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Abstract: Computational models of emotional learning observed in the mammalian brain have
inspired diverse self-learning control approaches. These architectures are promising in terms of
their fast learning ability and low computational cost. In this paper, the objective is to establish
performance–guaranteed emotional learning–inspired control (ELIC) strategies for autonomous
multi–agent systems (MAS), where each agent incorporates an ELIC structure to support the
consensus controller. The objective of each ELIC structure is to identify and compensate model
differences between the theoretical assumptions taken into account when tuning the consensus
protocol, and the real conditions encountered in the real system to be stabilized. Stability of the
closed-loop MAS is demonstrated using a Lyapunov analysis. Simulation results based on the
consensus task of a group of inverted pendulums demonstrate the effectiveness of the proposed
ELIC for stabilization of nonlinear MAS.

Keywords: Multi-agents systems, Biologically-inspired control, Robust control, Distributed
control, Nonlinear Control.

1. INTRODUCTION

The idea of consensus is an important research problem
arising from the domain of distributed control of multi-
agent system (MAS). The objective of this methodology
is to design distributed control laws based on local relative
information, in order to guarantee a stable agreement be-
tween the states of the agents. Most of the literature in this
area has primarily addressed MAS with double-integrator
dynamics, see for example Ren and Beard (2008), Pil-
loni et al. (2013), and Long et al. (2018). Along these
lines, the problem of global robust distributed output
consensus of heterogeneous leader–follower nonlinear MAS
is widely studied, e.g., Xu et al. (2016) and Chen and
Zhao (2018). In a real–world scenario, however, coordi-
nation of MAS is challenging because the dynamics of
the robotic agents, which could be aerial, ground, water
vehicles, or even a combination of them, are usually not
precisely known. Furthermore, MAS that execute missions
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in unstructured/uncertain environments are often subject
to disturbances and varying operational conditions.

In recent years, computationally complex control engineer-
ing problems have been solved using biologically-inspired
solutions. In Moren (2002), a computational model known
as Brain Emotional Learning (BEL) was developed, which
mimics parts of the brain that are known to produce emo-
tion. The BEL framework can be used for control systems
purposes as in Lucas et al. (2004), where the authors de-
velop a BEL–Based Intelligent Controller (BELBIC) which
imitates the emotional parts of the mammalian brain,
namely, the amygdala, the orbitofrontal cortex (OFC), the
thalamus, and the sensory input cortex. Classic control
methodologies may require the knowledge of all the dy-
namics of the model to be controlled. BELBIC, as a model-
free controller, has no such a requirement. Furthermore,
BELBIC has a single-layered architecture and therefore its
computational complexity is in the order of O(n), which
is relatively small if compared to other existing learning-
based intelligent controls, and therefore more appealing
for real-time implementation.
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In our recent work, we proposed and implemented a track-
ing controller for an unmanned aircraft systems (UAS)
Jafari et al. (2018) and for a MAS Jafari et al. (2017a),
Jafari et al. (2017b) in the presence of uncertain system
dynamics and disturbances using a BEL-inspired flocking
controller. In contrast to these works, we now propose
a biologically-inspired controller for each agent in order
to imitate double integrator dynamics, and then reuse
techniques for double integrator consensus. Furthermore,
we propose a novel technique for improving the MAS
trajectory tracking task, ensuring the inter-agent distance
is maintained at the desired values, even in the presence
of external disturbances. Our goal is to demonstrate that
the implementation of an emotional learning-inspired con-
trol (ELIC) can stabilize a MAS in terms of consensus,
trajectory tracking, and disturbance rejection.

The rest of the paper is organized as follows. Background
on ELIC control is provided in Section 2, together with
our main result, the double integrator closed-loop imita-
tion ELIC controller. Next, Section 3 revisits consensus
techniques for agents with double integrator dynamics,
and introduces an original novel technique for achieving
improved repulsion between agents. The performance anal-
ysis of the proposed MAS consensus control is provided
in Section 4 by means of numerical results. Section 5 con-
cludes the paper and provides current and future directions
of this research.

2. EMOTIONAL LEARNING-INSPIRED CONTROL

Consider an agent whose dynamic model is consistent with
a class of nonlinear systems of order n described by

x(n) = f(x) + g(x)u+ d(x, t) (1)

where x = [x, ẋ, . . . , x(n−1)]T ∈ Rn is the state vector, ẋ
is the derivative of x w.r.t. time, x(n−1) is the (n − 1)th

ordered derivative of x w.r.t. time, and u ∈ R is the
control input. Assume the vector state x belongs to the
compact set Ωx = {x | ‖x‖ ≤ Mx} with Mx a positive
constant. Assume also that g(x) > 0, and g(x)−1 and f(x)
are unknown continuous scalar functions.

Assume that the desired trajectory xd and its derivatives,
up to its nth order derivative, are smooth and bounded.

Let’s define an auxiliary variable s depending on the
system’s tracking error and its derivatives as

s = e(n−1) + ∆n−1e
(n−2) + . . .+ ∆1e (2)

with the tracking error e = x−xd, and ∆k (k = 1, 2, . . . n−
1) are constants such that the roots of the polynomial
λn−1 + ∆n−1λ

n−2) + . . .+ ∆1 = 0 have negative real part.

If f(x) and g(x) were known and d(x, t) = 0, it would be
possible to achieve the dynamics ṡ = −Ks + ur with the
following exact matching control law

u∗ = −g−1(x)(f(x) + qa +Ks− ur), (3)

with qa = −x(n)
d + e(n−1) + ∆n−1e

(n−2) + . . . + ∆1ė, and
ur as an auxiliary input that will be specified below.

Note that the assumptions of boundedness of x, f(·),
g−1(·), xd, and its derivatives up to order n, ensure that
the exact matching controller is bounded.

In Rubio Scola et al. (2020), an improvement on the
performance of the system can be accomplished through
an integral action. To this end, a new state ξ(t) =

∫
s(t)dt

is introduced and s is extended as se = [s, ξ]T leading to[
ṡ

ξ̇

]
=

[
−K 0

1 0

]
︸ ︷︷ ︸

Ae

[
s
ξ

]
+

[
1
0

]
︸︷︷︸
Be

ur (4)

The auxiliary innput term ur can be obtained by solving
the Ricatti equation

0 = ATe Pe + PeAe − PeBeR−1BTe Pe +Qe (5)

ur = −1

r
BTe Pese (6)

where Qe = diag{Q,QI} and R = ρ2r
2ρ2−r , with Qe = QTe �

0 and 2ρ2 > r.

To approximate the unknown functions f(x) and g(x) by

means of estimates f̂(x) and ĝ(x) we propose a combi-
nation of Gaussian Radial Basis Functions (RBF) that
emulates the emotional learning structure of the mamial
limbic system (see Moren (2002) for details):

f̂(x) :=f̂(x, Vf ,Wf ) = V Tf ΦA(s(x))−WT
f Φ(s(x))

ĝ(x) :=ĝ(x, Vg,Wg) = V Tg ΦA(s(x))−WT
g Φ(s(x))

(7)

where

Vf = [Vf1, Vf2, . . . , Vfp, Vfth]T ,

Wf = [Wf1,Wf2, . . . ,Wfp]
T ,

Vg = [Vg1, Vg2, . . . , Vgp, Vgth]T ,

Wg = [Wg1,Wg2, . . . ,Wgp]
T

are vectors of weight parameters. The terms Φth
j are Gaus-

sian RFB’s that can be represented using the structure

Φj = exp

(
− (s− µj)2

σ2
j

)
,

m = max([Φ1,Φ2, . . . ,Φp])

(8)

where s is the error dynamics described by equation (2),
and µj and σj are the corresponding mean and smoothing
factor, respectively. The RBF are Φ = [Φ1,Φ2, . . . ,Φp]

T

and ΦA = [Φ,m]T , m is the input from Thalamus, and
Vth is its corresponding weight.

Let the optimal weight parameters be defined as follows

[V ∗f ,W
∗
f ] = arg min

Vf∈Ωfv,Wf∈Ωfw

[ sup
x̃∈Ωx

|V Tf ΦA(x̃)−WT
f Φ(x̃)− f(x̃)|], (9)

[V ∗g ,W
∗
g ] = arg min

Vg∈Ωgv,Wg∈Ωgw

[ sup
x̃∈Ωx

|V Tg ΦA(x̃)−WT
g Φ(x̃)− g(x̃)|], (10)

The notation f̂∗(x) := f̂(x, V ∗f ,W
∗
f ) and ĝ∗(x) :=

ĝ(x, V ∗g ,W
∗
g ) will be used in the following for simplicity.

The errors of the approximation functions w.r.t. the real
value are defined as

fe(x) =f(x)− f̂∗(x), ge(x) = g(x)− ĝ∗(x),

ω̃ =fe(x) + ge(x)u
(11)

and the weight estimation errors as
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Ṽf = V ∗f − Vf Ṽg = V ∗g − Vg
W̃f = W ∗f −Wf W̃g = W ∗g −Wg

(12)

We use the same adaptation rules as presented in Ru-
bio Scola et al. (2020)

Assumption 1. The optimal adaptive parameters V ∗f , W ∗f ,
V ∗g , and W ∗g belong to the following compact sets, respec-
tively: Ωfv = {V ∗f |‖V ∗f ‖ ≤ Mfv}, Ωfw = {W ∗f |‖W ∗f ‖ ≤
Mfw}, Ωgv = {V ∗g |0 < δ ≤ ‖V ∗g ‖ ≤ Mgv}, and Ωgw =
{W ∗g |0 < δ ≤ ‖W ∗g ‖ ≤ Mgw}. Here, δ, Mfv, Mfw, Mgv,
and Mgw are positive constants.

The following theorem can now be formulated.

Theorem 1. (ELIC Theorem). [Rubio Scola et al. (2020)]
Consider the nonlinear system in equation (1) with the
following control law

u = −ĝ−1(x)(f̂(x) + qa +Ks− ur) (13)

where f̂ and ĝ are given by equation (7), with BEL-
inspired adaptation laws as described in Rubio Scola et al.
(2020) , and ur as defined in equation (6). Under this
scenario, the H∞ tracking performance criteria described
in equation (14) is fulfilled for a pre-given attenuation level
ρ, and the error function s remain bounded∫ T

0

sTe Qesedt ≤
1

αf
Ṽf (0)T Ṽf (0) +

1

βf
W̃f (0)T W̃f (0)

+
1

αg
Ṽg(0)T Ṽg(0) +

1

βg
W̃g(0)T W̃g(0)

+ sTe (0)Pes
T
e (0) + ρ2

∫ T

0

ωTωdt (14)

2.1 ELIC for MAS consensus

In terms of MAS consensus, the main objective is to design
a control signal ui for each agent i, in such a way that
the motion of all agents in the MAS exhibits an emergent
behavior arising from simple rules that are followed by
individuals, and does not involve any central coordination.

For the novel framework proposed here, each ith agent will
incorporate an ELICi structure to support the consensus
controller. The objective of each ELICi control structure
is to identify and compensate model differences between
what was theoretically supposed when tuning the MAS
controllers (see eqs. (25)-(27)) and the real practical con-
ditions. Despite using a linear model for each agent (see
the MAS dynamics in equation (20)), the interconnection
of the agents is done with a nonlinear MAS protocol (see
eqs. (25)-(27)). This leads to a nonlinear propagation of
the MAS model uncertainties or external perturbations. In
the absence of model mismatch and/or disturbances, the
ELIC should not interfere with the nominal MAS control.
The novel framework interfaces the ELIC controller with
the MAS, by implementing a reference model of a double
integrator to create a virtual reference for the s variable.
The proposed interconnection framework, which we call
Double Integrator–ELIC (DIELIC) is shown in Fig. 1. Such
system is composed by an agent in closed-loop with an
ELIC, imitating double integrator dynamics.

2.2 Double integrator closed-loop behaviour

We propose to use the ELIC to compensate the differences
between the model of each agent and a nominal system
described by a double integrator. This facilitates the
implementation of consensus theory designed for second
order nonlinear agents controlled by means of ELIC.

Let’s consider a reference model representing the double
integrator dynamics

ẍd = uDI (15)

where the subscript (·)DI indicates the Double Integrator
system that the ELIC closed-loop should imitate.

Next, the system output is compared with the reference
model that represents the double integrator dynamics:

e = xd − y (16)

x(n) = f(x) + g(x)(uDI + uELIC) (17)

where uELIC comes from the controller in eq.(13) and uDI
is defined in eq.(15).

The DIELIC closed-loop system can now be rewritten as

x(n) =f(x) + g(x)uELIC

+ g(x)uDI − u(n−2)
DI︸ ︷︷ ︸

d(x,t)

+u
(n−2)
DI (18)

The stability proof, which derives from Theorem 1, is
omitted here for brevity.

For the particular case of a second order system we have

ẍ = f(x) + g(x)uELIC + g(x)uDI − uDI + uDI (19)

if f(x) = 0 and g(x) = 1, the systems (15) and (19) are
identical. If both systems have the same initial conditions,
there is no need for compensation and the ELIC controller
output should be uELIC = 0.

Agent

ELIC

u y

s

xd

Double Integrator Behaviour (DIELIC)

Non-linear

uDI

Reference

Generator

uELIC

Fig. 1. DIELIC structure: an ELIC imitating the double
integrator behaviour.

With the DIELIC imitating double integrator agents,
we can directly apply consensus techniques for double
integrator agents. Hereafter, we revisit relevant results for
MAS consensus with double integrator agents.

3. CONSENSUS FOR AGENTS WITH DOUBLE
INTEGRATOR DYNAMICS

Assuming n agents with second order dynamics evolving
in an m dimensional space (m = 2, 3), it is possible to
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describe the motion of each agent i as

q̇i = pi, ṗi = ui, i = 1, 2, . . . , n (20)

where {ui, qi, pi} ∈ Rm are control input, position, and
velocity of agent i, respectively. An associated dynamic
graph G(υ, ε) consisting of a set of vertices υ and edges ε
is represented by υ = {1, 2, . . . , n}, ε ⊆ {(i, j) : i, j ∈
υ, j 6= i}. Each agent i is represented by a vertex, and
each edge represents a communication link between a pair
of agents. The neighborhood set of agent i is

Nα
i = {j ∈ υα : ‖qj − qi‖ < r, j 6= i} (21)

where ‖ · ‖ is the Euclidean norm in Rm, and the positive
constant r is the range of interaction between agents i and
j. To describe the geometric model of the flock, i.e., the
α–lattice, the following set of algebraic conditions should
be solved Olfati-Saber (2006)

‖qj − qi‖σ = dα ∀j ∈ Nα
i (22)

where dα = ‖d‖σ, the positive constant d is the distance
between neighbors i and j, and ‖d‖σ is the σ-norm

expressed by ‖z‖σ = 1
ε [
√

1 + ε‖z‖2 − 1], with ε > 0, and
differentiable everywhere. From the above constraints, a
smooth collective potential function can be obtained as

V (q) =
1

2

∑
i

∑
j 6=i

ψα(‖qj − qi‖σ) (23)

where ψα(z) is a smooth pairwise potential function de-
fined as ψα(z) =

∫ z
dα
φα(s)ds, with φα(z) = ρh(z/rα)φ(z−

dα), φ(z) = 1
2 [(a + b)σ1(z + c) + (a − b)], and σ1(z) =

z√
1 + z2

. Also, φ(z) is a sigmoidal function with 0 < a ≤ b,

c = |a − b|/
√

4ab, to guarantee that φ(0) = 0. The
term ρh(z) is a scalar bump function that smoothly varies
between [0, 1]. A possible choice for defining ρh(z), with
h ∈ (0, 1), is as follows Olfati-Saber (2006):

1, z ∈ [0, h)

1

2

[
1 + cos

(
π
z − h
1− h

)]
, z ∈ [h, 1]

0, otherwise

(24)

The flocking control algorithm ui = uαi + uβi + uγi in-
troduced in Olfati-Saber (2006) allows avoiding obstacles,
while making all agents to form an α–lattice configura-
tion. The algorithm has three parts: uαi is the interaction

component between two α–agents, uβi is the interaction
component between the α–agent and an obstacle (the
β–agent), and uγi is a goal component consisting of a
distributed navigational feedback term. In particular

uαi =cα1
∑
j∈Nα

i

φα(‖qj − qi‖σ)ni,j+

cα2
∑
j∈Nα

i

aij(q)(pj − pi)
(25)

uβi =cβ1
∑
k

∈ Nβ
i φβ(‖q̂i,k − qi‖σ)n̂i,k+

cβ2
∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi)
(26)

uγi =− cγ1(qi − qr)− cγ2(pi − pr)

− csc1 (

∑n
i=1 qi
n

− qr)− csc2 (

∑n
i=1 pi
n

− pr)
(27)

where cα1 , cβ1 , cγ1 , csc1 , cα2 , cβ2 , cγ2 and csc2 are positive
constants. The pair (qr, pr) is the coordinates of a virtual
leader of the MAS flock, i.e., the γ–agent which can be
represented as {q̇r = pr, ṗr = fr(qr, pr)}. The terms∑n
i=1 qi/n and

∑n
i=1 pi/n define the coordinates of the

Center of Mass (CoM) of the MAS. The terms ni,j and n̂i,k
are vectors defined similar as in Olfati-Saber (2006) and
La and Sheng (2009). The stability of the MAS flocking
comes from Theorem 1 in La and Sheng (2009).

The weights of the attractive force between the MAS CoM
and the reference, csc1 and csc2 , are freely set so that the
CoM can converge to the reference as soon as possible.
In La and Sheng (2009) the authors show that the choice
of csc1 , csc2 does not affect the consensus stability or the
obstacle avoidance. This is different from the choice of cγ1 ,

cγ2 which are selected less than that of cβ1 , cβ2 respectively,

while cβ1 and cβ2 should be less than cα1 and cα2 , respectively.

Finally, bi,k(q) and aij(q) are the elements of the het-
erogeneous adjacency matrix B(q) and spatial adjacency
matrix A(q), respectively, which are described as bi,k(q) =
ρh(‖q̂i,k−qi‖σ/dβ) and aij(q) = ρh(‖qj−qi‖σ)/rα ∈ [0, 1],
i 6= j. In these equations, rα = ‖r‖σ, aii(q) = 0 ∀i and q,
dβ = ‖d′‖σ, and rβ = ‖r′‖σ. The positive constant d′ is
the distance between an α–agent and obstacles. The term
φβ(z) is a repulsive action function which is defined as
φβ(z) = ρh(z/dβ)(σ1(z − dβ)− 1). Now we can define the
set of β–neighbors of the i-th α–agent in a similar way to

equation (21) as Nβ
i = {k ∈ νβ : ‖q̂i,k − qi‖ < r′} where

the positive constant r′ is the range of interaction of an
α–agent with obstacles.

Improving the effect of repulsive forces in MAS consensus
and obstacle avoidance

The force emerging from the stabilization of the CoM
of the MAS reduces the distance between each agent
in the MAS, and also between agents and obstacles. To
overcome this problem, we propose a new control action
that increases the repulsion forces in case that these
distances are less than the desired ones. The idea is to
include compensation terms uαi,rej and uβi,rej to uαi and uβi
as follows

if ‖qj − qi‖ < d, uαi,new = uαi + uαi,rej (28)

if ‖q̂i,k − qi‖ < d, uβi,new = uβi + uβi,rej (29)

where uαi,rej and uβi,rej are generate exactly as uαi and

uβi , but with parameters (cα1,rej, c
α
2,rej) and (cβ1,rej, c

β
2,rej),

respectively. The terms uαi,rej and uβi,rej can be seen as
perturbations that disappear when the distance require-
ment is fulfilled, in such a way the stability is still guar-
anteed using Theorem 1 from La and Sheng (2009). In
next section, we show by means of numerical simulations,
the consequences in the MAS consensus when there is no
repulsion enhanced.

In the next section we present numerical simulations
showing the performance of the distributed controller.

4. SIMULATIONS

The performance of the proposed controller is demon-
strated with the implementation of the numerical example
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MAS

Reference
Control

Repulsion

enhanced

DIELIC

ui

u
i,rej

uDI y

CoM

Fig. 2. Interconnection of the DIELIC with the MAS
controller, together with the repulsion enhancement
terms.

proposed in Baghbani et al. (2018), which consists on the
stabilization and consensus of inverted pendulums. Each
agent under consideration has the following dynamics

y = [x, ẋ]T , ẍ =
g sin(x)− apmplẋ

2 sin(2x)/2

4l/3− apmpl cos(x)2

+
ap cos(x)

4l/3− apmpl cos(x)2
u+ d

(30)

with g = 9.81, mp = 1, n = 10, l = 3, ap = 1/(mp + M),
d(0 ≤ t < 40) = 0, d(40 ≥ t) = 2, x(0) = [0.2, 0.2]T , and
a sampling time of Ts = 0.001.

The ELIC tuning parameters are r = 0.2, ρ = 0.075,
K = 1, Q = 10, and QI = 1000, and the reference is
xd = π

30 sin(t). The weight parameters are initialized as
Vf (0) = Vg(0) = 0, Wf (0) and Wg(0) take random values
between −0.1 and 0.1, and ξ(0) = 0.

The MAS controller is tuned with the following param-

eters: h = 0.2, cα1 = 1500, cα2 = 2
√
cα1 , cβ1 = 300,

cβ2 = 2

√
cβ1 , cγ1 = 200, cγ2 = 2

√
cγ1 , csc1 = 700, csc2 = 2

√
csc1 ,

cα1,rej = 70cα1 , cα2,rej = 70cα2 , cβ1,rej = 35cβ1 , cβ2,rej = 35cβ2 .

The group of agents are tasked to follow a CoM reference in
consensus mode. The numerical results in Fig. 3 show the
evolution of the angular position of the 10 agents. Notice
that the separation distance is successfully accomplished,
despite the fact that the agents are subject to disturbances,
as explained next.

The tracking of the CoM in consensus mode is shown in
Fig. 4. At time t = 23s, an obstacle appears at position
x = 0.8rad. Notice that, as soon as the obstacle appears,
the distance between agents is successfully maintained
at the desired value. The CoM state is simultaneously
modified, allowing the agents to maintain the desired inter-
agent separation.

As an additional test, a perturbation appears at time
t = 40s, which simulates an uniform force in the positive
x axis, and affects all the agents simultaneously. Notice
from Fig. 3 that each agent rejects the perturbation
and the MAS can effectively follow the CoM. The agent
velocities are shown in Fig. 5. The small variations in the
velocity after t = 23s are due to the fact that the agents
perform small corrections in order to ensure the separation
force (repulsion) required to fulfill the minimum distance
requirements, while overcoming the effect of disturbances,
and tracking the CoM.

Fig. 3. Positions of a 10-agent MAS (1D agents) following
a sinusoidal reference, and maintaining a security
distance from a wall-type obstacle (black line).

Fig. 4. Time evolution of the CoM of the MAS formation
(blue) w.r.t. the desired reference (black).

Fig. 5. Angular velocity all the agents of the MAS.

A study on how the CoM tracking force can generate a
negative effect on the inter-agent repulsion force

An additional numerical simulation was conducted, but
now without implementing the strategy for improvement
of the repulsion force introduced in Section 3. The ob-
jective is to show that the CoM tracking force can have
a negative effect on the MAS inter–agent distances when
using a conventional consensus protocol.

On one hand, Fig. 6 shows the CoM tracking is successfully
achieved even in the presence of the external (wall-type)
perturbation. However, from Fig. 7 it can be seen that the
inter-agent distance is not properly maintained (compare
with the result in Fig.3). Finally, Fig. 8 shows the agents
velocities. Notice each agent’s velocity is stable while
rejecting the perturbation. The main difference between
the velocities shown in Fig. 8 and the ones shown in Fig. 5
is that in Fig. 8 the obstacle is located far from the agents.
Therefore, there is no need for small correction signals to
avoid collisions between the obstacle and agents.
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Fig. 6. CoM of the MAS without the tracking improvement
from Section 3

Fig. 7. Position of all the agents without the CoM tracking
improvement from Section 3

Fig. 8. Velocity of all the agents without the CoM tracking
improvement from Section 3

5. CONCLUSIONS

This research introduced DIELIC: a novel performance–
guaranteed consensus controller inspired by the mam-
malian limbic system for nonlinear MAS. The proposed
framework combines a novel robust stable controller with
the consensus protocol described in the seminal work in
Olfati-Saber (2006).

The advantage of using the proposed DIELIC strategy
to imitate a double integrator after closing the loop,
relies on the fact that this formulation facilitates the
implementation of MAS consensus controllers where the
structure for double integrator agents is already solved.
By relying on an ELIC strategy, the individual agents and
also the MAS are provided with robustness to external
disturbances. A novel control action was also introduced,
which increases the inter–agent repulsion forces in case
that these distances are less than the desired ones. The
Lyapunov stability proof from Rubio Scola et al. (2020)
demonstrates the stability. Numerical results consisting on

the consensus control of a group of inverted pendulums
under disturbances show the effectiveness and performance
of the proposed approach.

Future work will be devoted to the discretization of the
proposed method for real time implementation purposes,
both in 2-dimensional and 3-dimensional agents.
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