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Abstract: In this article a fault detection algorithm for aircraft position measurements is
proposed using redundant sensor information during landing scenarios. This work was developed
in the framework of the VISION EU H2020 research project. The aircraft’s position can be
determined via instrumental landing system, GPS and camera measurements. Considering these
three sources a two out of three voting logic can be developed. After transforming the measured
data sets to a common format two different methods are constructed to execute voting. The first
is simple and well known thresholding where the measured position values are compared pairwise
and threshold violations registered. As dissimilar data noise strengths can make thresholding
unreliable the second method proposed by the authors is supplemented with an additional
statistical evaluation where the measurements undergo a two-sample Z-test. Both methods were
evaluated off-line with Monte-Carlo computer simulation. The tests showed that the proposed
statistical method outperforms the straightforward thresholding approach.
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1. INTRODUCTION

Redundancy concepts are inevitable in aerospace appli-
cations (Sklaroff (1976)) as the required levels of safety
can only be achieved by redundant systems. Nowadays
there is extensive research in the application of visual
information as a redundant source in aerospace such as
Gibert et al. (2018), VISION (2016) and Watanabe et al.
(2019). The latter targets to apply vision information as
a third redundant source of position besides GPS and
instrumental landing system (ILS) during aircraft land-
ing. However, the redundant information sources provide
increased safety only if they are properly handled (Sklaroff
(1976); Lii et al. (2006); Hoseinnezhad and Bab-Hadiashar
(2006)). Redundancy provides the possibility to filter out
corrupted sensory information. Considering an N number
of sensors which measure the same variable and supposing
that among them M sensors operate sufficiently, the faulty
sensor(s) can be ruled out by using various algorithms such
as voting logics or statistical methods. In this article we
consider voting logic with N = 3 sensor sources and so
M = 2 constraint leading to two out of three (2 out of 3)
voting logic.
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There are several voting algorithms well applicable for
similar sources such as binary values Wu et al. (2007);
Balasubramanian et al. (2016) representing exact voting
and dissimilar sources representing inexact voting as in
Latif-Shabgahi (2011); Karimi et al. (2014). Our applica-
tion case requires 3 input inexact voting and conversion of
multi-source information into a common format. However,
because of the dissimilar noise levels the threshold selec-
tion can be challenging (Lii et al. (2006); Hoseinnezhad
and Bab-Hadiashar (2006)). The noise level of camera
position is about one order of magnitude higher than the
GPS and ILS which means that a compatible threshold
for pairwise differences would easily mask errors of the
GPS or ILS and lead to missed detections. One possible
way to overcome this is the application of soft voting
with properly tuned Fuzzy sets (Hoseinnezhad and Bab-
Hadiashar (2006)) however, that method does not directly
consider the information about signal noise levels. On
the other hand application of statistical Z-test Leblanc
(2003) can directly incorporate this information and so
make threshold selection easier. So this article targets to
provide a Z-test-based 2 out of 3 voting logic for dissimilar
sensor sources and compare it to conventional thresholding
method through the positioning of a landing aircraft.

The structure of the article is as follows: Section 2 in-
troduces the applied simple thresholding and statistical
test-based methods. Section 3 compares the two methods
based-on Matlab simulated data and finally Section 4
concludes the paper.
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2. TWO OUT OF THREE VOTING LOGIC
SOLUTIONS

Based-on the GPS, ILS and camera measurements during
final approach a 2 out of 3 voting logic can be developed
to determine whether one of the position information
sources has degraded performance. The basic assumption
is that only one fault occurs at a time and a second fault
can occur only several seconds after it. The signals are
pairwise compared to their respective error thresholds. As
noise spikes can cause false alarms up-down counters are
applied to make a certain decision about the degraded
system. If one of the sources is voted out then with the
remaining two systems the possibility of complete system
degradation is monitored as having pairwise errors larger
then the thresholds means that one of the systems is
degraded but there is no possibility to decide which one.
However, making an alarm upon this event can provide
the opportunity to abort the position measurement-based
automated landing.

In order to compare the different outputs of the GPS,
ILS and camera systems some common parameters are
needed. Both the GPS and camera provide position in a
runway relative coordinate system, while the ILS measures
the deviation from the glideslope and localizer references.
Finally, the applied common parameters are the values
provided by the ILS. Therefore, outputs of the other
systems have to be transformed by using the following
formulas:

dY = −Xeast

dZ = −Xdown − (−Xnorth + ttd) · tanγ
(1)

Where Xnorth, Xeast and Xdown refer to the position
data from the GPS and camera in the runway relative
coordinate system, γ is the glide slope angle while ttd
is the distance of the touchdown point from the runway
threshold. dY is the localizer deviation and dZ is the glide
deviation (both considered in meter unit).

2.1 Simple thresholding method (THS)

The easiest way for pairwise data comparison is simple
thresholding where the task is to find a nominal noise
threshold for each system (ILS, GPS, camera) and gen-
erate the pairwise threshold values from this. As the ILS
and camera estimation errors are distance dependent the
nominal noise thresholds should also be.

Throughout the paper the following sensor pairings are
considered and the pairwise thresholds generated by sim-
ple addition of the nominal ones:

(1) GPS-ILS pair (GvsI)
(2) Camera-GPS pair (CvsG)
(3) ILS-Camera pair (IvsC)

Threshold violation of a pair means that there is a fault in
one of the systems. However, one threshold violation can
be caused by a sudden spike in the data so it is impor-
tant to prevent false alarms based-on this phenomenon.
The solution is to apply up-down counters and a sepa-
rate threshold for them. Upon violation of the counter
threshold the fault can be detected. As the glide (gld)

and localizer (loc) positions are handled separately six
up-down counter values are defined as GPSgld, ILSgld,
CAMgld, GPSloc, ILSloc and lastly CAMloc.

The rules of pairwise sub-system output comparison (sep-
arately for glide and localizer) are as follows:

(1) If all three pairings stay below the thresholds all
of the count values are decreased by the downcount
parameter if they are non-zero.

(2) If only one pair exceeds the given threshold there is no
way to determine which one of the two sub-systems is
defective so the count values dont change, except the
third one is decreased by the downcount parameter.

(3) If two pairs exceed the given threshold the system
which is featured in both can be considered the one
causing the error. In that case the algorithm increases
the count of that system by an upcount parameter
while decreases the other two.

(4) As a worst case scenario, if all the pairings exceed
their thresholds, all three count values will be in-
creased.

The performance of the developed algorithm can be fine
tuned by changing the upcount and downcount values and
also by changing the counter decision threshold. After
one of the systems was voted out, the monitoring of the
remaining system pair continues to detect complete system
failure when occurs.

The described algorithm has a weakness if the three sensor
systems have very different noise levels. The pairwise
thresholds of the pairs are equivalent to the sums of the
noise thresholds. Therefore, in cases where a system has
much higher noise level then the others, this can lead to
the case that the pairwise threshold masks the errors in
the low noise system and can lead to missed detections.
One possible solution is the application of soft voting with
fuzzy sets as in Hoseinnezhad and Bab-Hadiashar (2006).
This article presents another solution, which is based-on
statistical testing of the signals in the next part.

2.2 Statistical test-based method (STAT)

In order to counter the above mentioned problem a differ-
ent fault detection algorithm was created by the authors
which is based on statistical hypothesis testing. In this
solution the sensor measurements are also transformed
into glide and localizer deviations as common parameters.
Instead of comparing the momentary information from the
sensors improved results can be achieved through accumu-
lating the data for a short time interval and then using the
mean values of these data sets as the base for compari-
son. Comparing the accumulated data sets with statistical
testing would provide more accurate fault detection. As
the sample size increases the accuracy of the statistical
approach grows as well but the system initialization time
(until the first data set is gathered) also increases. Note
that after gathering the first full data set, a moving-
window technique can be used by adding the latest and
removing the earliest data.

As it was mentioned, the base of the new method is a
statistical hypothesis test. Since the sample size can be
considerably large, the use of a two sample Z-test (see
Leblanc (2003)) was selected (note that, if the size of data
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sets is modified it is advised to use a different test such as
T-test for smaller sample sizes). The prerequisite for using
the two sample Z-test is that the two samples must come
from two independent but normally distributed data sets
called populations. The central limit theorem states that:
given a population with a finite mean µ and a finite non-
zero variance σ2, the sampling distribution of the mean
approaches a normal distribution with a mean of µ and a

variance of σ
2

n as n - the sample size - increases. Therefore,
with large sample sizes the sensory data means can be
considered as normally distributed data sets. Since the
measurements are derived from different sensors, it can be
assumed that the samples are from different populations.

The statistical test examines whether the samples could
come from populations where the difference of the means
is ∆. In the given application the theoretical ∆ value
is zero as the same positions should be measured by all
sensors. However, it is advisable to consider a position
measurement tolerance both in glide and localizer consid-
ering nonzero ∆gld = 1% and ∆loc = 1m. This shows that
in the localizer channel there is a constant threshold while
the glide is distance dependent giving smaller altitude
tolerance near to the threshold line. The Z-test returns
with a decision about the difference of the population
means. In order to carry out the two-sample Z-test the
first step is to calculate the z-score using the following
formula:

z =
(x1 − x2) − ∆√

σ2
1

n1
+

σ2
2

n2

(2)

Where x1 and x2 are the mean values of the data sets, σ2
1

and σ2
2 are the variances of the data sets and finally n1

and n2 are the sample sizes (n1 = n2 = n holds in this
article). The equation stated above gives a z value as a
result, which is the base for the Z-test. Statistical testing
methods consider a null hypothesis, which is assumed to
be initially true. In this case, it is assumed that samples
are from populations where the difference of the means
is ∆. The z value shows that how much the difference of
sample means differs from ∆. The z value is a multiple
of σ meaning that it shows the difference of means in
terms of standard deviation. The end result of the test
is a p-value which shows the probability of getting the
actual result from populations where the difference of the
means is ∆. The standard prespecified significance level
is α = 0.05. If the p value is smaller than the significance
level the null hypothesis is rejected, otherwise it is assumed
true. As mentioned, the Z-test returns with the decision
whether the samples could come from certain populations
where the difference of means is ∆. However, the ∆ limit
was chosen as the maximum value for the acceptable
deviation between two sensor measurements. In order to
fully carry out the fault detection, the two-sample Z-test
should be performed for each value between 0 and ∆ as one
should ensure that the difference of means is not greater
than ∆. However, it would require considerable computing
power to perform the algorithm for every possible value
hence it was decided that the statistical method should
be supplemented with an additional step. Before applying
the two-sample Z-test a simple comparison is carried
out, which examines the difference of means of the data

sets. If that difference is greater than ∆ the statistical
method with ∆ parameter is carried out, otherwise the
null hypothesis is accepted without further calculation.
After the decision is made about the null hypothesis for
each system pairings the 2 out of 3 voting logic is applied
to detect the faulty sensor the same way (with up-down
counters and related threshold) as in the case of the simple
thresholding method.

3. COMPARISON OF METHODS

In this section the comparison of the two methods is
presented. In order to fully analyse and compare the devel-
oped algorithms a Monte Carlo simulation test campaign
was done in Matlab Software-in-the-loop (SIL) K-50 air-
craft simulation (see Fig. 1).

Fig. 1. Overview of the simulation containing the K-50
aircraft model and sensor models

Fig. 2. K-50 test aircraft (horizontal tail removed)

In the simulation, the aircraft (see Fig. 2) was guided
during an approach maneuver with uncorrupted ILS data
while the fault detection part was fed with possibly cor-
rupted ILS, GPS and camera data.

In case of the ILS system the corrupted measurements
being used in the simulation come from measurements of
real landing scenarios (by Electronic Navigation Research
Institute, Japan (ENRI)). The model assumes an object
placed near the runway which causes perturbation in
the ILS system. The ILS fault generation algorithm has
two modes in total in accordance of the position of the
interfering object. The simulated error values depend
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on the distance between the aircraft and the runway’s
threshold.

The simulated GPS unit again from ENRI has six sim-
ulation modes in total, ranging from a simulated SBAS
system to large range error models. Other modes include
the same SBAS system operating with four satellites,
SBAS with ionospheric perturbation and three GPS modes
such as regular, four satellite and large range error modes.
The SBAS mode is considered the most accurate amongst
them. Therefore, it was chosen as the nominal mode.

The simulated pinhole camera system adds distance de-
pendent noise to runway relative position. The noise inten-
sity decreases as the aircraft approaches the runway. This
is because the relative effect of camera pixel noise decreases
as the image plane object (runway) sizes increases. The
noise intensity levels were obtained from Monte-Carlo sim-
ulation of an auto landing scenario considering image noise
with 2 pixels variance of the onboard camera. The distance
dependent noise is considered nominal as it can not be
removed from the measurements. The random camera
system error is the fixed orientation error of the camera,
which comes from loose mounting or mounting error. It
is considered to be time invariant during an approach for
simplicity.

The distance dependent noise levels of the nominal work-
ing modes of the sensor systems were selected as noise
thresholds. The pairwise thresholds were easily generated
from them. The Z-test also uses the variance values of these
nominal noises. Note that, in real flight scenarios the GPS
and camera data frequency can be much lower than ILS
frequency. However, the goal of this article is to compare
the ideal performances of the two methods. Therefore, the
sampling frequency of all systems was considered to be
100Hz with an n = 100 samples moving window in the
STAT method.

The initial conditions (aircraft glideslope and localizer
initial position error), camera orientation errors and GPS
and ILS error modes were changed in the different test
cases of the Monte-Carlo simulation. 16 batch of test runs
were completed, which resulted in overall 816 simulated
test cases. From the 816 test cases 784 include at least
one fault while 528 include double (32 cases are fault
free to test for false alarms). Each batch of test runs
include 51 simulations while the main difference between
the different batches lies in the different starting position
from where the simulated landing was initiated. The initial
position of the aircraft was set between −10m and 10m
for the localizer deviation and −14m and 10m for glide
deviation. The simulated batches also include scenarios
where the initial position errors are zero. Another crucial
difference between the test batches is the magnitude of
the Camera orientation error (from the loose mounting),
which was varied between 0.1◦ and 0.22◦. These values
were selected for the reason that those magnitudes cause
detectable faults but also the runway stays in the camera’s
field of view meaning that the camera can still provide the
required measurements. The simulated camera orientation
errors included scenarios where the loose mounting only
affected the Roll or Pitch or Yaw values or in some cases
all of them. The last difference between the batches is the
time when sensor error modes were initiated between 1 and

17 seconds. The 51 cases within each batch include every
possible error mode initiation order. The primarily cor-
rupted sensor can be the GPS, the ILS or the Camera. The
same holds for the second sensor degradation as all possible
error sequences were tested. It is important to note that
the initiation times were set in a way that enabled the
algorithm to detect the first fault before activating the fol-
lowing one. As an example, one batch simulated scenarios
where the possible error initiation times were 1-4-7 seconds
for ILS, GPS and Camera sensors respectively. Therefore,
in the case considering ILS-Camera sensor malfunction,
the ILS degradation started at 1 second and the Camera
degradation occur at 7 seconds in runtime.

Fig. 3. Detection times of first faults with different meth-
ods

Fig. 4. Detection times of second faults with different
methods

First, the fault detection times of the methods were
compared calculated from error initiation of course. Fig.s 3
and 4 plot the detection times in ascending order with the
different methods for first and second faults respectively.
The number of test (Test NR) refers to the case number
out of the overall 816 scenarios. The figures show that
the threshold-based method gives lower detection times
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when it is able to detect the faulty sensor early after
the error mode initialization. However, it gives higher
detection times when the detection occurs later after
error initialization. The statistical method is faster above
detection times 0.44s for first fault and 0.55s for second,
which represent most of the detection time ranges (around
and above 50% of the test cases see Table 1).

Table 1. Detection times limits

Fault 1 50% 80% 90%

THS 1.44s 5.11s 7.46s
STAT 0.64s 2.49s 4.26s

Fault 2 50% 80% 90%

THS 0.11s 4.69s 8.28s
STAT 0.41s 0.83s 1.73s

Table 1 shows the maximum detection times for a given
percent of the examined cases (The same test NR percent
limits also shown in Fig.s 3 and 4 as vertical lines). In case
of the first fault 90% of the cases is below 7.46s for the
simple thresholding while below 4.26s for the statistical
method. This is almost 43% reduction of detection time
with the new method. For the 80% and 50% of test
cases the reduction in statistical detection times is 51%
and almost 56% respectively. So the new method gives
faster detection reducing the detection time to about half
of the other method’s. Considering the second fault the
detection time reductions are 79%, 82% and -273% for
90%, 80% and 50% of the data respectively. Note that
the -273% deviation means only 0.3s absolute time which
is more than acceptable (see Table 1). The results show
that the simple thresholding method is slightly faster
in detecting evident sensor corruptions meanwhile, the
statistical method proved to be far more superior in
detecting less noticeable faults.

Considering the missed detection (MD) and false alarm
(FA) rates in Table 2, the missed detection rates are 61%
and 77% better with the new method for first and second
faults respectively with the price of an increase in the false
alarm rate. However, false alarm rates below 2% can be
acceptable even in real application.

Table 2. Missed detection and false alarm rates

Rate % MD Fault 1 MD Fault 2 FA Fault 1 FA Fault 2

THS 5.4 15.7 0 0.25
STAT 2.08 3.55 0.25 1.72

Fig.s 6 and 5 show an ILS error case (for the glide sub-
system) where with the statistical method the mean values
of the GPS-ILS (GvsI) pair and ILS-Camera (IvsC) pair
differences obviously violate the threshold and indicate
ILS fault. Considering the simple thresholding method
the violation of the GPS-ILS (GvsI) pair is obvious but
for the ILS-Camera(IvsC) pair it is uncertain and there
are also violations with Camera-GPS (CvsG) pair. This
method finally detected a GPS error instead of the ILS
so the uncertain thresholding resulted in missed detection
and false alarm together which is very dangerous. This is
caused by the masking effect of the camera noise which is
almost an order of magnitude larger than the other system
noises as the pairwise thresholds in Fig. 5 show.

Fig. 5. Glide part error detection with simple thresholding
method

Fig. 6. Glide part error detection with statistical method

Fig. 7. Glide part error detection with simple thresholding
method
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Fig.s 7 and 8 show a case when both the thresholding
and the statistical methods do correct detection but the
thresholding is much slower (16.3s detection time instead
of 1.15s) because spike violations of the threshold should
lead to the final violation of counter threshold.

Fig. 8. Glide part error detection with statistical method

As a summary, it can be stated that the statistical method
outperforms the simple thresholding method in terms of
average detection times in both first and second sensor
malfunctions. It also decreased the number of missed
detections with the price of an increase in the false alarm
rate. Another aspect of the new method is that the
computational load is higher, since more operations are
required to perform the Z-test. Likewise, more memory
is needed to store the required data sets compared to
the simple thresholding method however, these issues can
be easily handled by current high performance on-board
hardware architectures.

4. CONCLUSION

In this paper two algorithms are presented to provide
fault detection of aircraft position measurements from
redundant sensor information during final approach. Both
of them is 2 out of 3 voting with simple thresholding in
the first and statistical test-based decision in the second.
The latter is the a new method proposed by the authors.
As explained in the article dissimilar data noise intensity
increases the possibility of missed detections in the first
method as higher noise levels can mask small errors. To
counter this effect the second method was proposed where
the measurements undergo a two-sample moving window
statistical Z-test, which examines whether the measured
position values are similar or not from a statistical point
of view. After the description of the two algorithms, a
thorough comparison through Monte-Carlo simulation in
Matlab/Simulink was carried out to test the functionality
regarding average detection times, missed detection and
false alarm rates. The simulation campaign consists of
816 simulation cases overall, which covers several of the
possible scenarios. The comparison showed the superiority
of the statistical method regarding detection times and
missed detections with the price of slightly increased

false alarm rate. Possible improvements can be acquired
through tuning the voting logic parameters such as the
counter thresholds or the parameters of the Z-test. Besides
fine tuning future work plans to include application with
real flight test data and the related limited sampling
frequencies of GPS and camera.
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