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Abstract: This paper addresses the design of a practically sound control architecture to solve
the problem of feedback linearisation and stabilisation of single-input single-output nonlinear
stochastic systems. We first present a causal method to obtain, from measurements of the state,
a-posteriori estimates of the variations of the Brownian motion which affected the system. Then
we employ these estimates to design a control law that approximately compensates for the
diffusive dynamics of the system. We address the local stabilisation problem and we prove that
the control law which performs the proposed stochastic compensations stabilises a broader class
of systems with respect to feedback laws without compensation. We finally validate the theory
through a numerical example.

1 INTRODUCTION

Control of stochastic dynamical systems is a fundamental
research field in control theory. Modelling in this framework
allows the designer to use the mathematical tools offered by
the theory of probability and stochastic processes to assess
and enforce the dynamical properties of uncertain systems.
In addition to providing an advantage from a theoretical
point of view, applications of stochastic theory are broad
and various. Some examples include the optimal stopping
problem, the production planning problem, the study of
technology diffusion and of distribution of research funding,
see Øksendal (2003) and Yong and Zhou (1999).
In this paper we study a class of stochastic systems
described by nonlinear stochastic differential equations. In
particular, we develop a framework which extends standard
results for deterministic systems to the stochastic case. To
this end, we recall that a popular approach for the control
of nonlinear deterministic systems employs the notion of
relative degree and a coordinate transformation to represent
the system in a somehow “simpler” form, which is called
“normal form”. This allows for feedback linearisation and for
the introduction of the zero dynamics, concepts which are
fundamental for making classical control problems, such
as stabilisation, tracking and observer design, more easily
tractable, see e.g. Isidori (1995). The notion of normal form
was firstly introduced in Isidori et al. (1981) as part of the
solution of the static state-feedback non-interacting control
problem, see also Zeitz (1983), Bestle and Zeitz (1983)
and Krener (1987) for additional results in this direction.
Before then, the solution to the problem of linearisation via
feedback had already been addressed and solved for single-
input single-output systems by Brockett (1978). Byrnes
and Isidori (1984) introduced the concept of zero dynamics
and in the later work of Byrnes and Isidori (1988) this was
used to solve the local stabilisation problem.
In the stochastic framework, a special form, also called
“normal form”, was proposed in, e.g., Arnold (2003). Therein

Stratonovich calculus is used to obtain a coordinate
transformation that, by anticipating the noise over a short
period, yields a special form for purely diffusive systems.
Other examples of coordinate transformations for stochastic
systems are, e.g., Gaeta and Rodŕıguez Quintero (1999)
where symmetries for differential equations are identified,
and Roberts (2008) where a normal form is used to separate
fast and slow dynamics. Note that these notions of normal
form are not related to the concept of relative degree.
In Mellone and Scarciotti (2019a) a normal form was
introduced to address the problem of “ideal” feedback
linearisation for a general class of stochastic single-input
single-output systems described by nonlinear differential
equations. By making a parallel with the deterministic
theory presented in Isidori (1995), Mellone and Scarciotti
(2019a) first define the stochastic relative degree and then
obtain a normal form via a coordinate transformation which
allows for linearisation via state feedback in the ideal but
unrealistic case in which the Brownian motion is assumed
to be known. In the later work by Mellone and Scarciotti
(2020b), the concept of zero dynamics of stochastic systems
is introduced and the problems of stabilisation and tracking
are addressed and solved in the same ideal but unrealistic
scenario. Both Mellone and Scarciotti (2019a) and Mellone
and Scarciotti (2020b) propose control laws that are
explicitly dependent on the noise affecting the system,
i.e. the value of the noise must be known at all times in
order to synthesise the linearising, stabilising or regulating
control law. Although this assumption is not sound from a
practical point of view, these works constitute a necessary
preliminary step towards the design of a control architecture
which can be implemented in real scenarios.
In this paper we aim at overcoming this fundamental
limitation and present a theoretical framework which allows
solving the problem of feedback linearisation for stochastic
systems in practice. Our approach is inspired by the work
of Mellone and Scarciotti (2019b), where the problem of
output regulation for linear stochastic systems is addressed
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and solved. Therein, a procedure to causally approximate
the Brownian motion is used to design a regulator which
solves the problem in a practical way. In the present
paper we first adapt that procedure to nonlinear systems.
We show that at periodic sampling times it is possible
to obtain estimates of the increments of the Brownian
motion occurred since the previous sampling time. We
then use these estimates to design a hybrid controller
in which a deterministic continuous-time control law is
supplemented with jump corrections performed at the
sampling times. These corrections are computed employing
the estimates of the Brownian motion and are designed
to cancel, in an approximate way, the contribution of the
noise to the dynamics of the feedback-linearised system.
We show that, under suitable assumptions, performing the
compensations is indeed beneficial in reducing the impact
of noise onto the system. Moreover, compared to the mere
deterministic continuous-time control law, the stochastic
jump compensations allow for solving the local stabilisation
problem for a broader class of systems.
The rest of the paper is organised as follows. In Section 2
we recall some preliminary notions related to stochastic
systems. In Section 3 we introduce a procedure to partially
estimate the Brownian motion and to use these estimates
to compensate for the stochastic dynamics. In Section 4
we give results of practical local asymptotic stabilisation.
In Section 5 we show a numerical example that illustrates
the theoretical results. Finally, Section 6 contains some
concluding remarks.

Notation. The symbol Z denotes the set of integer
numbers, while R and C denote the fields of real and
complex numbers, respectively; by adding the subscript
“< 0” (“≥ 0”, “0”) to any symbol indicating a set of
numbers, we denote that subset of numbers with negative
(non-negative, zero) real part. If a function g experiences
a jump variation at time t, the symbols g(t) and g(t+)
denote the values of g immediately before and after the
jump, respectively. The symbol ∂nx is used as a shorthand
for the operator ∂n/∂xn, while α(n) indicates the n-th time
derivative of α. (∇,F ,P) is a probability space given by
the set ∇, the σ-algebra F defined on ∇ and the probability
measure P on the measurable space (∇,F). A stochastic
process with state space Rn is a family {xt, t ∈ R} of
Rn-valued random variables, i.e. for every fixed t ∈ R,
xt(·) is an Rn-valued random variable and, for every fixed
w ∈ ∇, x·(w) is an Rn-valued function of time (Arnold,
1974, Section 1.8). For ease of notation, we often indicate
a stochastic process {xt, t ∈ R} simply with xt (this is
common in the literature, see e.g. Arnold (1974)). With
a slight abuse of notation, any subscript different from
the symbol “t” indicates the corresponding component
of the vector xt, e.g. xi is the i-th component of the
vector xt. Let C∞0 (R) denote the space of all infinitely
differentiable functions on R with compact support. A
generalised stochastic process is a random generalised
function in the sense that a random variable ψ(ϕ) is
assigned to every ϕ ∈ C∞0 , where ψ is, with probability 1,
a generalised function (Arnold, 1974, Section 3.2). The
symbol Wt indicates a standard Wiener process, also
referred to as Brownian motion, whereas ξt = Ẇt indicates
the generalised white noise obtained by differentiating Wt.
Wt and ξt are defined on the probability space (∇,F ,P).

2 PRELIMINARIES

In this section we recall some preliminary notions related
to stochastic differential equations and the concept of
stochastic relative degree. Consider the nonlinear single-
input, single-output stochastic system expressed in the
shorthand integral notation

dxt = (f(xt) + g(xt)u)dt+ (l(xt) +m(xt)u)dWt,

yt = h(xt),
(1)

with xt ∈ Rn, u ∈ R, yt ∈ R and f : Rn → Rn, g : Rn →
Rn, l : Rn → Rn, m : Rn → Rn, h : Rn → R smooth
functions, i.e. they admit continuous partial derivatives of
any order. We assume that, for a fixed initial condition
xt=0, the solution of (1) is unique. For the reasons reported
in (Arnold, 1974, Section 10.3), we can rewrite equation (1)
in the differential notation

ẋt = f(xt)+g(xt)u+(l(xt)+m(xt)u)ξt, yt = h(xt), (2)

as long as ξt is understood as a generalised white noise,
(Arnold, 1974, Section 10.3). Given the equivalence of the
two representations in the framework of generalised stochas-
tic processes, in the remainder of the paper equations (1)
and (2) are used interchangeably, as convenient, to refer to
the same underlying nonlinear stochastic system. Recall
that the derivative of h along the vector field f , which is
called Lie derivative and is indicated with the symbol Lf h,
is defined as

Lf h(x) = ∂x[h] f(x) =

n∑
i=1

∂h

∂xi
fi(x).

We indicate the derivative of h first along the vector
field f and then along the vector field g as Lg Lf h(x) =

∂x[Lf h] g(x). We use the recursive relation Lkf h(x) =

∂x[Lk−1f h] f(x), with L0
f h(x) = h(x), to indicate the k-th

differentiation of h along f . We now recall three operators,
firstly introduced in (Mellone and Scarciotti, 2019a, Section
III). The first one, which indicates the second derivative of
h along the vector fields f and g, is defined as

gGfh(x)=g(x)>∂2x[h] f(x) =

n∑
j=1

gj(x)

n∑
i=1

∂2h

∂xj∂xi
fi(x).

Similarly to the Lie derivative, we use the notation
mGl

gGfh(x) = m(x)>∂2x[ gGfh] l(x), and gGkfh(x) =

g(x)>∂2x[ gGk−1f h] f(x), to indicate the reiterated opera-

tions. The second operator is lSfh, which is employed to
define the stochastic Lie derivative of h along the drift
vector field f and the diffusion vector field l, namely

lSfh(ξt, x) = Lf h(x) + Ll h(x)ξt +
1

2
lGlh(x).

If lSfh(ξt, x) = lSfh(x) is a deterministic expression, i.e.
the white noise does not appear explicitly or equivalently
Ll h ≡ 0, then, similarly to the deterministic Lie deriva-
tive, we use the notation lS2fh(ξt, x) = lSf

lSfh(ξt, x).

Iteratively, if lSk−1f h(ξt, x) = lSk−1f h(x) is deterministic,
lSkfh(ξt, x) = lSf

lSk−1f h(ξt, x), with lS0fh(x) = h(x) by
definition. Finally, we define a third stochastic differential
operator

m
g Alh(ξt, x) = Lg h(x) + Lm h(x)ξt + mGlh(x).

By using Itô’s formula, it is easy to see that the first
derivative of the output of system (2) is given by
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y
(1)
t = lSfh(ξt, xt) + m

g Alh(ξt, xt)u+
1

2
mGmh(xt)u

2.

Using the previous definitions, in the remainder we employ
the definition of stochastic relative degree as given in
Mellone and Scarciotti (2019a).

Assumption 1. Let r be the stochastic relative degree of
system (2) at x̄. Assume that the row vectors ∂x[h(x̄)],

∂x[ lSfh(x̄)], . . . , ∂x[ lSr−1f h(x̄)] are linearly independent.

Suppose that the relative degree of system (2) at x̄ = 0
is r ≤ n. Since Assumption 1 holds, by the definition
of stochastic relative degree there exist functions φi(x),
i = r + 1, ..., n such that Φ, given by

Φ(x)=
[
h(x) lSfh(x) . . . lSr−1f h(x) φr+1(x) . . . φn(x)

]>
,

is a local diffeomorphism in a neighbourhood U of x̄
such that the dynamics of system (2), written in the
new coordinates zt = Φ(xt), is expressed by (Mellone and
Scarciotti (2019a))

żi = zi+1, i = 1, ..., r − 1,

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2,

żj = pj(ξt, zt) + qj(ξt, zt)u+ sj(zt)u
2, j = r + 1, ..., n,

yt = z1,
(3)

with c(ξt, zt)= lSrfh(ξt,Φ
−1(zt)), b(ξt, zt)=

m
g Al

lSr−1f h(ξt,

Φ−1(zt)), a(zt) = 1
2
mGm

lSr−1f h(Φ−1(zt)), pj(ξt, zt) =
lSfφj(ξt,Φ−1(zt)), qj(ξt, zt) = m

g Alφj(ξt,Φ−1(zt)), sj(zt)

= 1
2
mGmφj(Φ−1(zt)). In particular, observe that the

dependence of the coefficients c, b, pj and qj on the white
noise ξt is affine, i.e. they can be decomposed as

c(ξt, zt) = cd(zt) + cs(zt)ξt,

b(ξt, zt) = bd(zt) + bs(zt)ξt,

pj(ξt, zt) = pd,j(zt) + ps,j(zt)ξt, j = r + 1, ..., n,

qj(ξt, zt) = qd,j(zt) + qs,j(zt)ξt, j = r + 1, ..., n,

where all the quantities are uniquely defined as a con-
sequence of the previous observation. For compactness,

we define p = [pr+1 . . . pn]
>

, q = [qr+1 . . . qn]
>

and

s = [sr+1 . . . sn]
>

. When designing the control input of
system (3) we need to distinguish between two cases.

(A) a(zt) ≡ 0 in a neighbourhood U1 of x̄. Then, by
definition of relative degree, there exists a neighbourhood
U2 of x̄ such that b(ξt, zt) 6= 0 in Φ(U2). Let U = U1 ∩ U2.

(B) There exists a neighbourhood U of x̄ such that
a(zt) 6= 0 in Φ(U).

Note that, by the definition of relative degree, no
other cases are possible. If a system is such that case
(A) is satisfied, then the control input does not appear
quadratically in the r-th derivative of the output for xt in
U , whereas if (B) is satisfied, then the square of the input
does appear in the r-th derivative of the output. Due to
space limitation, in this paper we consider case (A). Note
that case (B) is analogous.

3 APPROXIMATE STOCHASTIC COMPENSATION

In this section we illustrate the practical limitations of the
control laws introduced in Mellone and Scarciotti (2019a)

and Mellone and Scarciotti (2020b) and we introduce a
method to overcome them.

Let the stochastic relative degree of system (2) be
1 ≤ r ≤ n and consider the problem of partial feedback
linearisation. Let v : R≥0 → R be a generic input yet to be
selected. System (2) can be partially feedback-linearised in
Φ(U) by

ulint =
1

b(ξt, zt)
(−c(ξt, zt) + v), if (A).

Remark 1. In (Mellone and Scarciotti, 2020b, Section 3) it
is pointed out that a control law ut that explicitly depends
on ξt may compromise the equivalence of (1) and (2). Hence,
therein a definition of admissible control laws, i.e. laws such
that this equivalence is preserved, is given. However, the
framework of the present paper is that of practical scenarios
where ξt is not available for feedback. Therefore the control
laws which we design in Sections 3 and 4 are merely
functions of measurements of the state. Consequently, this
implies that such control laws are always admissible.

For compactness, set ζt = [z1 . . . zr]
>

and ηt =

[zr+1 . . . zn]
>

. From the theory of normal forms of de-
terministic systems, recall that necessarily ζt = 0 at x̄ and
that the value of ηt at x̄ can be arbitrarily chosen. It is
straightforward to observe that these two facts hold also
for stochastic systems. Therefore let Φ(xt) be such that
ηt = 0 as well at x̄, which makes zero an equilibrium point
of system (3). The partially feedback linearised system by
the control law ulint has the form

ζ̇t = Aζt +Bv,

η̇t = p(ξt, ζt, ηt) + q(ξt, ζt, ηt)u
lin
t + s(ζt, ηt)(u

lin
t )2,

(4)

with B = [0 . . . 0 1]
>

. We also recall that if there exists

a control law ut = uz,t(ηt) such that ζ̇t ≡ ζt ≡ 0, then the
autonomous stochastic differential equation

η̇t = p(ξt, 0, ηt) + q(ξt, 0, ηt)uz,t + s(ζt, ηt)u
2
z,t

is called the zero dynamics of the stochastic system (2).
The limitation highlighted in Mellone and Scarciotti (2019a)
and Mellone and Scarciotti (2020b) is that the control ulint
requires the knowledge of the stochastic process ξt and
therefore cannot be applied in practice. We address how
to overcome this issue in the next sections.

3.1 Estimation of the Brownian motion

By sampling the state, we now present a method to
obtain a causal partial estimate of the Brownian motion
affecting the system between sampling times. Let {tk}k∈Z≥0

be a sequence of equally-spaced sampling times, with
tk − tk−1 = ε for all k ∈ Z>0. Define the differences
∆Wε(k) = Wtk −Wtk−1

and ∆x(k) = xtk − xtk−1
. Our

aim is to show that it is possible to compute a causal

estimate ∆Ŵε(k) of the quantity ∆Wε(k) by comparing
the samples of the state of the system at times tk−1 and
tk. In particular, we want this estimate to “converge”, in
a sense to be defined, to the stochastic differential dWt

as the sampling period ε converges to zero. Let LI be
the space of functions that are integrable in Itô’s sense.

Then with the notation ∆Ŵε
ε−→ dWt we mean that for all

α ∈ LI limε→0

∑
k α(tk−1, w)∆Ŵε(k) =

∫ t
0
α(τ, w)dWτ .

For ease of notation, define Ftk = f(xtk) + g(xtk)utk
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and Ltk = l(xtk) + m(xtk)utk , which are the drift and
diffusion terms, respectively, of system (1) evaluated at
time tk. It is reasonable to assume that the vector Ltk is
non-zero for almost all k ∈ Z≥0, as otherwise the system

would display a deterministic behaviour and ∆Ŵε could
be selected as zero. Consequently, the Moore-Penrose left
pseudo-inverse of Ltk , i.e. L+

tk
= (L>tkLtk)−1L>tk , is well-

defined almost surely. A procedure to estimate a posteriori
the Brownian motion affecting linear stochastic system
has been presented by Mellone and Scarciotti (2020a). The
following Lemma extends those results to systems with
nonlinear drift and diffusion terms.

Lemma 1. Consider system (2). Let {∆Ŵε(k)}k>0 be a

sequence of scalars defined as ∆Ŵε(k) = L+
tk−1

[∆x(k) −
Ftk−1

ε]. Then ∆Ŵε(k)
ε−→ dWt almost surely.

3.2 Compensating control

In this section we discuss how to implement a feedback

law that, by exploiting the estimates {∆Ŵε(k)}k, partially
linearises the system in an approximate way. The advantage
of this control law with respect to ulint is that it is practically
implementable while the accuracy of the approximation
can be tuned by reducing the sampling period ε. We begin
with defining a control udt which corresponds to ulint when
ξt ≡ 0, namely

udt =
1

bd(zt)
(−cd(zt) + v), if (A). (5)

Note that to ensure that udt is well-defined (i.e. bd(zt) 6=
0) in a neighbourhood of zero we need the following
assumption.

Assumption 2. Lg lSr−1f h(x̄) + mGl
lSr−1f h(x̄) 6= 0.

Observe that the term udt is the deterministic approxi-
mation of ulint when no estimation of the white noise
is performed. In fact, since the white noise cannot be
measured, the most reasonable approximation is obtained
by replacing ξt with its mean value, hence computing the
feedback control using cd(zt) = c(0, zt) and bd(zt) = b(0, zt)
instead of c(ξt, zt) and b(ξt, zt), respectively.
We now define the control uappt = udt + ust , with ust to be
specified. By construction, when the control uappt is applied,
the dynamics of the transformed system is

żi = zi+1, i = 1, . . . , r − 1,

żr = v+
[
cs(zt)+bs(zt)u

d
t

]
ξt + [bd(zt)+bs(zt)ξt]u

s
t ,

η̇t = p(ξt, ζt, ηt) + q(ξt, ζt, ηt)u
app
t + s(ζt, ηt)(u

app
t )2,

yt = z1.

Specifically, observe that the term
[
cs(zt) + bs(zt)u

d
t

]
ξt

arises because the approximation udt of the feedback
linearising control ulint has been adopted.

Using the estimates {∆Ŵε(k)}k introduced in Sec-
tion 3.1, we wonder whether it is possible to design the
control ust to reduce the noisy contribution to the dynamics
of the transformed system. To this end, we look at the
evolution of the state zr between two consecutive sampling
times, namely

zr,tk+1
= zr,tk +

∫ tk+1

tk

vdτ + βd(k + 1)+∫ tk+1

tk

bd(zτ )usτdτ +

∫ tk+1

tk

bs(zτ )usτdWτ ,

where βd(k+1) =
∫ tk+1

tk

[
cs(zτ ) + bs(zτ )udτ

]
dWτ .Our goal

is to minimise the contribution of the noise to the dynamics

using ust and the estimate ∆Ŵε(k+1) obtained at time tk+1.

The fact that ∆Ŵε(k + 1) is available a posteriori at the
sampling time tk+1 suggests that ust should compensate for
βd(k + 1) in the form of an impulse at time tk+1. Iterating
over k, this yields a control ust of the form

ust =

k∑
i=0

u∗(i+ 1)δ(t− ti+1), t ≤ tk+1, (6)

where δ(t) is a Dirac delta and {u∗(k)}k is a sequence of

scalars depending on {∆Ŵε(k)}k which needs to be defined.
Since we introduced an impulsive control, it is necessary
to adopt the jump notation in the expression of zr,tk . In
particular, the sampling property of the Dirac delta yields

zr,t+
k+1

=zr,t+
k

+

∫ tk+1

tk

vdτ + βd(k + 1)+

bd(ztk+1
)u∗(k + 1) + bs(ztk+1

)u∗(k + 1)ξtk+1
, (7)

where ztk+1
is the value of zt immediately before the

jump happening at time tk+1. Thus, we have reduced the
problem of approximate partial feedback linearisation to
the problem of finding the sequence {u∗(k + 1)}k such
that the contributions of βd(k + 1), bd(ztk+1

)u∗(k + 1) and
bs(ztk+1

)u∗(k + 1)ξtk+1
are compensated. Unfortunately,

this problem is impossible to solve as detailed in the next
remark.

Remark 2. The noise term ξtk+1
appearing in (7) is in-

evitably introduced by the impulsive control u∗(k+ 1)δ(t−
tk+1). In fact, if bs(ztk+1

) 6= 0, a control impulse at time
tk+1 causes a jump variation of the state zr, the amplitude
of which is proportional to the white noise at time tk+1. The
effect of this term cannot be compensated for because the
white noise process evaluated at time tk+1 is independent
of its values ξt for t < tk+1.

Thus, we revise our goal and look for a sequence {u∗(k)}k
and a set of assumptions under which the control ust
generates a model which is “closer”, in a sense to be defined,
to (4) than the selection ust ≡ 0. To this end, we introduce
two assumptions which are instrumental to the statement
of the main result of this section.

Assumption 3. There exists a neighbourhood U of x̄ = 0

and δ0 ∈ [0, 1) such that
∣∣∣ bs(z)bd(z)

∣∣∣ ≤ δ0 for all z ∈ Φ(U).

Remark 3. The rationale of this assumption is that in a
neighbourhood of zero the noise introduced by the control
action is “dominated” by the deterministic contribution.

Assumption 4. The control v is such that, if ztk ∈ Φ(U),
then P

(
limε→0 ztk+1

∈ Φ(U)
)

= 1.

Remark 4. The previous assumption requires that the
input v, by means of which we would like to control the
linearised system, is such that with probability one it does
not drive the state z outside the neighbourhood Φ(U) after
a time ε which tends to zero. Intuitively, to attain this,
on the one hand the control v has to stabilise the ideally

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5062



linearised system around a trajectory contained in Φ(U)
with a sufficiently high gain. On the other hand the noise
introduced by the term

[
cs(zt) + bs(zt)u

d
t

]
ξt in the period

ε has to be sufficiently small not to compromise the action
of v.

We are now ready to give the main result of this section.

Proposition 1. Consider system (2) and suppose that As-
sumptions 1, 2, 3 and 4 hold. Let zt0 ∈ Φ(U) and

βs(k + 1) = βd(k + 1) +

∫ tk+1

tk

bd(zτ )usτdτ +

∫ tk+1

tk

bs(zτ )usτdWτ .

If ut = uappt with ust given by (6) where

u∗(k + 1) = − β̂
E
d (k + 1)

bd(ztk+1
)
, (8)

then P
(
limε→0 |βs(k + 1)| ≤ δ0

∣∣βd(k + 1)ξtk+1

∣∣) = 1 for
all k ∈ Z.

Note that when uappt is applied with u∗ given by (8), the
noisy terms in the dynamics of zr reduce to

−
bs(ztk+1

)

bd(ztk+1
)
ξtk+1

β̂Ed (k + 1) + o(ε2), (9)

whereas the noisy term when only udt is applied is the
stochastic integral βd(k + 1). The previous proposition
states that, under Assumptions 3 and 4, the noisy term (9)
in the dynamics of ζt introduced by uappt is smaller in
norm than the noisy term introduced by only udt , with
a probability closer to 1 as the sampling period is made
smaller.

4 LOCAL ASYMPTOTIC STABILISATION UNDER
STOCHASTIC COMPENSATION

In Section 3 we have illustrated how estimates of the
Brownian motion obtained causally can be employed to
design a controller that compensates, in an approximate
way, the stochastic dynamics of the state ζt. We now address
specifically the problem of local asymptotic stabilisation
and show that such stochastic compensations have indeed
a crucial role in the solution of the problem.

Let udt be given as in (5), with v(ζt) = −(d0z1+d1z2+...+
dr−1zr), with di, i = 0, 1, ..., r− 1, coefficients to be chosen.
Suppose that the input uappt is applied to the system, with

ust given by (6) and (8). Recall that B = [0 . . . 0 1]
>

. Then
the dynamics of the state ζt is given by

ζ̇t=Aζt+B
[(
cs(zt)+bs(zt)u

d
t

)
ξt+(bd(zt)+bs(zt)ξt)u

s
t

]
where the matrix A can be made negative definite by a
proper selection of the coefficients di. We now present
two results. The first is a sufficient condition on the term
c(ξt, ζt, ηt) for the stabilisation of the system by using either
the control ut = udt or the control ut = uappt . The second is
a sufficient condition on the term bs(zt) for the stabilisation
of the system by using ut = uappt .

Theorem 1. Consider system (2) and let Assumptions 1
and 2 hold. Suppose that the zero dynamics is asymptot-
ically stable almost surely, that c(ξt, 0, η) ≡ 0 for η in a
neighbourhood of zero and that ∂c

∂ζ (ξt, 0, 0) = 0. Then the

control law ut = udt makes the equilibrium at the origin of
the closed-loop system asymptotically stable almost surely.
Moreover, under the additional Assumptions 3 and 4, the

control law ut = uappt makes the equilibrium at the origin of
the closed-loop system asymptotically stable almost surely
as well.

The previous theorem states that under a condition on
the term c(ξt, zt) both the control law with and without
compensation can achieve local stabilisation. We now
show that under a different condition on the term bs(zt),
ut = uappt can still solve the stabilisation problem.

Theorem 2. Consider system (2) and let Assumptions 1,
2, 3 and 4 hold. Suppose that the zero dynamics is
asymptotically stable almost surely, that bs(0, η) ≡ 0 for
all η in a neighbourhood of zero and that ∂bs

∂ζ (0, 0) = 0.

Then the control law ut = uappt makes the equilibrium at
the origin of the closed-loop system asymptotically stable
almost surely for ε going to zero.

Theorem 2 gives sufficient conditions under which the
control law ut = uappt stabilises system (2). In the next
section we provide a counter-example that shows that the
use of just ut = udt is not stabilising when these conditions
are met. This proves that the proposed control law which
makes use of the impulsive correction (6)-(8) and of the

estimates {∆Ŵε(k)}k is able to stabilise a class of stochastic
systems that the standard deterministic continuous-time
law is not able to stabilise.

Remark 5. An important subclass of stochastic systems,
which is largely studied because simpler than the general
case, is represented by systems with m(xt) ≡ 0, therefore
bs(zt) ≡ 0. For this subclass of systems a control input
ut 6= 0 does not introduce noise in the differential dxt. It is
trivial to observe that, for such systems, Assumption 3 and
the other hypotheses on bs in Theorem 2 hold. Moreover the
noisy contribution (9) to the dynamics of zr reduces to just
o(ε2), which means that the system dynamics under the
input uappt can be made arbitrarily “close” to the dynamics
under ulint by reducing the sampling time ε.

5 A COUNTER-EXAMPLE

In this section we provide a numerical example to
illustrate the theory. Consider the nonlinear stochastic
system

żt=

[
ez2

−z2 + s1

]
+

[
ez1 + z1s2

0

]
u+

[
µs2

z2 − z22

]
ξt+

[
z21
0

]
uξt,

where si = sin(zi) and µ ∈ R. Our goal is to make the
origin an asymptotically stable equilibrium almost surely.
To this end let yt = z1 be a fictitious output and note
that for this selection the system has relative degree one
at zero. We first study the stability of the zero dynamics.
Define ζt = z1 and ηt = z2. Setting ζt = 0 we obtain the
system η̇t = p(ξt, 0, ηt) = −ηt + ηtξt − η2t ξt. Note that
this subsystem is asymptotically stable almost surely in
the first approximation. In fact, the linear approximation
of this system is η̇t = Aηηt + Fηηtξt = −ηt + ηtξt which
is asymptotically stable almost surely if 2Aη − F 2

η < 0
see, e.g., Gard (1988). Since this condition is verified, we
conclude that the zero dynamics is locally asymptotically
stable almost surely.
Let ut = udt be given by (5). Figure 1 shows the time
histories of the state (top) of the system and of the control
input (bottom). We notice that the equilibrium is not
asymptotically stable. Then we set ut = uappt = udt + ust ,
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Fig. 1. Time history of the states zt (top) and the control
input udt (bottom).
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Fig. 2. Time history of the states zt (top) and the control
input uappt (bottom).

where ust is given by (6) and (8) with ε = 10−3. Figure 2
shows the new time histories of the state (top) of the
system and of the control input (bottom). We observe that
the equilibrium at the origin is now asymptotically stable
almost surely.
A few observations are in order. Firstly we notice that, when
enforcing approximate control laws, the dynamics of ζt = z1
remains stochastic, since the noise is not known and it
cannot be compensated for perfectly. This is an unavoidable
issue when tackling the control of stochastic systems in
practical scenarios. Secondly, we notice that in the ideal
case the control input takes values which are several order of
magnitude greater than the state of the system, whereas the
approximate (and implementable) controls have reasonable
orders of magnitude and can therefore be practically applied
in real scenarios.

6 CONCLUSIONS

In this paper we have addressed the problem of designing
a control law to practically feedback-linearise and stabilise
nonlinear stochastic systems in an approximate way. Specif-
ically, we have shown that it is possible to causally obtain
estimates of the increments of the Brownian motion that
affected the system from measurements of the states. We
have then used these estimates to synthesise a hybrid
control law that compensates for the stochastic dynamics
and we have shown that it solves the local stabilisation
problem.
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Gaeta, G. and Rodŕıguez Quintero, N. (1999). Lie-point
symmetries and stochastic differential equations. Journal
of Physics A: Mathematical and General, 32(48), 8485–
8505.

Gard, T. (1988). Introduction to Stochastic Differential
Equations. Monographs and textbooks in pure and
applied mathematics. M. Dekker.

Isidori, A. (1995). Nonlinear Control Systems. Communica-
tions and Control Engineering. Springer-Verlag London.

Isidori, A., Krener, A., Gori-Giorgi, C., and Monaco, S.
(1981). Nonlinear decoupling via feedback: A differential
geometric approach. IEEE Transactions on Automatic
Control, 26(2), 331–345.

Krener, A.J. (1987). Normal forms for linear and nonlinear
systems. Contemporary Mathematics, 68, 157–189.

Mellone, A. and Scarciotti, G. (2019a). Normal form
and exact feedback linearisation of nonlinear stochastic
systems: the ideal case. In 2019 IEEE 58th Conference
on Decision and Control (CDC), 3503–3508.

Mellone, A. and Scarciotti, G. (2019b). ε-Approximate
Output Regulation of Linear Stochastic Systems: a
Hybrid Approach. In 2019 European Control Conference
(ECC), 287–292.

Mellone, A. and Scarciotti, G. (2020a). Output Regulation
of Linear Stochastic Systems. IEEE Transactions on
Automatic Control, under review.

Mellone, A. and Scarciotti, G. (2020b). The Zero Dynam-
ics of Nonlinear Stochastic Systems: Stabilisation and
Output Tracking in the Ideal Case. In 21st IFAC World
Congress (IFAC 2020). To appear.

Øksendal, B. (2003). Stochastic Differential Equations
(Sixth Edition). Springer-Verlag.

Roberts, A. (2008). Normal form transforms separate slow
and fast modes in stochastic dynamical systems. Physica
A: Statistical Mechanics and its Applications, 387(1),
12–38.

Yong, J. and Zhou, X.Y. (1999). Stochastic Controls:
Hamiltonian Systems and HJB Equations. Stochastic
Modelling and Applied Probability. Springer New York.

Zeitz, M. (1983). Controllability canonical (phase-variable)
form for non-linear time-variable systems. International
Journal of Control, 37(6), 1449–1457.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5064


