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Abstract: This paper introduces the notion of zero dynamics and presents results of local
stabilisation and output tracking for single-input single-output nonlinear stochastic systems
described by stochastic differential equations. For this class of systems we define the zero dynamics
when the stochastic relative degree is strictly smaller than the order of the system. We show that,
under suitable conditions on the zero dynamics, the equilibrium at the origin can be stabilised
via a coordinate change and a nonlinear state feedback. In an analogous way, we show that it is
possible to achieve local asymptotic output tracking of a reference signal. We validate the theory
through a numerical example.

1 INTRODUCTION

Nonlinear feedback control of dynamical systems is a
vast research field and major results in the past decades
have contributed to its advance. In this context, particular
relevance is given to systems that can be transformed into
normal forms. The normal form of a nonlinear control
system consists in a representation of the dynamics in
a coordinate frame in which the differential equations
are simpler to handle for analysis and control purposes.
This facilitates the design of nonlinear control laws for
stabilisation, tracking and estimation, see e.g. Isidori (1995).
In Isidori et al. (1981) the normal form for deterministic
systems was firstly introduced as a way to address the
problem of static state-feedback non-interacting control,
whereas further results can be found, e.g., in Zeitz (1983),
Bestle and Zeitz (1983) and Krener (1987). The problem
of linearisation via feedback was proposed and solved for
single-input single-output systems in Brockett (1978) and
for multi-input multi-output systems in Jakubczyk and
Respondek (1980). The concept of zero dynamics was
introduced in Byrnes and Isidori (1984), and it was used to
address the problem of stabilisation in Byrnes and Isidori
(1988).
This paper is intended to extend the analysis of the zero
dynamics to a broad class of nonlinear stochastic systems,
specifically systems described by stochastic differential
equations. The use of stochastic differential equations to
model uncertain systems allows embedding model uncer-
tainties in the dynamics in the form of noisy coefficients, see
Øksendal (2003). Applications of stochastic systems theory
are broad and vary from optimal stopping to production
planning, finance, technology diffusion and research funding
Øksendal (2003), Yong and Zhou (1999).
Although some notions of normal form for stochastic sys-
tems are present in the literature, they were not introduced
for the purpose of controlling the systems. For example, a
normal form was proposed in Arnold and Imkeller (1998)

and, subsequently, in Arnold (2003). Therein a theory
of normal forms is introduced by employing Stratonovich
calculus on systems described by purely diffusive terms. The
normal form is obtained via a coordinate transformation
which requires anticipating the noise over a short time scale.
Coordinate transformations for stochastic systems were also
dealt with in, e.g., Gaeta and Rodŕıguez Quintero (1999),
where the authors introduce symmetries for stochastic
differential equations, and Roberts (2008), where fast and
slow dynamics can be separated using a normal form.
In this paper we employ a notion of normal form with the
purpose of controlling a general class of nonlinear stochastic
single-input single-output systems. The notion of normal
form that we adopt in this work was firstly introduced in
Mellone and Scarciotti (2019a). Therein the authors first
define the concept of relative degree for stochastic systems,
which parallels the deterministic version presented, e.g.
in Isidori (1995), and then use this concept to derive a
coordinate transformation that brings the system to a
normal form which is particularly meaningful for control
design. Under the assumption of full relative degree the
authors also propose a linearising state feedback in the
unrealistic hypothesis that the noise affecting the system
is measurable.
Extending the results of Mellone and Scarciotti (2019a),
in this paper we investigate the case of systems with
relative degree smaller than their order. In particular, we
define the concept of zero dynamics for nonlinear stochastic
systems. Moreover, we present results concerning the local
stabilisation and output tracking of nonlinear systems
which extensively rely on the concept of the zero dynamics.
We hereby point out that the control laws that we introduce
depend explicitly on the white noise process affecting the
system. Clearly, this hypothesis is not practically reasonable
as white noise cannot be physically measured. However,
this treatise is intended as a fundamental preliminary step
for the solution of a practically implementable version of
these results. In fact, following the ideas presented, e.g.,
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in Mellone and Scarciotti (2019b) to solve practically the
problem of output regulation for linear stochastic systems,
we propose in the accompanying paper Mellone and
Scarciotti (2020) an approximate, yet practical, control
architecture which does not depend on measurements of
the noise.
The rest of the paper is organised as follows. In Section 2
we recall some preliminary notions related to stochastic
systems. In Section 3 we introduce the concept of zero
dynamics and present the main results of the section,
namely the local stabilisation of an equilibrium point
and the local asymptotic tracking of reference inputs. In
Section 4 we show a numerical example that illustrates the
theoretical results of Section 3. Finally, Section 5 contains
some concluding remarks.

Notation. The symbol Z denotes the set of integer
numbers, while R and C denote the fields of real and
complex numbers, respectively; by adding the subscript
“< 0” (“≥ 0”, “0”) to any symbol indicating a set of
numbers, we denote that subset of numbers with negative
(non-negative, zero) real part. The symbol ∂nx is used as a
shorthand for the operator ∂n/∂xn, while α(n) indicates
the n-th time derivative of α. (∇,F ,P) is a probability
space given by the set ∇, the σ-algebra F defined on ∇
and the probability measure P on the measurable space
(∇,F). A stochastic process with state space Rn is a family
{xt, t ∈ R} of Rn-valued random variables, i.e. for every
fixed t ∈ R, xt(·) is an Rn-valued random variable and,
for every fixed w ∈ ∇, x·(w) is an Rn-valued function
of time (Arnold, 1974, Section 1.8). For ease of notation,
we often indicate a stochastic process {xt, t ∈ R} simply
with xt (this is common in the literature, see e.g. Arnold
(1974)). With a slight abuse of notation, any subscript
different from the symbol “t” indicates the corresponding
component of the vector xt, e.g. xi is the i-th component of
the vector xt. Let C∞0 (R) denote the space of all infinitely
differentiable functions on R with compact support. A
generalised stochastic process is a random generalised
function in the sense that a random variable ψ(ϕ) is
assigned to every ϕ ∈ C∞0 , where ψ is, with probability 1,
a generalised function (Arnold, 1974, Section 3.2). The
symbol Wt indicates a standard Wiener process, also
referred to as Brownian motion, whereas ξt = Ẇt indicates
the generalised white noise obtained by differentiating Wt.
Wt and ξt are defined on the probability space (∇,F ,P).

2 PRELIMINARIES

In this section we recall some preliminary notions related
to stochastic differential equations and the concept of
stochastic relative degree. Consider the nonlinear single-
input, single-output stochastic system expressed in the
shorthand integral notation

dxt = (f(xt) + g(xt)u)dt+ (l(xt) +m(xt)u)dWt,

yt = h(xt),
(1)

with xt ∈ Rn, u(t) ∈ R, yt ∈ R and f : Rn → Rn, g :
Rn → Rn, l : Rn → Rn, m : Rn → Rn, h : Rn → R smooth
functions, i.e. they admit continuous partial derivatives of
any order. We assume that, for a fixed initial condition
xt=0, the solution of (1) is unique. For the reasons reported
in (Arnold, 1974, Section 10.3), we can rewrite equation (1)
in the differential notation

ẋt = f(xt)+g(xt)u+(l(xt)+m(xt)u)ξt, yt = h(xt), (2)

as long as ξt is understood as a generalised white noise,
(Arnold, 1974, Section 10.3). Given the equivalence of the
two representations in the framework of generalised stochas-
tic processes, in the remainder of the paper equations (1)
and (2) are used interchangeably, as convenient, to refer to
the same underlying nonlinear stochastic system. Recall
that the derivative of h along the vector field f , which is
called Lie derivative and is indicated with the symbol Lf h,
is defined as

Lf h(x) = ∂x[h] f(x) =

n∑
i=1

∂h

∂xi
fi(x).

We indicate the derivative of h first along the vector
field f and then along the vector field g as Lg Lf h(x) =

∂x[Lf h] g(x). We use the recursive relation Lkf h(x) =

∂x[Lk−1
f h] f(x), with L0

f h(x) = h(x), to indicate the k-th
differentiation of h along f . We now recall three operators,
firstly introduced in (Mellone and Scarciotti, 2019a, Section
III). The first one, which indicates the second derivative of
h along the vector fields f and g, is defined as

gGfh(x)=g(x)>∂2
x[h] f(x) =

n∑
j=1

gj(x)

n∑
i=1

∂2h

∂xj∂xi
fi(x).

Similarly to the Lie derivative, we use the notation
mGl

gGfh(x) = m(x)>∂2
x[ gGfh] l(x), and gGkfh(x) =

g(x)>∂2
x[ gGk−1

f h] f(x), to indicate the reiterated opera-

tions. The second operator is lSfh, which is employed to
define the stochastic Lie derivative of h along the drift
vector field f and the diffusion vector field l, namely

lSfh(ξt, x) = Lf h(x) + Ll h(x)ξt +
1

2
lGlh(x).

If lSfh(ξt, x) = lSfh(x) is a deterministic expression, i.e.
the white noise does not appear explicitly or equivalently
Ll h ≡ 0, then, similarly to the deterministic Lie deriva-
tive, we use the notation lS2

fh(ξt, x) = lSf
lSfh(ξt, x).

Iteratively, if lSk−1
f h(ξt, x) = lSk−1

f h(x) is deterministic,
lSkfh(ξt, x) = lSf

lSk−1
f h(ξt, x), with lS0

fh(x) = h(x) by
definition. Finally, we define a third stochastic differential
operator

m
g Alh(ξt, x) = Lg h(x) + Lm h(x)ξt + mGlh(x).

By using Itô’s formula, it is easy to see that the first
derivative of the output of system (2) is given by

y
(1)
t = lSfh(ξt, xt) + m

g Alh(ξt, xt)u+
1

2
mGmh(xt)u

2.

Using the previous definitions, we recall the concept of
stochastic relative degree.

Definition 1. (Stochastic Relative Degree, Mellone and
Scarciotti (2019a)) Assume that there exists r̄ such that

Ll lSkfh(ξt, x) = 0, (3)

for all k in {0, 1, ..., r̄− 2} and for all x in a neighbourhood
of x̄. System (2) is said to have stochastic relative degree r
at a point x̄ if r̄ = r and

(a) all the following conditions are satisfied

0 = Lg lSkfh(ξt, x) + mGl
lSkfh(ξt, x),

0 = Lm lSkfh(ξt, x),

0 = mGm
lSkfh(ξt, x),
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for all x in a neighborhood of x̄ and all k ∈ {0, 1, ..., r−
2}.

(b) one of the following conditions is satisfied

0 6= Lg lSr−1
f h(ξt, x̄) + mGl

lSr−1
f h(ξt, x̄),

0 6= Lm lSr−1
f h(ξt, x̄),

0 6= mGm
lSr−1
f h(ξt, x̄).

Assumption 1. Let r be the stochastic relative degree of
system (2) at x̄. Assume that the row vectors ∂x[h(x̄)],

∂x[ lSfh(x̄)], . . . , ∂x[ lSr−1
f h(x̄)] are linearly independent.

Suppose that the relative degree of system (2) at x̄ = 0 is
r ≤ n. Since Assumption 1 and the standing assumption (3)
hold 1 , then there exist functions φi(x), i = r+1, ..., n such
that Φ, given by

Φ(x)=
[
h(x) lSfh(x) . . . lSr−1

f h(x) φr+1(x) . . . φn(x)
]>
,

is a local diffeomorphism in a neighbourhood U of x̄
such that the dynamics of system (2), written in the
new coordinates zt = Φ(xt), is expressed by (Mellone and
Scarciotti (2019a))

żi = zi+1, i = 1, ..., r − 1,

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2,

żj = pj(ξt, zt) + qj(ξt, zt)u+ sj(zt)u
2, j = r + 1, ..., n,

yt = z1,
(4)

with c(ξt, zt)= lSrfh(ξt,Φ
−1(zt)), b(ξt, zt)=

m
g Al

lSr−1
f h(ξt,

Φ−1(zt)), a(zt) = 1
2
mGm

lSr−1
f h(Φ−1(zt)), pj(ξt, zt) =

lSfφj(ξt,Φ−1(zt)), qj(ξt, zt) = m
g Alφj(ξt,Φ−1(zt)), sj(zt)

= 1
2
mGmφj(Φ−1(zt)). In particular, observe that the

dependence of the coefficients c, b, pj and qj on the white
noise ξt is affine, i.e. they can be decomposed as

c(ξt, zt) = cd(zt) + cs(zt)ξt,

b(ξt, zt) = bd(zt) + bs(zt)ξt,

pj(ξt, zt) = pd,j(zt) + ps,j(zt)ξt, j = r + 1, ..., n,

qj(ξt, zt) = qd,j(zt) + qs,j(zt)ξt, j = r + 1, ..., n,

where all the quantities are uniquely defined as a con-
sequence of the previous observation. For compactness,

we define p = [pr+1 . . . pn]
>

, q = [qr+1 . . . qn]
>

and

s = [sr+1 . . . sn]
>

. When designing the control input of
system (4) we need to distinguish between two cases.

(A) a(zt) ≡ 0 in a neighbourhood U1 of x̄. Then, by
definition of relative degree, there exists a neighbourhood
U2 of x̄ such that b(ξt, zt) 6= 0 in Φ(U2). Let U = U1 ∩ U2.

(B) There exists a neighbourhood U of x̄ such that
a(zt) 6= 0 in Φ(U).

Note that, by the definition of relative degree, no
other cases are possible. If a system is such that case
(A) is satisfied, then the control input does not appear
quadratically in the r-th derivative of the output for xt
in U , whereas if (B) is satisfied, then the square of the
input does appear in the r-th derivative of the output.
The distinction between these two cases will be used in
the remainder to define two separate control strategies,

1 Condition (3) assures that lSkfh(ξt, x) = lSkfh(x) is deterministic
for all k in {0, 1, ..., r−1}. This implies that the noise does not appear
in the first r − 1 equations of the normal form.

depending on which case is satisfied for the system under
consideration.

3 THE ZERO DYNAMICS OF A STOCHASTIC
SYSTEM

Suppose that the stochastic relative degree r of system (2)
is strictly less than n at x̄. For compactness, set ζt =

[z1 . . . zr]
>

and ηt = [zr+1 . . . zn]
>

. From the theory
of normal forms of deterministic systems, recall that
necessarily ζt = 0 at x̄, whereas it is straightforward to
observe that the value of ηt at x̄ can be arbitrarily chosen
for stochastic systems as well. Therefore let Φ(xt) be such
that ηt = 0 as well at x̄, which makes zero an equilibrium
of system (4). We hereby extend the definition of zero
dynamics to nonlinear stochastic systems, i.e. the internal
dynamics of the system when the input and the initial
conditions constrain the output to be identically zero.

Definition 2. (Zero Dynamics) The stochastic differential
equation

η̇t = p(ξt, 0, ηt) + q(ξt, 0, ηt)uz,t + s(0, ηt)u
2
z,t,

with η0 in a neighbourhood of zero and uz,t, if it exists,
given by either (A)

uz,t = −c(ξt, 0, ηt)
b(ξt, 0, ηt)

,

or (B)

uz,t =
−b(ξt, 0, ηt)±

√
b(ξt, 0, ηt)2 − 4a(0, ηt)c(ξt, 0, ηt)

2a(0, ηt)
,

as long as b(ξt, 0, ηt)
2 − 4a(0, ηt)c(ξt, 0, ηt) ≥ 0, is called

the zero dynamics of system (2).

Remark 1. By selecting u as in Definition 2, we are
enlarging the class of systems (2) to allow control laws
which depend explicitly on ξt. In general, this yields a
closed-loop system that is not equivalent to (1). To avoid
this, we hereby define a control law to be admissible if
it preserves the equivalence of the closed-loop systems (1)
and (2), i.e. the dependence of the dynamics in (2) is affine
in ξt. To address the most general case, we refrain from
making additional assumptions which would be sufficient,
although restrictive, to guarantee the admissibility of u
and we leave this condition to be checked a posteriori. See
Section 4.1 for an example.

Remark 2. Since uz,t is uniquely dependent on the state
ηt and the noise ξt, the zero dynamics is autonomous and
can be denoted by

η̇t = p̂(ξt, 0, ηt) = p(ξt, 0, ηt) + q(ξt, 0, ηt)uz,t + s(0, ηt)u
2
z,t.

Remark 3. It might be possible to choose φr+1, ..., φn such
that q ≡ 0 and s ≡ 0 in a neighbourhood of zero, which
reduces the zero dynamics to

η̇t = p̂(ξt, 0, ηt) = p(ξt, 0, ηt).

While for nonlinear deterministic systems it is always
possible to find functions φj such that the dynamics
of ηt does not explicitly depend on the control input
(Isidori, 1995, Proposition 4.1.3), for stochastic systems
this property is currently under investigation.

3.1 Local asymptotic stabilisation

In this section we show that under the assumption that
the zero dynamics is almost surely asymptotically stable
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it is possible to stabilise the equilibrium at the origin via
nonlinear feedback. Consider the transformed system (4).
Let v(ζt) = −(d0z1 + d1z2 + ...+ dr−1zr) and the feedback
control law be given by ut = ustabt , where ustabt is either
(A)

ustabt = −c(ξt, ζt, ηt)− v(ζt)

b(ξt, ζt, ηt)
,

or (B)

ustabt = (2a(ζt, ηt))
−1

[
− b(ξt, ζt, ηt)±√

b(ξt, ζt, ηt)2 − 4a(ζt, ηt)[c(ξt, ζt, ηt)− v(ζt)]
]
,

where di, with i = 0, ..., r − 1, are, if possible, such that
b2 − 4a(c− v) ≥ 0.
Then the transformed system has the form

ζ̇t = Aζt, η̇t = p̂(ξt, ζt, ηt), (5)

with

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−d0 −d1 −d2 . . . −dr−1

 .
Therefore, the eigenvalues of the matrix A are the roots of
the polynomial

Λ(s) = sr + dr−1s
r−1 + ...+ d1s+ d0 (6)

and the following result holds.

Theorem 1. Suppose that the equilibrium at η = 0 of
the zero dynamics of system (2) is locally asymptotically
stable almost surely and the roots of the polynomial
Λ(s) in (6) have negative real part. Then the control law
ut = ustabt renders the equilibrium (ζ, η) = (0, 0) locally
asymptotically stable almost surely.

3.2 Local asymptotic output tracking

We now show that under further hypotheses on the
zero dynamics, it is possible to control the system so that
its output tracks reference trajectories while its internal
variables remain bounded.

Assumption 2. The dependence of the zero dynamics of
system (2) on the white noise is affine, i.e.

η̇t = p̂(ξt, 0, ηt) = p̂d(0, ηt) + p̂s(0, ηt)ξt.

Note that Assumption 2 is trivially satisfied if it is possible
to find φj such that p̂(ξt, 0, ηt) = p(ξt, 0, ηt).

Let yR be a reference signal which is continuously
differentiable r times with values in a neighbourhood of
zero. We assume that the initial state of the system is
arbitrary while in a neighbourhood of zero and we seek a
feedback control ut that makes the output yt of the system
asymptotically converge to yR.
Consider the transformed system (4). Let

v(ζt, yR(t)) = y
(r)
R −

r∑
i=1

di−1(zi − y(i−1)
R )

and the feedback control law be given by ut = utrackt , with
utrackt , if it exists, given by either (A)

utrackt = −c(ξt, ζt, ηt)− v(ζt, y
R(t))

b(ξt, ζt, ηt)
,

or (B)

utrackt = (2a(ζt, ηt))
−1

[
− b(ξt, ζt, ηt)±√

b(ξt, ζt, ηt)2 − 4a(ζt, ηt)[c(ξt, ζt, ηt)− v(ζt, yR(t))]
]
,

where di, with i = 0, ..., r − 1, are, if possible, such that
b2 − 4a(c− v) ≥ 0.
Define the tracking error et := yt − yR(t). Then it is easy
to see that, under the control utrackt , the tracking error

has dynamics e
(r)
t + dr−1e

(r−1)
t + ...+ d1e

(1)
t + d0et, which

can be forced exponentially to zero by suitably selecting
the coefficients di. We are also interested in analysing the
boundedness of the states zi and of the internal variable
ηt under the control utrackt , when the reference output
and its first r − 1 time derivatives are bounded. Define
ζR(t) = [yR(t) . . . y

(r−1)
R (t)]> and θt = [et . . . e

(r−1)
t ]>.

Then the following result holds.

Theorem 2. Consider system (2) and let Assumptions 1

and 2 hold. Suppose yR(t), y
(1)
R (t), . . . , y

(r−1)
R (t) are

bounded. Let ηR,t be the solution of

η̇R,t = p̂(ξt, ζR(t), ηR,t), ηR,0 = 0 (7)

and let p̂d and p̂s be Lipschitz continuous. Moreover, assume
that there exists a strict Lyapunov function V (x, t) for (7)

such that ∂V
∂xi

(x, t) and ∂2V
∂xi∂xj

(x, t) are bounded for all

x ∈ U and t ≥ 0. Suppose that the roots of the polynomial
Λ(s) in (6) have negative real part. Then for sufficiently
small εR > 0, if

|zi(t̄)−y(i−1)
R (t̄)| < εR, 1 ≤ i ≤ r, ‖ηt̄−ηR,t̄‖ < εR,

then for all ε > 0 there exists δ > 0 such that

|zi(t̄)− y(i−1)
R (t̄)| < δ → |zi(t)− y(i−1)

R (t)| < ε,

1 ≤ i ≤ r, for all t ≥ t̄ ≥ 0,

‖ηt̄ − ηR,t̄‖ < δ → ‖ηt − ηR,t‖ < ε for all t ≥ t̄ ≥ 0,

almost surely, i.e. the response zi and ηt, t ≥ t̄ ≥ 0, of
system (2) under the control law utrackt is bounded almost
surely.

The previous theorem solves the local asymptotic output
tracking problem, i.e. the output yt = z1 asymptotically
converges to yR whilst the state zt remains bounded almost
surely.

Remark 4. The white noise ξt explicitly appears in the
control laws ustabt and utrackt , implying that in general its
knowledge is needed in order to compute the control input.
This is impossible in practice. However, the results pre-
sented in this paper lay the theoretical grounds to approach
the stabilisation and tracking problem in a practically
viable way. Specifically, in Mellone and Scarciotti (2020)
we show how to obtain a causal estimation of the increments
of the Brownian motion and, subsequently, how to use them
to approximate the locally stabilising control law ustabt . The
practical counterpart of the control law utrackt will be the
topic of forthcoming papers.

4 EXAMPLE

Consider the nonlinear stochastic system

ẋt=

 s2(1 + x1)
−2 tanx2

2x3 + x1s2 − 2x2
1s2
c22

+

[
ex3

0
ex3

]
u+

 x1

− 2x1

c2
−x1

 ξt+
x2

1
0
x2

1

uξt,
(8)
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with the output yt = x1 + s2 − x3, where si = sin(xi) and
ci = cosxi. We study the system in a neighbourhood U =
(−π/2, π/2)3 of zero. We look for a change of coordinates
Φ to bring the system into the normal form. By setting
z1 = yt simple computations yield z2 = ż1 = −s2 − 2x3.
As neither the control input nor the white noise appear
in the expression of z2, the standing assumption (3) is
satisfied and the relative degree of the system is larger
than 1. Therefore, we compute the second derivative of the
output, which results in

ż2 = 2s2 − 4x3 − 2x1s2 + 6
x2

1s2

c22
+ 4x1ξt − 2ex3u− 2x2

1uξt

= c̃(ξt, xt) + b̃(ξt, xt)u,

with c̃(ξt, xt) = c(ξt,Φ(xt)) and b̃(ξt, xt) = b(ξt,Φ(xt)). As

the control input appears on the right-hand side and b̃ is
non-zero at x̄ = 0, the relative degree of the system at
the origin is 2. To complete the definition of the change of
coordinates Φ, we set z3 = x1 − x3, which in turn yields

ż3 = s2 − 2x3 +
2x2

1s2

c22
+ 2x1ξt = p̃(ξt, xt) = p(ξt,Φ(xt)).

(9)
We now want to study the stability of the zero dynamics.

Define ζt = [z1 z2]
>

and ηt = z3. We set ζt = 0 and, using
the definition of z3, we obtain the system of equations

0 = x1 + s2 − x3, 0 = −s2 − 2x3, z3 = x1 − x3,

which yields

x1 =
3

2
z3, s2 = −z3, x3 = −1

2
z3.

Substituting these values in (9), we get

η̇t = p(ξt, 0, ηt) = −2ηt +
9η3
t

2(η2
t − 1)

+ 3ηtξt.

The linear approximation of this system is

η̇t = Aηηt + Fηηtξt = −2ηt + 3ηtξt,

which is asymptotically stable almost surely if 2Aη−F 2
η < 0,

see, e.g., Gard (1988). Since this condition is verified, we
conclude that the zero dynamics is locally asymptotically
stable almost surely.

4.1 Local asymptotic stabilisation

We first show an example of stabilisation of the equi-
librium of the system at the origin. We set v(ζt) =
−6z1 − 5z2 and we apply the control law ustabt (case
(A)) with c(ξt, ζt, ηt) = c̃(ξt,Φ

−1(zt)) and b(ξt, ζt, ηt) =

b̃(ξt,Φ
−1(zt)). This control law is admissible because in (8)

the expression (g +mξt)u
stab
t = [ 1

2 0 1
2 ]>(c̃(ξt, xt)− ṽ(xt)),

with ṽ(xt) = v(Φ(xt)), is affine in ξt (and so it can be
rewritten in the form (1)). Moreover, the control law
brings the system to the form (5), where the matrix A has
eigenvalues {−2,−3}. The assumptions of Theorem 1 are
satisfied and therefore the closed-loop system has an almost
surely asymptotically stable equilibrium at the origin.

Figure 1 shows the time histories of the state of the
system for the case of local asymptotic stabilisation. In
particular, Figure 1(a) shows the time history of the state
in the coordinates xt and Figure 1(b) shows the time
history of the state in the coordinates zt. While all the
three components of xt display a noisy behaviour, the
change of coordinates Φ decouples the noise from the

(a) Time history of the state in the coordinates xt.
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(b) Time history of the state in the coordinates zt.
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Fig. 1. Local asymptotic stabilisation of system (8).

first two components of the vector zt and projects this
onto the third component z3. This is in line with the
standing assumption (3). Moreover, Figure 1(b) confirms

that the state ζt = [z1 z2]
>

has linear, deterministic and
asymptotically stable dynamics, whereas ηt = z3 has
nonlinear, stochastic yet asymptotically stable dynamics.

4.2 Local asymptotic output tracking

We now consider an example of local asymptotic output
tracking. We assume that the reference signal yR(t) =
0.01 sin(2t) has to be tracked by the output yt. In this case
we set v(ζt, yR(t)) = −0.04 sin(2t)− 6(z1 − 0.01 sin(2t))−
5(z2−0.02 cos(2t)) and we apply the control law utrackt (case
(A)) with c(ξt, ζt, ηt) = c̃(ξt,Φ

−1(zt)) and b(ξt, ζt, ηt) =

b̃(ξt,Φ
−1(zt)). This control law is admissible and asymp-

totically stabilises the tracking error et.

Figure 2 shows the time histories of the state of the
system for the case of local asymptotic output tracking.
In particular, Figure 2(a) shows the time history of the
state in the coordinates xt and Figure 2(b) shows the
time history of the state in the coordinates zt. Similarly
to the case of stabilisation, the isomorphism Φ and the
control utrackt project the noise on the third component z3

of the state in the coordinates zt, while z1 and z2 display
a linear deterministic behaviour. Moreover, the control is
such that the output yt = z1 converges asymptotically
to the reference yR while the internal variable z3 remains
bounded almost surely.
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(a) Time history of the state in the coordinates xt.
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(b) Time histories of the state in the coordinates zt and of the reference
output yR.
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Fig. 2. Local asymptotic output tracking of system (8).

5 CONCLUSIONS

In this paper we have introduced the notion of zero
dynamics of nonlinear stochastic systems described by a
general class of stochastic differential equations and we have
employed it to address the problems of local stabilisation
and asymptotic output tracking. We have showed that,
under the assumption of an almost surely asymptotically
stable zero dynamics, a change of coordinates and a
nonlinear state feedback solve the problems. Finally, we
have demonstrated the validity of the theory with a
numerical example.
In this work we have stressed that the nonlinear state
feedback yielding stabilisation and tracking require the
knowledge of the white noise affecting the system. Although
this is impossible in practical circumstances, the treatise
in this paper is a fundamental preliminary step towards a
practical solution of the problems. This is the subject of
the accompanying paper Mellone and Scarciotti (2020).
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