rate in
Figure 5 as well as the relationship between density and
speed in (2) obtained by assuming the LWR model, it is
possible to compute the fuel rate F (ρ) as a function of
traffic density with units `/h by computing:

F (ρ) = ρK(U(ρ)), (11)

which is depicted in Figure 6.

Let Tf > 0, C > 0 and x1, x2 ∈ IR such that x1 < x2. We
consider thus the following optimal control problem

inf
V ∈BV ([0,Tf ],[0,Vmax])

‖V ‖BV 6C

J(V ) :=

∫ Tf

0

∫ x2

x1

F (ρ(t, x))dtdx,

(12)
with ρ the solution of (1) associated to a given initial
data ρ0. The functional J represents the Total Fuel Con-
sumption (named TFC) computed on a highway section of
length x2 − x1 km during Tf hours.

Theorem 2. The optimal control problem (12) has at least
one optimal solution.

Proof. There exists a minimizing sequence (Vm)m∈IN
verifying that

inf
V
J(V ) 6 J(Vm) 6 inf

V
J(V ) +

1

m
.

Fig. 6. Fuel consumption rate of the bulk traffic flow as a
function of traffic density

Since Vm ∈ BV ([0, Tf ]; [0, Vmax]), there exists an approxi-
mate function Vm,n : t→ Vn of Vm such that

lim
n→+∞

‖Vm,n − Vm‖L1([0,Tf ];[0,Vmax]) = 0

and, for every n ∈ IN, TV (Vm,n) 6 TV (Vm) 6 C. From
Remark 1, we construct an approximate solution ρm,n of
(1) that converges, as n→∞, to a solution (ρm, ym) of (1)
in the sense of Definition 2 with Vd = Vm. In particular,
we have

lim
n→∞

‖ρm,n(t, ·)− ρm(t, ·)‖L1([x1,x2];[0,ρmax]) = 0,

and there exists C > 0 independent of n and m such that

TV (ρm) 6 TV (ρm,n) 6 C.

By dominated convergence theorem,

lim
n→∞

∫ Tf

0

∫ x2

x1

F (ρm,n)dtdx =

∫ Tf

0

∫ x2

x1

F (ρm)dtdx.

(13)
From (13), there exists a function ϕ : n → IN strictly
increasing such that

|J(Vm,ϕ(m))− J(Vm)| 6 1

m
. (14)

Combining (13) and (14), we deduce that (Vm,ϕ(m))m∈IN is
also a minimizing sequence. Helly’s Theorem, see (Rudin,
1976, Theorem 7.25), implies that there exists a func-
tion V ∈ BV ([0, Tf ]; [0, Vmax]) and a subsequence of
Vm,ϕ(m), still denoted by Vm,ϕ(m), such that Vm,ϕ(m)

converges to V in L1 ([0, Tf ]; [0, Vmax]) and TV (V ) 6
lim infm TV (Vm,ϕ(m)) 6 C. From Remark 1, we construct

an approximate solution ρm,ϕ(m) of (1) associated to
(V, ρ0, y0) that converges, as m → ∞, to a solution (ρ, y)
of (1) in the sense of Definition 2. Thus, we have

lim
m→∞

‖ρm,ϕ(m)(t, ·)− ρ(t, ·)‖L1([x1,x2];[0,ρmax]) = 0,

and there exists C > 0 independent of m such that

TV (ρ) 6 TV (ρm,ϕ(m)) 6 C.

By dominated convergence theorem,

lim
n→∞

∫ Tf

0

∫ x2

x1

F (ρm,ϕ(m))dtdx =

∫ Tf

0

∫ x2

x1

F (ρ)dtdx,

(15)
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and V ∈ BV ([0, Tf ]; [0, Vmax]) with ‖V ‖BV ([0,Tf ];[0,Vmax]) 6
C, whence the conclusion. 2

Remark 2. Since the solution ρV of (1) with Vd = V
may contain shocks even if the initial datum is a smooth
function, the expression

lim
ε→0

ρV+εh(t, ·)− ρV (t, ·)
ε

(16)

does not define any Lp-function for some p ∈ IN, some
admissible perturbations h ∈ BV ([0, Tf ], [0, Vmax]), some
initial data ρ0 and some speed functions V . Thus, a
gradient descent algorithm to solve the optimal control
problem (12) cannot be applied in a general way.

Remark 3. Note that the optimal control problem (12)
may admit multiple solutions. For instance, if the initial
datum ρ0 = ρmax, then V → J(V ) is a constant func-
tion. Therefore, any V ∈ BV ([0, Tf ], [0, Vmax]) such that
‖V ‖BV 6 C is an optimal solution of (12).

3.2 Implementation

We briefly describe the implementation of the control
law on the AV to achieve optimal traffic flow using an
AV as a moving bottleneck in the traffic stream. The
control of traffic using an autonomous vehicle as a moving
bottleneck is implemented as an optimization problem,
where the speed of the AV is adjusted at each optimal
time period. During each time period, the AV travels at the
optimal constant speed, unless it is required to drive slower
due to local traffic conditions. For a given initial traffic
state (density distribution on the roadway) and starting
position of the AV, the optimal trajectory is computed
that minimizes the total fuel consumption of the entire
traffic flow. This optimal AV trajectory consists of a series
of speeds to drive at for each successive interval, and is
based on the predicted traffic state and corresponding
position of the AV as solved using the coupled PDE-ODE
system.

For this numerical example, the optimal AV trajectory is
found using the genetic algorithm as implemented in the
Matlab Global Optimization Toolbox (ga()). This is im-
plemented with the objective of minimizing the total fuel
consumption as described in Section 3.1. The numerical
experiment is conducted over a stretch of highway over
the course of one hour.

Remark 4. It would be interesting to compare our nu-
merical results to the ones obtained by other non-smooth
optimization algorithms as particle swarm optimization or
Nelder-Mead algorithm.

4. SIMULATION RESULTS

Using the implementation of the numerical method de-
scribed in Section 2.4, a numerical example is conducted
to demonstrate the ability of a single AV to be controlled
to act as a moving bottleneck and reduce the fuel consump-
tion of the overall traffic flow. For the numerical example,
we consider the case of a single AV that drives during one
hour. The maximum speed of the AV on the roadway is
Vmax = 120 km/h, and the minimum allowable speed of
the AV is Vmin = 0 km/h. The maximum (jam) density on
the roadway is considered to be 400 veh/km.

Initial density ρ0 (veh/km)

O
p

ti
m

al
S

p
ee

d
V
o
p
t
(ρ

0
)

(k
m

/
h

)

Fig. 7. Plotting of Vopt(ρ0) with respect to ρ0.

We consider two optimal control approaches for the AV:
one in which the AV selects an optimal constant speed
for the duration of the experiment, and another in which
the AV is allowed to change the speed a set number of
times during the experiment. The results of the numerical
experiments are described below.

4.1 Optimal constant speed of the AV over one hour

In this example, the AV is considered to drive on a two-
lane roadway (i.e., two lanes in the direction of travel
of the AV), and thus the AV has influence over one of
the two lanes (α = 0.5). For any constant initial data
ρ0 ∈ [0, ρmax] and y0 = 35, we solve numerically the
optimal control problem (12) with Tf = 1, Vmax = 120,
x1 = 30 and x2 = 70. The optimal solution, denoted
by Vopt(ρ0), is computed using the wave front tracking
algorithm presented in Section 2.4. In Figure 7, we have
plotted Vopt(ρ0) with respect to the initial data ρ0. Three
different optimal driving strategies arise:

• When the initial density ρ0 is low (between 0 veh/km
and 70 veh/km), the use of a moving bottleneck is
needed to reduce, in an optimal way, the total fuel
consumption.

• When the initial density ρ0 is moderate (between
70 veh/km and 340 veh/km), the optimal speed of
the moving bottleneck is 0 km/h, and thus a fixed
bottleneck produces the optimal fuel consumption
results when optimizing (12).

• When the initial density ρ0 is high (between 340
veh/km and 400 veh/km), the number of cars is
too large. Therefore, the autonomous vehicles cannot
act on the traffic flow. Mathematically speaking, the
constraint (1c) is inactive.

In Figure 8, the maximum TFC reduction rate with
respect to the initial data ρ0 is presented. Note that when
the density is equal to 176 veh/km, we have a 18.1897%
TFC reduction rate leading to a substantial reduction
of fuel consumption and causing a real impact on the
environment.
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Initial density ρ0 (veh/km)
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Fig. 8. Plotting of the TFC reduction rate with respect to
ρ0.
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Fig. 9. Traffic density evolution showing wave fronts when
the AV drives at the maximum possible speed at all
times. The AV trajectory is plotted in red.

4.2 Multiple optimal speeds of the AV over one hour

For this scenario, the AV has influence over one of the
three lanes (α = 0.6). We allow the AV to adjust the
driving speed a total of N−1 times during the experiment
duration. Therefore, the optimization problem (12) can be
rewritten as

inf
(V,T )∈[0,Vmax]N×[0,Tf ]N−1

J(V d(V,T )(·)) (17)

where the cost function J is defined in (12) and, for every
t ∈ IR+,

V d(V,T )(t) =

N∑
i=1

V (i) 1(T (i−1),T (i))(t),

with T (0) := 0 and T (N) = +∞.

Position (km)

T
im

e
(h

)

D
en

sity
(veh

/
k
m

)

Fig. 10. Traffic density evolution showing wave fronts
under the optimal driving strategy. The AV trajectory
is plotted in red.

In Figures 9 and 10, we choose Tf = 1, Vmax = 120,
x1 = 30 and x2 = 70 in (12). The initial traffic state
is

ρ0(x) =

{
51, if x < 50,
270 if 50 < x.

and y0 = 35. Using the genetic algorithm ga(), the
optimal maximum speed for the AV is 38.2 km/h for the
first 9.8 minutes, then decrease the speed to 28.3 km/h
for the next 4.3 minutes before increasing the speed to
32.7 km/h again for the next 5.2 minutes, 37.2 km/h for
the next 6.4 minutes, 56.4 km/h for the next 54.6 minutes
and then decreasing again to 27.2 km/h for the final 19.7
minutes in the study time.

As seen in Figure 9, if the AV drives at the maximum
possible velocity at all times, the AV encounters the
leading edge of the shock wave after roughly 0.2 hours.
This results in a total fuel consumption of 16,664 l of fuel.
However, when the AV is acting as a moving bottleneck
to control the traffic and reduce the fuel consumption, it
is able to achieve a lower density gap between the wave
and the AV as seen in Figure 10. By using the control
strategy optimized with the genetic algorithm, the total
fuel consumption for the same traffic flow is reduced to
16484 l, a reduction of 1.08%.

In Figure 11 and Figure 12, we choose Tf = 1, Vmax = 120,
x1 = 0 and x2 = 50 in (12). We consider the case of a single
AV that drives in the presence of a fixed bottleneck created
at x = 50 km; the initial traffic state is

ρ0(x) =


0, if x < −35,
121 if 35 < x < 0,
80 if 0 < x < 50,
371 if 50.

and y0 = 25. We have x1 = 0 and x2 = 50.

As seen in Figure 11, if the AV drives at the maximum
possible velocity at all times, the AV encounters the
leading edge of the shock wave after roughly 0.2 hours.
This results in a total fuel consumption of 17740 l of fuel.
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Fig. 11. Traffic density evolution showing wave fronts when

the AV drives at the maximum possible speed at all
times. The AV trajectory is plotted in red.
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Fig. 12. Traffic density evolution showing wave fronts
under the optimal driving strategy. The AV trajectory
is plotted in red. Note that the AV reduce its speed
smoothly in order to reduce the speed gap when the
AV meets the non classical shock created by the fixed
bottlenecks.

However, when the AV is acting as a moving bottleneck
to control the traffic and reduce the fuel consumption, it
is able to achieve a lower density gap between the wave
and the AV as seen in Figure 12. By using the control
strategy optimized with the genetic algorithm, the total
fuel consumption for the same traffic flow is reduced to
17613 l, a reduction of 0.72%.

Figure 10 and Figure 12 indicate that by actively control-
ling the behavior of the AV to act as a moving bottleneck,
it is possible to achieve a reduction in fuel consumption for

the entire vehicle fleet, not only the single control vehicle
in the flow.

5. CONCLUSIONS

In conclusion, the use of AVs as moving bottlenecks
to control traffic flow can be used to reduce total fuel
consumption in the presence of a traffic wave.

We have shown that when the AV speed and the initial
density are constant, there are three different optimal
driving strategies based on the initial density of the traffic.
When the density is low, the best driving strategy is
obtained using a moving bottleneck. If the density is
medium, a fixed bottleneck is more efficient than moving
bottlenecks leading to a TFC reduction of 18.1897% when
ρ0 = 176 veh/km. As soon as the density is too high, AVs
don’t have any impact on the bulk traffic flow.

When the AV is able to change speeds and adapt to
the current traffic conditions, we are able to use the
genetic algorithm ga to find the optimal AV speed profile
throughout the experiment and reduce the total fuel
consumption of the bulk traffic flow. The strategy that
yielded the best results as shown in Figure 12 is the driving
strategy that leads the AV with a smooth speed profile.
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