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Abstract: In this paper, a monocular depth prediction based end-to-end reinforcement
control framework is proposed for autonomous control of underwater vehicles in the unknown
environment. In the control framework, with the input of camera sensor RGB videos, a
monocular depth prediction network is proposed to generate underwater depth images and a
sequential reinforcement learning controller is also developed for autonomous obstacle-avoiding
navigation and movement control. Simulated and experimental results demonstrate that the
proposed control scheme can achieve remarkable performance on collision-avoidance navigation
and autonomous control in the unknown environment.

Keywords: Monocular depth prediction; Autonomous reinforcement control; Underwater
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1. INTRODUCTION

Underwater vehicles recently have been significant tools for
marine science with the advantages of low cost, small size,
lightweight, high flexibility and wide range of activities.
The precise movement control of underwater vehicles plays
a decisive role in the safe accomplishment of some high-
risk tasks, such as undersea oil exploration, undersea
search and rescue and submarine pipeline repair, etc.
However, underwater vehicles are highly susceptible to
the complex ocean current and fluid resistance, especially
in the unknown environment, the environmental changes
are unpredictable. Thus, it is highly desired to design a
collision-avoidance navigation based autonomous control
scheme for the safety assurance of underwater vehicles
during tasks.

To address this issue, many control methods are proposed,
which mainly fall into two groups: navigation based track-
ing control schemes(Shen et al. (2016), He and Zhou (2010)
and Repoulias and Papadopoulos (2005)), which sequen-
tially perceive environment and design obstacle-avoiding
navigation laws and trajectory tracking controllers based
on control theories, and end-to-end intelligent control
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schemes(Carlucho et al. (2018)), which design the con-
trollers using intelligent algorithms (e.g., neural network-
s, fuzzy logical systems, etc.) by integrating a decision-
making based navigation design. The navigation based
tracking control schemes aim to search an available path
or trajectory from perceptual environmental information
and then develop a controller to track the searched path or
trajectory accurately. However, these methods encounter
some limitations, such as cumbersome control links, com-
plex environmental perception, and imprecise system mod-
el. In contrast, the end-to-end intelligent control schemes
aim to search optimal action of each sample time from the
obtained environmental information so as to behave like
human beings. Particularly, deep reinforcement learning
(DRL) that inherits both the feature extraction capabil-
ity of deep learning and the decision-making mechanism
of reinforcement learning demonstrates high potential to
autonomous control in recent years.

In this paper, a monocular depth vision based reinforce-
ment control framework is proposed for the autonomous
control of underwater vehicles subject. With the envi-
ronmental video as input, a geometric network (GeoNet)
based on encoder-decoder framework is proposed to gener-
ate depth maps that provides the spatial geometric infor-
mation of the actual complex environment. Sequentially,
a reinforcement learning control network (CtrlNet) built
based on the convolutional neural network and double Q
learning techniques outputs action decisions for obstacle-
avoiding based autonomous control. The effectiveness and
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Fig. 1. The overall frame diagram of this paper(The first part is the visual depth prediction part and the latter part is
the deep reinforcement learning control part)

superiority of the proposed control scheme are verified by
both simulation and experiment studies.

The rest of this paper is organized as follows. The proposed
GeoNet and CtrlNet are described in Section 2 and Section
3, respectively. Simulation and experiment studies are
given in Section 4, followed by conclusions drawn in
Section 5.

2. FROM APPEARANCE TO GEOMETRY

To apply DRL for the motion control of underwater
vehicles in practice, a feasible solution is to train models
in a simulator and then transfer the trained model to
real world application. However, it is highly challenging
for vision based control schemes due to the significant
visual differences between virtual and real underwater
environments. Some researchers use stochastic noise to
capture the natural conditions of the real environment
(Li and Snavely (2018)). The distance information of
surrounding objects is significant for obstacle avoiding and
motion state adjustment of underwater vehicles is obtained
by the depth and ego-motion estimation of real underwater
environments. To this end, the GeoNet is proposed to
extract spatial geometric representations (i.e., depth maps
and ego-motion estimation) from two consecutive RGB
frames of the underwater environment.

2.1 Network Architecture

The GeoNet consists two parts: depth prediction and
ego-motion estimation. For depth prediction, an encoder-
decoder architecture with residual blocks (He et al. (2016))
is adopted to generate depth maps from RGB frames. For
ego-motion estimation, as illustrated in Fig. 2, an ego-
motion estimation network takes two RGB frames as input
to generate the position transformation matrix between
two frames, and regulate the translation and rotation
parameters between two frames. As different perspectives
of the scene can be predicted by converting one frame into
an adjacent frame, the ego-motion estimation for the next
frame can be realized by mapping current frame to the
next frame. Specifically, when two frames of RGB image
Ii and Ij are input, the estimate of ego-motion Ei→j

from Ii and Ij can be predicted using PoseNet, which
contains seven feature extraction layers of convolution.
The depth mapping Dj can be obtained by inputting Ij to
the depth prediction network. With the depth map Dj and
the estimate of ego-motion Ei→j , frame Ii can be warped

to Îi→j via a translation φ (Casser et al. (2019)).

Fig. 2. The overall block diagram of ego-motion estimation
network

2.2 Loss Functions

The warping of Îi→j performs a translation from Ii to

Ij , thus theoretically, the warped frame Îi→j and frame Ij
should be consistent. To this end, a multi-scale consistency
(MSC) loss on the scale of pixel and SSIM between Îi→j

and Ij is proposed as follows:

L
(j)
MSC = α1 min

(

‖Îi→j − Ij‖
)

+ α2L
(j)
SSIM (Îi→j , Ij) (1)

where α1 and α2 are hyperparameters used for the trade-
off between pixel and structural information. Note that the
pixel-wise consistency loss is computed as the minimum
per-pixel photometric loss to avoid being penalized due to
out-of-view pixel and occlusion effects. In addition to MSC
loss, a depth smoothness loss is also used to regularize the
depth estimates(Zhou et al. (2017)), thus the total loss
function of GeoNet is given by:

LGeo =

2
∑

j=0

(

L
(j)
MSC + α3

1

2i
L
(j)
SM

)

(2)

where α3 is a hyperparameter. The depth smoothness
loss LSM is constructed using the image gradients, which
inflect the sharpness changes of depth at pixel coordinates
(Mahjourian et al. (2018)), as follows:

L
(j)
SM =

∑

j

∥

∥∂xD
j
∥

∥ e−‖∂xI
j‖ +

∥

∥∂yD
j
∥

∥ e−‖∂yI
j‖ (3)

where ∂x and ∂y, respectively, take the gradients on x and
y axis of an image, Ij and Dj , are the raw RGB frames
and the corresponding depth maps.

2.3 Training Settings: GeoNet

The visual sensor built in underwater vehicles is used
to collect real underwater videos, extract and establish
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the dataset for training depth prediction network. The
network topology is an hour-glass structure in which
ResNet18 is utilized as the encoder. During training, we
set hyperparameters α1 = 0.8, α2 = 0.1, α3 = 0.1, and we
used the Adam optimizer with ρ = 0.0001 as the initial
learning rate. After training and testing spatial geometric
representations network and generate a network model
with high quality.

3. FROM GEOMETRY TO POLICY DECISION

Since deep Q network (DQN)(Mnih et al. (2015)) has been
proved to be trainable directly benefit from raw images,
most DQN models used for automatic control are based
on this version (Tai and Liu (2016); Zhang et al. (2016)).
Although this architecture ultimately achieves reasonable
results, it tends to overestimate Q-value and require ad-
ditional computational cost for training in the simulator.
To this end, a double Q-learning architecture(Wang et al.
(2015)) is inherent in CtrlNet to improve the performance
on training efficiency of autonomous control based monoc-
ular vision.

3.1 Problem Formulation

The autonomous control based on monocular vision prob-
lem can be regarded as the “perception-decision” process
in which the underwater vehicle interact with the environ-
ment through monocular camera. The underwater vehicle
chooses an action at ∈ A according to the depth frame xt

at time t ∈ [0, T ], then observe a reward signal rt produced
by a reward function and transit to the next observation
xt+1. The main objective of this algorithm is to maximize

the accumulative future reward Rt =
∑T

τ=t γ
τ−trτ , where

γ is the discount factor. The direction and growth rate
of the reward value determine the training speed and
performance.

Given the policy π(·) used to generate actions and yields
obtaining action at = π (xt) with the current state xt in
one iteration, the Q-value of a state-action pair (xt, at) can
be defined as follows

Qπ(xt, at) = E[Rt|xt, at, π]. (4)

For convenient implementation, the above formula is com-
puted by using the Bellman equation(Bellman and Kalaba
(1965))

Qπ (xt, at) = E [rt + γE [Qπ (xt+1, at+1) |xt, at, π]] . (5)

By choosing the optimal action during each iteration where
Q∗ (xt, at) = maxπ E [Rt|xt, at, π], the optimal Q-value
can be obtained by

Q∗ (xt, at) = Ext+1

[

r + γmax
at+1

Q∗ (xt+1, at+1) |xt, at

]

(6)
which indicates that the optimal Q-value can be obtained
at time t is the summation of the current reward rt and
the discounted optimal Q-value available at time t + 1.
revRather than calculating the Q-value function directly
over a large state space, the problem can be solved by
using a deep neural network to approximate this optimal
Q-value function.

3.2 Network Architecture

As illustrated in Fig.1, CtrlNet, the latter part of the
overall frame diagram, consists two parts: (1) convolution
network (ConvNet, red in Fig. 1), which is constructed
a four-layer fully-convolutional neural network to extract
features from the input depth maps; and (2) deep double
Q-network structure(D2QNet, green in Fig.1), which is
constructed two fully-connected laminar flows (i.e., a state
value function (SVF) and an action advantage function
(AAF)) to estimate states and select actions, respectively.
With the estimated states and selected actions, the Q-
value function is constructed as

Q(x, a; θ, α, β) = V (x; θ, β) +A(x, a; θ, α) (7)

where V and A, respectively, represent SVF and AAF.
Note that the AAF indicates the difference between cur-
rent performance and average performance. That is, if the
advantage value is larger than the average, then the value
of AAF is positive and vice versa. Assuming that the
expectation of AAF is zero, then the Q-value function can
be rewritten as

Q(x, a; θ, α, β) =V (x; θ, β) +
(

A(x, a; θ, α)

−
1

|A|

∑

a′

A (x, a′; θ, α)
) (8)

where |A| is the cardinal number of the AAF, which is
equal to the size of the action set. If each A value is
subtracted from the average of all A values during the
iteration, the zero-expectation constraint is achieved and
yields stability enhancement of the overall output.

Fig. 3. The training procedure of D2QNet. ⊕,⊖,⊗ are
element-wise addition, subtraction and multiplica-
tion, respectively.
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As illustrated in Fig. 3, D2QNet utilizes a target network
alongside an online network. The target network is a
duplicate of the online one. revUnlike the online network
that updates the weights through back propagation at
each training step, the weights of the target network are
fixed for a short period and then copied from the online
network. Based on the dual-network setting, the online
and target networks are designed for action selection and
optimal state estimation, respectively. Specifically, with
the input state xt+1, the online and target networks are
used, respectively, to select optimal action a∗t+1 from Eq.
(6) and to calculate optimal Q value Q∗

t+1 at time t + 1.
Then, with the discount factor γ and current reward rt,
the target value y at t can be obtained as follows:

y =

{

r if x′ is terminal

r + γQ∗
(

xt+1, a
max (xt+1; θ) ; θ

−
)

otherwise.
(9)

where amax (xt+1; θ) = argmax
a′

Q (xt+1, a
′; θ), xt+1 is the

next observation at time t+1, θ and θ− are the parameters
of online network and target network, respectively.

Finally, the loss value is calculated by subtracting the
target value with the optimal value Q∗ predicted by the
online network, and then back-propagated to update the
weights of online network with a gradient descent step,
where the CtrlNet loss function LCtrl is designed as

LCtrl = ‖y −Q(x, a; θ)‖
2

(10)

3.3 Training Settings: CtrlNet

From the practical requirements of autonomous control of
the underwater vehicle, 7 actions including two settings of
linear velocity (0.4 or 0.6 m/s) and five settings of angular
velocity (i.e., π

3 ,
π
6 , 0, −

π
6 , −

π
3 rad/s) are integrated into

an action set. The instantaneous reward function is defined
as

r = v · cosα ·∆T (11)

where v is linear velocity, α is angular velocity, and ∆T is
the time for each episode. The total episode reward is the
accumulation of instant rewards for all steps in an episode.
If a collision is detected, the episode ends immediately with
a additional penalty of -5. Otherwise, the episode continues
until the maximum number of steps is reached and ends
without penalty. The learning rate is set to 10−5 in an
Adam optimizer(Kingma and Ba (2014)), the discount
factor γ = 0.99, the capacity of replay memory buffer for
storing state xt, action at and reward rt information is
50000 and the parameter update rate from target network
to online network is 0.001.

4. SIMULATION AND EXPERIMENT STUDIES

In this section, the effectiveness of the proposed au-
tonomous control algorithm of underwater vehicles is e-
valuated by both simulation and experiment studies.

4.1 Dataset

To satisfy the experimental requirement, experiments are
conducted on in-house underwater scene dataset contain-
ing various shaped obstacles. The resolution of each frame

Fig. 4. Robot training simulator-Gazebo

is 1920 × 1080 and corresponding rate is 15fps. The in-
house dataset contains total 2780 images (2228 training
images and 552 testing images). The input patches of
GeoNet are cropped with a uniform size 416 × 128. The
size of the input depth image for CtrlNet is also 416 ×
128. The training data of CtrlNet is generated by its own
exploration in the simulator.

4.2 Implement Details

The proposed method is implemented using Tensorflow
(Abadi et al. (2016)). During simulation and experiment,
the underwater vehicle gets continuous raw RGB frames
from the monocular camera, which are then inputted into
GeoNet to generate depth maps for CtrlNet. The CtrlNet
extracts spatial geometric information from depth maps
and then aggregates them to output linear velocity and
angular velocity for the underwater vehicle movement.
It is worth noting that the output linear and angular
velocities are the probability values of the actions in action
sets defined above. The above is the overall integrated
closed-loop system. By asynchronously integrating GeoNet
and CtrlNet, robustness operation of the overall system is
achieved.

Simulation To verify the effectiveness of visual depth
prediction algorithm and collision-avoiding based rein-
forcement control algorithm for the underwater vehicle
during training, the proposed model is trained in Gazebo
simulator with ROS (Robot Operating System) environ-
ment using two GPUs (i.e., NVIDIA GeForce GTX 2080Ti
11GB). During the simulation training, the underwater ve-
hicle interacted with an external computer using ROS. The
simulation environments with many obstacles are built in
Gazebo simulator as shown in Fig. 4.

As shown in Fig. 5, the reward value increases rapidly with
the number of iteration, reaching a relatively stable reward
value after 900 iterations. The path trajectory of the
simulation underwater vehicle in Gazebo as shown in Fig.
6, from which it is observed that the underwater vehicle
usually chooses to a similar path for obstacle avoiding.
revThis is because after obtaining the Q value of each
state, the behavior will be predicted by the network and
selected by a greedy policy, such that resulting in a fixed
policy for all states. Since the reward function defined
during the training phase tends to keep straight rather
than turning, the underwater vehicle navigates as a loop
with minimal curvature to maintain a maximum linear
speed and successfully avoid all collisions. This indicates
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Fig. 5. The reward curve with a smoothness of 0.9 in the
simulator

Fig. 6. Path diagram of the underwater vehicle in the
simulator

the proposed method is capable of remarkable collision-
avoidance for autonomous control.

Experiment The experimental hardwares mainly in-
cludes underwater vehicle and controller. Figure 7 depicts
the BlueROV2 is a fully-actuated underwater vehicle de-
veloped by Blue Robotics, whose thruster configuration al-
lows for motion in surge, sway, heave and yaw. While being
equipped with a full HD resolution camera for observation
purposes. An NVIDIA Jetson TX2 used to be controller,
which equipped with an NVIDIA Pascal GPU is used for
real-time inference and testing in reality. As shown in Fig.
8, the Jetson TX2 is a compute module from Nvidia that
features a powerful and low-power CPU/GPU combo, and
the compactness of the Jetson makes it ideal for the vision
processing application in our experiment.

After training in simulated environment, the trained model
is transferred to the real-world controller. With the raw
RGB frames read using the OpenCV library, the concrete
numerical values of linear velocity and angular velocity are
obtained through GeoNet and CtrlNet two-stage process-
ing. The next step, the information of linear velocity and
angular velocity are transformed into the control instruc-
tion of each channel through custom communication pro-
tocol and sent to the ROV via the ground station software
through UDP communication. The desired movements are
achieved by controlling the speed of each thruster using
corresponding motor controllers.

(a) BlueROV2 (b) The experimental pool

Fig. 7. The left side is the BlueROV2, and the right side
is the experimental pool

Fig. 8. Underwater vehicle ground controller-NVIDIA Jet-
son TX2

To verify the effectiveness and superiority of the monocular
depth estimation, a comparison to MonoDepth (Godard
et al. (2017)) is conducted. For quantitative evaluation
of the monocular depth estimation, three error metrics
(Eigen et al. (2014)), i.e., absolute relative difference
(ARD), squared relative difference (SRD) and root mean
square error(RMSE), are adopted. The results are given
in Table 2, from which it is seen that the proposed
method achieved best performance (shown in bold). The
comparison of the visual results is shown in Figure 9,
where the ground-truth depth map is inserted from the
sparse measurements for visualization. From Fig.9, it is
observed that the proposed method exhibits remarkable
performance on depth prediction and distance feature
extraction.

Table 1. Quantitative results of monocular
depth estimation

Method ARD SRD RMSE

Monodepth 0.162 1.578 6.104
Proposed 0.136 1.029 5.260

5. CONCLUSION

In this paper, a novel autonomous control framework
combines depth prediction network and deep reinforce-
ment learning is proposed by only using monocular RGB
frames as input. The GeoNet is proposed for the real-
time generation of depth maps and the CtrlNet is designed
for autonomous control with collision-avoidance capability,
which can be trained only in the simulator and then trans-
fer directly to real-world task. Simulation and experimen-
tal results demonstrate the feasibility of transferring the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9340



(a) Raw RGB image (b) Ground truth (c) Proposed (d) Monodepth

(e) Raw RGB image (f) Ground truth (g) Proposed (h) Monodepth2

Fig. 9. From left to right: Raw RGB images, Ground truth images, our images and monodepth images.

visual knowledge of the training network from virtual to
reality, and high performance automatic control achieved
by using monocular vision.
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