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Abstract: Towards autonomous driving, advanced driver assistance systems increasingly
undertake basic driving tasks by replacing human assessment and interactions, when controlling
the vehicle. The performance of these systems is directly related to knowledge of the vehicle’s
state and influential parameters. In this respect, the road condition has a major influence on the
tires’ traction and thus significantly affects the behavior of the vehicle. Therefore, a prediction
of the upcoming road condition can improve the performance of the assistance systems which
leads to an increased driving safety and comfort. The presented work aims to classify the road
surface as well as its weather-related condition, based on images of the front camera view, using
deep convolutional neural networks. In order to take computational limitations of vehicle control
units into account, a pruning approach is investigated to reduce the network complexity.
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1. INTRODUCTION

Ensuring a high level of driving safety and comfort, driving
systems in highly automated vehicles prospectively need to
undertake human assessment abilities, besides their fun-
damental task of vehicle guidance. Regarding the driving
safety, a key human ability is to assess the current road
condition, in order to adapt the way of driving. This be-
havior needs to be transferred and applied to autonomous
vehicles. Therefore, in upcoming driving systems the cur-
rent road condition must be detected. In addition to this
future application, information about the road condition
can be utilized in already existing vehicles e.g. to warn a
human driver of slippery road sections.

Furthermore, information about the road condition can
be utilized to improve the performance of contemporary
advanced driver assistance systems (ADAS). Most of these
systems rely on knowledge of the vehicle’s state and influ-
ential parameters. In this regard, the friction coefficient
is of particular importance, as it mainly affects the in-
teraction of tires and road, which significantly influences
the vehicle’s behavior. Based on the friction coefficient the
control parameters of ADAS can be adapted. For example,
when the friction is low, to set the collision avoidance
system to break earlier and to increase the distance to a
vehicle ahead, if using adaptive cruise control. The friction
coefficient is affected by type and condition of tires as
well as by the road surface including any intermediate
medium. Therefore, information about the road condition
contribute to increase the accuracy, when estimating the
friction coefficient, which improves the performance of the
ADAS.

? The authors would like to thank the German Research Foundation
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A common approach to estimate the friction coefficient
is to fuse information gained from heterogeneous sources,
such as driving dynamics, vehicle front camera, and
weather information (see Jarisa (2016)). Under sufficient
excitation, driving dynamics provide well suited data to
estimate the physical value of the friction coefficient (see
Wielitzka et al. (2017)). However, this estimation only
provides information for the current road section. In order
to predict the friction coefficient for the upcoming road
section, even for insufficient excitation, images of the ve-
hicle’s front camera can be processed additionally to detect
the road condition. Based on this information, a value
range for the friction coefficient can be determined. For
example, when a predicting a snowy road, Raste et al.
(2019) assume the friction coefficient to lie within the
range of 0.2 and 0.45.

Regarding image based predictions of the road condition,
Roychowdhury et al. (2018) compare a feature extraction
method with a classification approach relying on a convo-
lutional neural network (CNN). Distinguishing between a
dry, wet, snowy, and icy asphalt road, it is shown that the
CNN-based approach achieves a higher prediction accu-
racy. Besides the weather-related condition, the underlying
road surface has a major impact on the wheel’s traction. In
addition to snowy roads and wet or dry asphalt surfaces,
Nolte et al. (2018) consider cobblestone roads in their
CNN-based classification of the road condition. However,
the weather condition on cobblestone roads is not detected.
Busch et al. (2019) compare CNN-structures of different
sizes and architectures regarding their ability to classify as-
phalt and cobblestone road surfaces as well as their current
weather-related condition, such as dry, wet, and snowy.
The results show that even one of the smallest common
pre-trained network structures, SqueezeNet (see Iandola
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et al. (2016)), is able to achieve a prediction accuracy
of 92.8%, when providing input images by rectifying a
trapezoidal section extracted from the front camera view.
However, it is concluded that a classification approach,
based on a state of the art CNN-structure, is still subop-
timal in terms of computational effort.

Since computing resources are strongly limited in automo-
tive applications, the computational costs of the classifi-
cation are to be considered, to provide the ADAS with
beneficial information in real-time. In this paper a prun-
ing method is investigated to reduce the complexity of a
SqueezeNet-based road condition classification approach.
The aim is to minimize the number of computing opera-
tions without causing a significant decrease of prediction
accuracy.

The paper is organized as follows. In section 2 the used
road condition image dataset is presented. In section 3
the SqueezeNet-training is described before the pruning
procedure is introduced and applied in section 4. Section 5
evaluates the resulting network structures and finally a
conclusion is given in section 6.

2. DATASET

Extracting environmental information from the vehicle’s
front camera is a key challenge regarding automated driv-
ing systems. Hence, there are several computer vision
datasets showing the front window view of a vehicle in
various traffic situations. As there are no specific road con-
dition datasets available, an individual dataset, suitable
for this task, is created.

2.1 Composition of image data

One part of the dataset consists of images extracted from
public vision benchmark datasets for automotive tasks,
such as BDD100K (by Yu et al. (2018)), KITTI (by Geiger
et al. (2013)), Oxford Robotcar (by Maddern et al. (2017)),
and Cityscapes (by Cordts et al. (2016)). Since these
datasets are mainly recorded under dry conditions, royalty
free as well as self recorded front camera image material
is added, to extend underrepresented classes, such as wet
cobblestone and snow. This allows to generate a dataset
consisting of 26,109 images that are divided into the five
road condition classes: asphalt dry (AD), asphalt wet
(AW), cobblestone dry (CD), cobblestone wet (CW), and
snow (S). When collecting the image data, a wide variety
of light conditions is considered for each class. Table 1
indicates the number of images used from each data source
as well as their subdivision into the classes. The used
image data sources mainly provide image sequences from

Table 1. Sources and distribution of dataset

Data source AD AW CD CW S

KITTI 1450 - 37 - -
Oxford Robotcar 1005 1103 - - -
Cityscapes 5492 29 331 - -
BDD100K 2476 1241 47 1 88
Open source data - 9 - - 1393
Self recorded 1502 2229 3004 4457 215

Total 11925 4611 3419 4458 1696

video recordings that are kept together when splitting
the dataset into 70% training, 20% validation, and 10%
test images. Due to different frame rates in the available
data sources, an individual amount of images is taken into
account for each video sequence.

2.2 Region of Interest

Vehicle front window view images show a wide area of
environment besides the road. The weather condition
might be detected better in this environmental area.
However, a classifier could mistakenly learn to recognize
similar looking areas without considering the road itself.
Therefore, only a rectified, trapezoidal region of interest
(ROI), showing the road surface, is used for the dataset.
Busch et al. (2019) established this type of ROI to be
particularly suitable for the road classification task. Fig. 1
illustrates the extraction process and shows an example
image for each road condition class. Due to varying camera
positions in the used data sources, the trapezoidal ROI
have individual locations and shapes.

Fig. 1. Example images and extraction of the ROI

3. TRAINING PROCESS

Comparing many state-of-the-art CNNs, Busch et al.
(2019) determine a SqueezeNet-based network structure
to be well suited, in terms of accuracy, for road condition
classification tasks. This section introduces the training
process of a SqueezeNet-structure based on the road con-
dition dataset described above.

The network structure is initialized with pre-trained
weights from the ImageNet dataset (see Russakovsky et al.
(2015)), while the last convolutional layer is replaced for
the new classification task. Considering unbalanced class
sizes, a weighted cross-entropy loss, given by

L = − 1

N

N∑
j=1

K∑
i=1

wiYj,i log(Ŷj,i) , (1)

is used and minimized by stochastic gradient decent during
the network training. Here the vector Ŷ j represents the
predicted classes, while the actual class of an image j is
given trough Y j . N is the number of images and K the
number of classes. The weighting vector w, of length K,
is calculated depending on the number of images in the
corresponding classes.
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Within layers with pre-trained weights the learning rate is
set to 10−3, while the new substituted classification unit
is trained using a learning rate of 10−2. Hence, untrained
weights can be adapted faster, while the pre-trained layers
are more protected. After each training epoch the learning
rates are reduced by 10%. The batch size is set to 16
images that are randomly rotated by ±10◦, horizontally
flipped, and scaled by a random factor between 1 and 1.3,
in order to augment the camera perspectives occurring in
the dataset. Additionally, batch normalization is applied.
Fig. 2 visualizes the training process. Using the F1-score to
evaluate the achieved accuracy for the training, validation,
and test images, allows to consider the precision as well
as the recall of the image classification. As the F1-score
is weighted according to the class sizes, misclassifying
an image of an underrepresented class causes a higher
decrease of accuracy (see Goutte and Gaussier (2005)).
Afters 10 epochs of training a minimum validation loss
is detected, while the validation F1-score equals 89.5%.
Representing the training result, this SqueezeNet-structure
achieves a F1-score of 92.84% when classifying the test
data.

Fig. 2. Training process of the SqueezeNet-structure

4. NETWORK PRUNING

As shown above the trained SqueezeNet is well suited to
classify the road condition. However, since this type of
network structure is primary used for classification tasks
with much higher complexities, it may not be optimal
regarding the required computational resources. The aim
is to reduce the computational complexity of this network
structure without significantly decreasing its prediction
accuracy. For this purpose, a network pruning approach,
presented by Molchanov et al. (2016), is modified and
applied to the trained SqueezeNet-structure.

4.1 Pruning procedure

The prediction runtime of image processing network struc-
tures is dominated by convolutional operations that result
in feature maps. Aiming to speed up the prediction, a
pruning approach is used that relies on reducing the num-
ber of generated feature maps by removing correspond-
ing filter kernels. In order to maintain a high prediction
accuracy, only feature maps with low influences on the
classification result are removed. A single pruning step is
completed by retraining the remaining network structure
to compensate for resulting decreases in the prediction ac-
curacy. This procedure is iterated up to a certain stopping
criterion, such as dropping below a required prediction
accuracy or achieving the targeted computational com-
plexity. Fig. 3 illustrates the overall process of the pruning
algorithm.

Network

Training

Rank importance of feature maps

Remove least important feature maps

Retrain the remaining structure

Meet stopping criteria?

Pruned network

yes
no

Fig. 3. Pruning procedure

4.2 Evaluation of feature maps

The key part of the pruning algorithm is to evaluate the
importance of the network’s feature maps. A common
approach is to rank the importance of feature maps based
on their influence on the loss value. In this regard, a
deviation from the initial loss value L(D), due to the
exclusion of a single feature map hk, is defined as

∆L(D, hk) = |L(D, hk = 0)− L(D)| , (2)

where L(D, hk = 0) represents the loss value assuming
hk is excluded when classifying the training data D. In
order to rank all feature maps of a network structure, the
difference equation (2) is to be set up for the exclusion
of every single feature map. Since within the SqueezeNet-
structure a total of 2624 feature maps are generated, this
causes to much computational effort for a single pruning
iteration. Therefore, an evaluation approach, introduced
by Molchanov et al. (2016), is used that is based on the
following Taylor expansion of L(D, hk = 0):

L(D, hk = 0) ≈ L(D)− ∂L
∂hk

hk . (3)

Substituting (3) in (2) enables a direct approximation of
∆L(D, hk) as follows:

∆L(D, hk) ≈
∣∣∣∣ ∂L∂hk

hk

∣∣∣∣ . (4)

When using a gradient based optimizer, in every layer a
gradient of the back propagated loss is taken once with
respect to every single filter, in order to adapt its weights.
Based on a filter relying gradient, the gradient of L with
respect to the corresponding feature map can be derived.
Therefore, approximating the loss-influence of every single
feature map requires only one forward and one backward
propagation of the training data.

Pruning an AlexNet- as well as a VGG-16 -structure,
Molchanov et al. (2016) compare different pruning criteria
and find the Taylor expansion approach to cause a mini-
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mum decrease in prediction accuracy, when removing only
the least important feature map per pruning iteration.

4.3 Adaption of the pruning step width

Since every pruning step is followed by a training process
as described above, pruning the majority of a network’s
feature maps still requires high computational effort. In
order to save computing time, the presented pruning
procedure is adapted by removing multiple feature maps
within a single iteration step. Regarding the step width,
two approaches are compared as described below.

An obvious adaption of the pruning step width is to remove
a fixed absolute number of the least important feature
maps within each pruning iteration. However, deleting a
constant number of feature maps increases the ratio of re-
moved feature maps in relation to the total number of fea-
ture maps within the remaining structure. Over the course
of the pruning procedure, this may causes a decrease in the
prediction accuracy that can not be compensated during
the retraining process, due to a relatively high number of
removed feature maps. Therefore, additionally a relative
pruning step width is investigated, that relates to the
total number of feature maps in the remaining network
structure.

4.4 Pruning of the SqueezeNet-structure

The presented pruning procedure is applied using the
complete training data (18,626 images) to rank the feature
maps as well as to retrain the reduced structure in every
iteration. There are several options of selecting absolute
and relative step width values. As a first introduction of
step size adaptation, pruning is applied exemplary with
an absolute step size of 32 and a relative step size of
5% pruned feature maps per iteration. Both step size
variants allow to reduce the SqueezeNet-structure to a
single feature map per convolutional layer within less than
24 hours using only a single GPU (NVIDIA GeForce GTX
780 Ti).

5. RESULTS

In this section the pruning results are presented and the
two approaches of adapting the step sizes are compared.
Finally, the road condition classification results using the
initial, unpruned SqueezeNet-structure are opposed.

Fig. 4 illustrates the pruning processes for both types
of step size adaption. It is demonstrated how removing
feature maps influences the prediction accuracy regarding
the training and validation data. Additionally, the compu-
tational requirements of the reduced network structures
are displayed. These requirements are determined by mea-
suring the number of floating point operations (FLOPs)
executed for a single image classification. Regardless of
the selected step size, it can be demonstrated that the
validation F1-score increases within the first pruning it-
eration steps. This suggests that not only the weights,
but also the networks structure itself is optimized for the
classification task. As a consequence, there are two possible
types of network structures to be obtained from a pruning
process. First, the initially targeted structure that requires

%
%

1

2

3

4

Fig. 4. Pruning results for an absolute step width of
32 (top) and a relative step width of 5% (bottom)
removed filter maps per iteration

minimal computational effort, while providing a similar
prediction accuracy ( 1©, 2©). Second, a pruned structure
that profits from the increasing prediction accuracy due
to the removal of unimportant feature maps ( 3©, 4©). The
structure with optimal computation time is defined to
be the last one achieving a validation F1-score nearly as
high as the unpruned network. The structure, additionally
meeting optimal accuracy requirements, is selected to be
the last one differing not more than 1% from the maximum
validation F1-score achieved during the pruning procedure.

Comparing the variations of step size adaption, the abso-
lute step width shows a steeper increase of the F1-score
and builds a plateau at about 95%. However, using the
relative step width leads to similar accuracy achievements,
but requires 30 fewer iteration steps. Crucial characteris-
tics of the pruned network structures are summarized in
Table 2 and contrasted to the initial SqueezeNet. Here,
the number of remaining feature maps (fm), the achieved
validation F1-score (F1,val), and the number of executed
pruning iterations (p) are compared. In addition to the
required number of computing operations per image clas-
sification (in GFLOPs), the reduction of computational
requirements is given related to the initial SqueezeNet in
percent.

Table 2. Characteristics of pruned structures

Structure p fm F1,val comp. requirements
(%) GFLOPs reduced (%)

SqueezeNet 0 2624 89.5 0.727 0
1© 78 128 89.2 0.032 95.6
2© 64 112 89.2 0.028 96.1
3© 60 736 94.0 0.188 74.1
4© 30 601 93.5 0.155 78.7

Regarding the validation F1-score, it is demonstrated that
pruning can increase the prediction accuracy by about
4%, while simultaneously up to 78.7% of the required
computational effort can be saved. Accepting a slight
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accuracy decrease of 0.3%, pruning even allows to reduce
more than 95% of the initial computational effort.

The assessment of the pruning results relies on the F1-score
achieved classifying the validation dataset. In order to
evaluate a generalized performances of the pruned network
structures, regarding the road condition classification task,
the test dataset is finally classified with each structure.
Based on that, confusion matrices are set up as illustrated
in Fig. 5.
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Fig. 5. Confusion matrices on test dataset for the pruned
network structures 1© – 4©

To contrast the performances of the pruned structures to
the initial road condition classification, Fig. 6 shows the
confusion matrix of a test data classification using the
unpruned SqueezeNet-structure.

Fig. 6. Confusion matrix on test dataset using the initial
SqueezeNet-structure

A Comparison of the test classification results confirms
that the pruned network structures are still well suited to
predict the road condition. However, the pruned structures
1©, 2©, and 3© have slight deficits in distinguishing

between snow and wet asphalt.

6. CONCLUSION

In this paper a CNN-based, resource efficient classifica-
tion approach is presented, that purposes to provide the
ADAS with predictive information about the upcoming
road condition. Proceeding from a pre-trained SqueezeNet,
a pruning method is applied to reduce the computational
requirements of the network structure. This method relies
on removing filter maps causing a minor impact on the
classification result. In order to speed up the pruning pro-
cedure, two variants to adapt the step size are investigated.

As a result of pruning the network structure, it is shown
that the prediction accuracy can be increased, while the
number of required FLOPs for a single image classification
decreases. Compared to the initial SqueezeNet, the pruned
network structure performs with a 1.4% higher prediction
accuracy in the road condition classification task. More-
over, with 155 million FLOPs it requires nearly five times
less computational effort.

In addition, pruning is continued until dropping below the
initial validation accuracy. Thus, a structure is obtained
requiring only 32 million FLOPs, which is nearly 23 times
less, compared to the initial SqueezeNet-structure. How-
ever, this structure underperforms the initial prediction
accuracy of 92.8% by 1.5% on test data.

Regarding available networks, pre-trained on ImageNet-
data, SqueezeNet belongs already to the smallest ones.
Therefore, pruning is concluded to be a valuable method
to find a network that meets both, optimal prediction
accuracy and computational requirements. Regarding the
road condition classification task, a resource efficient net-
work structure can be obtained, that still profits from a
enormously time-consuming pre-training process.

However, the pruning procedure of the SqueezeNet-
structure is to be further assessed. As a next step, it will
be repeated several times, in order to consider stochastic
influences in this process and to cross-validate the pruning
results. Additionally, alternative parameter setting and
variants of step size adaption for the pruning procedure are
investigated. Furthermore, future work addresses training
and pruning of similar sized, pre-trained networks based
on the same road condition dataset.
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