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Abstract: In the widespread field of underwater robotics applications, the demand for in-
creasingly intelligent vehicles is leading to the development of Autonomous Underwater Vehi-
cles(AUVs) with the capability of understanding and engaging the surrounding environment.
Consequently, to push the boundaries of cutting-edge smart AUVs, the automatic recognition
of targets is becoming one of the most investigated topics and Deep Learning-based strategies
have shown astonishing results. In the context of this work, two different neural network
architectures, based on the Single Shot Multibox Detector (SSD) and on the Faster Region-based
Convolutional Neural Network (Faster R-CNN), have been trained and validated, respectively,
on optical and acoustic datasets. In particular, the models have been trained with the images
acquired by FeelHippo AUV during the European Robotics League (ERL) competition, which
took place in La Spezia, Italy, in July 2018. The proposed ATR strategy has then been validated
with FeelHippo AUV in an on-board post-processing stage by exploiting the images provided
by both a 2D Forward Looking Sonar (FLS) as well as an IP camera mounted on-board on the
vehicle.

Keywords: Marine Robotics, Artificial Intelligence, Automatic Target Recognition,
Autonomous Underwater Vehicles, Neural Networks, Intelligent Robotics, Machine learning for
environmental applications.

1. INTRODUCTION

Since the development of the first underwater robots, the
demanded tasks for subsea operations have become more
and more challenging. Pre-programmed missions, whose
goal was to passively inspect and monitor areas of inter-
est, have been being slowly but steadily supplanted by
interactive tasks (e.g. recovering a target on the seafloor
(Prats et al. (2012))); as a result, the need of intelligent
vehicles, capable of actively and physically engaging the
surrounding environment and selecting the optimal action
to be performed (Vidal et al. (2019), Cashmore et al.
(2014)), has been arisen and still plays a crucial role in the
evolution of cutting-edge underwater system technologies.
Nowadays, within the context of intelligent vehicle devel-
opment, Automatic Target Recognition (ATR) is emerging
as one of the most investigated topics by the scientific and
industrial community. Indeed, understanding and gather-
ing knowledge of the environment represents a prelim-
inary and fundamental hierarchical stage for effectively
accomplishing interactive tasks, creating fully autonomous
robots that help human operators in challenging assign-
ments.

Over the last few years, Deep Learning (DL) techniques
have achieved significant success in digital image pro-
cessing by fulfilling the object detection and classifica-
tion tasks in increasingly challenging environments and
scenarios. As a consequence, DL has recently resulted
as the state-of-the-art approach in performing ATR by
means of highly nonlinear feature extraction. Meanwhile,
as far as marine robotics is concerned, there has been
an exponential growth in the collection of underwater
imagery for monitoring the subsea ecosystems. In light of
the above-mentioned considerations, DL classifiers show
the potential to address the automated object recognition
task in the underwater environment and can be the key to
outperform the previous feature-based approaches in terms
of accuracy and robustness (Lowe (2004), Krizhevsky et al.
(2012)).

Autonomous Underwater Vehicles (AUVs) are commonly
equipped with several payload sensors, including cameras
and sonars, with the aim of perceiving and inspecting
the subsea environment. In particular, although modern
cameras provide high-resolution images, optical data have
the non-negligible drawback to significantly degrade in the
presence of turbid water and low-light conditions. Con-
versely, acoustic sensors, such as Forward-Looking Sonar
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(FLS) or Side Scan Sonar (SSS), supply lower resolution,
high-noise images with a wide range of coverage. As a
result of the highlight patterns, several studies have been
proposed in order to extend the traditional object recogni-
tion DL techniques to underwater scenarios by exploiting
acoustic images (Kvasic et al. (2019), Valdenegro-Toro
(2016)).

In the context of this work, a DL-based ATR architecture
has been designed and implemented by using camera as
well as sonar frames; firstly, the research activity has
focused on evaluating the performance of Convolutional
Neural Networks (CNNs) on visual and FLS recordings
and, subsequently, the feasibility of the aforementioned
system has been verified during real-time tests. More in
detail, the first step of the proposed strategy consists in
the training of CNN models by exploiting a custom gath-
ered dataset of heterogeneous images and the open source
machine learning library TensorFlow (2015): a large image
dataset has been collected, pre-processed and labeled in
order to train the SSD model (Liu et al. (2016)) and
Faster R-CNN proposed by Girshick (2015). Afterward,
the trained neural networks have been incorporated in a
custom ATR software, developed in the Robot Operating
System framework (ROS (2007)), the most commonly used
set of software libraries and tools to build robot applica-
tions. All the presented results have been validated by sea
trials conducted with FeelHippo AUV , one of the vehi-
cles developed by Mechatronics and Dynamic Modeling
Laboratory (MDM Lab) (Allotta et al. (2017), Allotta
et al. (2015)) of the Department of Industrial Engineering
of the University of Florence (UNIFI DIEF). According
to the achieved experimental results, accurately presented
and described in the paper, the proposed strategy arises
as a noteworthy validation proof of the effectiveness of
DL methodologies for accomplishing ATR tasks in subsea
scenarios; indeed, the suggested approach succeeded in
detecting and recognizing several targets on the seafloor.

This paper is organized as follows. Section 2 describes
underwater ATR systems and reviews the most used CNN
architectures in this field. Section 3 is dedicated to the
description of the proposed methodology by accurately
outlining the DL model training process. Section 4 presents
the experimental results obtained by collecting data during
a sea mission and processing them offline on the vehicle
hardware. Finally, Section 5 summarizes the presented
research by focusing on the major achieved results; further-
more, a brief description of the future trends is illustrated.

2. UNDERWATER ATR - STATE OF THE ART

A breakthrough object detection solution, based on mod-
ern CNNs, was proposed in Girshick (2015). Fast R-CNN
processes the input image with convolutional and max-
pooling layers to produce a set of Region of Interest (RoI).
Each RoI is then fed into fully connected layers that
branch into two sibling layers; one branch is in charge of
classifying possible objects in the RoI, while the other one
has to compute the corresponding bounding boxes. For the
development of the You Only Look Once (YOLO) network
Redmon et al. (2016), a different approach, based on op-
timized end-to-end networks, was chosen. Composed of 24
convolutional layers and 2 fully connected layers, YOLO

achieves real-time image processing with an extremely
high frame per second (fps) by predicting bounding boxes
and class probabilities directly from full images in one
evaluation.

The Single Short Multibox Detector (SSD) (Liu et al.
(2016)) is a noteworthy real-time solution, constituted of
convolutional layers, which predicts category scores and
box offsets, making use of different predictors for different
aspect ratio detections, for a fixed set of default bounding
boxes using small convolutional filters applied to feature
maps. This structure allowed the SSD to reach high-
accuracy detections at high fps.

These ATR solutions have been tested and compared on
several common datasets (Liu et al. (2016)). Region-based
solutions, such as the Fast RCNN and the improved ver-
sions, are the more accurate networks but cannot reach ex-
tremely high inference speed. On the other hand, SSD and
YOLO can work up to 45 fps but with reduced precisions.
In particular, SSD is more accurate than the previous
state-of-the-art for real-time single-shot detectors, such as
YOLO.

The above-mentioned algorithms were designed to work
with images and, since AUVs are commonly endowed
with optical cameras either to acquire data or to aid the
navigation algorithms (Salvi et al. (2008), Zacchini et al.
(2019)), they can potentially be used to detect objects in
the underwater environment. For instance, the Fast R-
CNN network was successfully tested in the underwater
domain in Xiu Li et al. (2015), where it was used to
detect an recognize fish species in optical images. However,
underwater object detection is an extremely challenging
task due to water turbidity as well as illumination con-
ditions. In fact, underwater images are affected by color
distortion and low visibility, caused by the exponentially
light attenuation while it penetrates through the water.
Since the CNN-based algorithms make use of the input
image color components, their results are biased by the
color distortion. This aspect was investigated in Kolaman
et al. (2019), where a novel light invariant video imaging
system (LIVI) was proposed. The LIVI system managed to
neutralize the effect of changing light condition, as could
happen in the underwater applications, and increased the
detection performance. However, the approach proposed
in Kolaman et al. (2019) needed ad-hoc hardware to mod-
ulate the light source. Driven by these considerations, sev-
eral software image enhancement techniques, such as Red
Dark Channel Prior (Cheng et al. (2015)) and Contrast
Limited Adaptive Histogram Equalization (CLAHE) (Ma
et al. (2017)), could be used in order to increase the CNNs
detection accuracy. Moreover, since the image information
content can be extracted from the local contrast, the
strategies, which work on it, should be preferred. For in-
stance, CLAHE approach works on rectangular subregions
instead of on the entire image, with the aim of realizing
a local equalization. Furthermore, CLAHE algorithm is
acceptable for real-time underwater applications thanks
to its reduced computational cost and its adaptivity to
different working conditions.

Although the image quality can be enhanced, the problem
of the camera low range visibility caused by the water
turbidity cannot be overcome. As a consequence, acoustic
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sensors are commonly exploited in underwater applications
as large scale mosaicing of unknown areas (Franchi et al.
(2018)). Indeed, sonars can acquire acoustic images with
various ranges, depending on the water and environment
conditions, and they are not influenced by illumination
conditions. However, acoustic images can be quite noisy
and lack in details, making acoustic-based objects detec-
tion challenging. SSSs acquire cross-track slices of acoustic
reflections that are combined along the direction of motion
to create an image of the sea-bottom. Such sonars provide
long-range high-resolution images that allow detecting ob-
jects in large survey areas. FLSs can provide good res-
olution images, more detailed than SSSs, but at shorter
distances, at high frame rates. Additionally, the vehicle is
not required to move to create an image.

The use of CNNs to classify FLS images was investigated
in Valdenegro-Toro (2016), where the author proposed
a performance comparison between CNNs and classical
template-matching approaches. Finally, in Kvasic et al.
(2019), modern CNN object detector architectures, modi-
fied versions of YOLO, were tested for diver detection in
acoustic images, acquired by an FLS.

3. DEEP NEURAL NETWORK TRAINING

DL-based approaches for computer vision applications
usually rely on CNN models trained with high-resolution
images; as a matter of fact, such computationally expen-
sive strategies aprioristically exclude the possibility for
an ATR architecture to be performed in real-time. For
this reason, since carrying out ATR while AUV navigat-
ing was the major purpose of the project, the focus has
shifted to the SSD and Fast R-CNN architectures which
guarantee the required trade-off between high-standard
inference performance and the feasibility for real-time im-
plementation. More in detail, the SSD network has been
selected to fulfill a high-FPS recognition task with optical
images. On the other hand, since the acoustic frames were
captured with a lower frame-rate (3 Hz), the mean Aver-
age Precision (mAP) has been favored as model selection
metric over the inference speed; as a consequence, Faster
R-CNN has been preferred to faster but less accurate
DL structures, as YOLO. Furthermore, since this research
emphasizes on a practical application of state-of-the-art
CNN techniques rather than a theoretical disquisition, us-
ing pre-trained model weights has resulted as the optimal
solution in terms of learning and convergence timings.
Moreover, from a practical perspective, since the process
of gathering a large dataset in an underwater scenario is
by no means straightforward, exploiting transfer learning,
by fine-tuning higher-order feature representations, allows
to remarkably speed up the training phase. As far as the
specific selections are concerned, the SSDMobileNet v2
(Liu et al. (2016)) and the Faster R-CNN Inception v2
(Girshick (2015)) networks have been adopted to process,
respectively, the optical and acoustic images.

Since the DL algorithm performance strongly depends on
the training process, the training dataset is of utmost
importance to achieve high-precision solutions; the larger
and more heterogeneous the dataset is, the more accurate
the network will be in detecting objects in new unseen im-
ages. Acquiring underwater data could be challenging and

Fig. 1. The pipeline structure deployed in the basin in La
Spezia, Italy, for the ERL 2018 challenge.

extremely expensive because of unexpected variations of
the environmental conditions as well as unavoidably logis-
tic constraints. Nonetheless, modern open-source machine
learning platforms, such as Tensorflow, provide several
data augmentation options able to create new images by
modifying the existing ones and emerge as useful tools to
increase the dataset dimension. Thus, plenty of images are
not required and the underwater dataset gathering does
result as a demanding but feasible task.

Within the scope of this contribution, the training dataset
was acquired with FeelHippo AUV, described in Section
4, during sea trials at the European Robotics League
Emergency 2018 (Ferri et al. (2017)), which took place
in La Spezia (Italy). Optical images were acquired with
the downward-pointing IPCam ELP 720p, whilst acoustic
images were provided by the 2D FLS Teledyne Blueview
M900. The ERL Challenge was structured so as to address
a simulated yacht accident in the basin of the NATO
Science and Technology Organization Centre for Maritime
Research and Experimentation (CMRE); as partial task
of a more complex mission, the AUVs were required to
automatically recognize a damaged pipeline (represented
by a yellow pipeline with attached a red marker) alongside
a whole pipeline structure (Fig. 1) assembled by the afore-
mentioned damaged pipeline as well as other five pipelines.
To accomplish such tasks, the camera was used to detect
both the marker and the pipelines, whilst the FLS was ex-
ploited for structure detection. Hence, 500 optical images
of the pipelines and the red marker, with a resolution of
704×576 pixels, constituted the SSD training dataset. In
particular, before the training stage, the camera frames
were processed by means of the CLAHE algorithm with
the aim of enhancing the image sharpness and contrast.
As reported above in this section, to build a robust train-
ing dataset, data augmentation options of the Tensoflow
framework were used the training process. In particular,
optical images were randomly horizontally and vertically
flipped and randomly cropped, and image values, such as
brightness, contrast, hue and saturation, were randomly
modified. These augmentation options have been selected,
considering that the AUV was supposed to detect inter-
esting objects while it was performing different inspection
surveys in different environmental conditions. The Faster
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R-CNN was, instead, trained with a dataset made of 200
acoustic images, acquired by the acoustic sonar in a naive
resolution of 894×477 pixels, depicting the structure. To
further increase the dataset, data augmentation options
of the Tensorflow framework were used: the dataset was
augmented by randomly horizontally flipping the images
and randomly varying their brightness.

The size configuration of the input images differs between
SSD and Faster R-CNN; whereas the former relies on
a fixed shape image resizing, the latter is trained by
a shorter edge-based image scaling strategy. Concerning
the camera frames, the images have been down-scaled
(352×288) so as to trade inference accuracy for more
efficient processing speed. On the other hand, due to the
low-resolution and low-frame rate features of the sonar
pictures, the Faster R-CNN training pipeline has been
configured such that the image dimensions, as well as
the aspect ratio, are maintained in order to prioritize
the classification performance over the reduction of the
computational cost. Turning to the optimizer selection
and batch size design, the SSD model has been trained
by using RMSProp (Tieleman and Hinton (2012)) with
batch sizes of 24 whilst Faster R-CNN has exploited
Stochastic Gradient Descent (SGD) with momentum with
batch sizes of 1; for sake of completeness, the single-
image batch size solution for Faster R-CNN has built upon
the fact that this CNN architecture utilizes images with
different sizes within the training stage. Finally, for each
CNN architecture the learning rate schedules have been
custom-defined so as to guarantee a fast convergence while
achieving optimal inference results. The whole training
process has been performed on a PC fitted with 32GB
RAM, an Intel Core i7-8750H processor and an Nvidia
GeForce GTX 1070 Ti card.

The loss function, which was defined as a weighted sum
of the partial classification and localization losses, was
minimized during the training stages of both the SSD
and the Faster R-CNN networks. Turning to an analysis
of the mAP and FPS metrics, evaluated on the valida-
tion dataset (provided by holding out 10% of the whole
training dataset), the CNN architecture performances are
highlighted in Table 1. The achieved outcomes reflect
the aforestated considerations on the CNN model de-
sign selection: whereas the Faster R-CNN Inception v2
slightly outperforms SSDMobileNet v2 in terms of mAP,
the acoustic image inference stage is considerably slower
than the respective optical frame value.

Table 1. CNN Performance Indicator Score

Model mAP FPS

SSDMobileNet v2 0.831 5.0
Faster R-CNN Inception v2 0.851 1.0-1.1

4. EXPERIMENTAL TESTS AND RESULTS

The developed ATR strategy has been tested in the con-
text of European Robotics League (ERL) (Ferri et al.
(2017)), a robotic tournament for European university
teams, in which the University of Florence has participated
with FeelHippo AUV (Allotta et al. (2017)) (see Fig. 2).
FeelHippo AUV, developed by the Department of Indus-
trial Engineering of the University of Florence (UNIFI

Fig. 2. FeelHippo AUV during a sea trial.

DIEF), is a light-weight and compact vehicle provided
with the capability to actively perform complex tasks
and missions. The main properties of FeelHippo AUV are
reported in Table 2.

Table 2. FeelHippo AUV Main Features

Weight [kg] 35
Dimensions [mm] 600×640×500

Maximum Depth [m] 30
Maximum Longitudinal Speed [m/s] 1

Battery Life [h] 3
Controlled DOFs 4

Additionally, the electronic devices and the sensor set
mounted on board are listed as follows:

• U-blox 7P precision Global Positioning System (GPS);
• Orientus Advanced Navigation Attitude Heading Ref-

erence System (AHRS);
• KVH DSP 1760 single-axis high precision Fiber Optic

Gyroscope (FOG);
• Nortek DVL1000 DVL, measuring linear velocity and

acting as Depth Sensor (DS);
• EvoLogics S2CR 18/34 acoustic modem;
• Teledyne BlueView M900 2D FLS;
• Ubiquiti Bullet M2 WiFi access point;
• 868+ RFDesign radio modem;
• one bottom-looking ELP 720p MINI IP camera;
• one Microsoft Lifecam Cinema forward-looking cam-

era;
• two lateral ELP 1080p MINI IP cameras;
• Intel i-7-based LP-175-Commel motherboard (used

for onboard processing);
• two Intel Neural Compute Stick 2;
• one NVIDIA Jetson Nano.

In order to validate the training methodology, described in
Section 3, a hierarchical-stage strategy has been employed.
Firstly, several optical frames and acoustic images have
been acquired by using, respectively, the bottom-looking
ELP 720p MINI IP camera and the Teledyne BlueVIew
M900 2D FLS during a FeelHippo AUV pre-programmed
mission. As far as the optical image enhancement tech-
niques are concerned, images have been processed with the
CLAHE algorithm, running online on the Intel i-7-based
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LP-175-Commel motherboard, to overcome the limitations
introduced by the low-visibility conditions. For instance,
a comparison between a camera raw image and a CLAHE
enhanced one is shown in Fig. 3.

Fig. 3. Comparison between the original image (top) and
the CLAHE enhanced image (bottom).

In a second post-processing stage, the SSD and Faster
R-CNN trained models have been executed on differ-
ent dedicated hardware platforms; indeed, this hardware-
decoupling solution provides the ATR system with the
capability to process the images with the requested FPS
value and guarantees the trained CNN modes to be real-
time on-board runnable. With regard to the optical ATR
approach, the SSD trained architecture has been optimized
as a compiled graph, which has been subsequently loaded
onto the Intel Neural Compute Stick 2 (Intel (2018)).
Turning to the Faster R-CNN trained network, the pre-
diction task on the acoustic frames have been fulfilled
by means of the NVIDIA Jetson Nano (NVIDIA (2018)).
This hierarchical-stage strategy used to validate the pro-
posed strategy, composed of a training stage and a post-
processing inference stage, is summarized in the flowcharts
depicted in Fig.4 and Fig. 5.

Fig. 4. The flowchart describing the training stage.

The developed strategy has guaranteed to reach the ex-
pected results; indeed, the classification task has been
achieved with an overall accuracy which exceeds 90% in
both the optical (Fig. 6) and acoustic (Fig. 7) image sets.

Fig. 5. The post-processing stage used to analyze collected
images during a pre-planned mission.

Fig. 6. Example of pipe and marker recognition in an
optical image.

Fig. 7. Example of structure recognition in a 2D FLS
acoustic image.

5. CONCLUSION AND FUTURE WORK

In light of all the above considerations, the proposed work
arises as a validation proof of the feasibility of DL method-
ologies for ATR tasks in the underwater environment.
In particular, the ATR strategy performances have been
investigated on both the acoustic and optical subsea im-
agery. Within the regard of this research, an experimental
dataset has been acquired by using the payload sensors
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of FeelHippo AUV so as to optimally maximize the train-
ing stage effectiveness. Since the training dataset heavily
affects networks performances, the dataset gathering task
shall be tackled carefully. Concerning the underwater en-
vironment this process could be challenging and time ex-
pensive. Hence, the dataset augmentation options shall be
investigated meticulously. As far as the CNNs, used in the
training stages, are concerned, whilst a SSD network has
been trained for the ATR task in optical images, a Faster
R-CNN has been employed to develop an accurate trained
model for the FLS acoustic imagery. Finally, experimental
tests have been carried out in order to validate the above-
mentioned trained models loaded on dedicated hardware
platforms. Different CNN architectures to fit the trade-off
between inference speed and accuracy will be evaluated.
Future works will also include the employment of the
proposed ATR strategy in an overall intelligent system
which led the vehicle to detect and recognize unknown
targets as well as navigate towards them.
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