
A deep learning unsupervised approach for
fault diagnosis of household appliances

Francesco Cordoni ∗, Gianluca Bacchiega ∗∗, Giulio Bondani ∗∗,
Robert Radu ∗∗∗, Riccardo Muradore ∗

∗University of Verona - Department of Computer Science
Strada le Grazie, 15 Verona, 37134-ITALY

e-mail: {francescogiuseppe.cordoni,riccardo.muradore}@univr.it
∗∗R&D, I.R.S. srl, Padova, Italy

e-mail: {bacchiega,bondani}@irsweb.it
∗∗∗R&D, FirsT srl, Pordenone, Italy

e-mail: radu@firstech.it

Abstract: Fault detection and fault diagnosis are crucial subsystems to be integrated within
the control architecture of modern industrial processes to ensure high quality standards. In
this paper we present a two-stage unsupervised approach for fault detection and diagnosis in
household appliances. In particular a suitable testing procedure has been implemented on a
real industrial production line in order to extract the most meaningful features that allow to
efficiently classify different types of fault by consecutively exploiting deep autoencoder neural
network and k-means or hierarchical clustering techniques.
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1. INTRODUCTION

Any advanced industrial process needs accurate monitor-
ing in order to detect as soon as possible faults in the
machine or even to prevent fault to occur at all. With the
advent of modern statistical techniques, led by ongoing
development in the field of machine learning (ML), the
manufacturing process has seen the potential of an efficient
automatic and data-driven fault detection and diagnosis.
Thanks to modern ML techniques, it is now possible
to build a strong and reliable automatic fault detection
module that can detect faulty machine and out-of-spec
products in a production line, identifying an anomalous
behaviour and also the nature of the fault. The advantage
of implementing such automatic procedure is twofold: on
one side it is possible to promptly detect faults with all
the benefits coming from an early identification of mal-
functioning, on the other side it is possible to considerably
reduce misclassified machines with particular reference to
undetected faults.

Due to the above mentioned reasons, ML approaches have
seen a constant increasing attention in the last ten years as
a new paradigm to tackle and solve data-driven and poorly
structured problems. The development in sensor technol-
ogy, computational power and software tools, allowed ML
algorithms to be successfully applied to a wide variety of
problems with previously unforeseeable accuracy, mainly
in action recognition, computer vision, pattern recogni-
tion, etc. Recently, ML techniques have also been exploited
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in the research area of fault detection and isolation, and
predictive maintenance for manufacturing processes, see,
e.g. Muradore and Fiorini (2011); Susto et al. (2017, 2015);
Susto and Beghi (2016).

One of the major disadvantage of ML techniques is that,
in order to be able to construct a strong fault classification
module, lots of meaningful data have to be collected.
Informative features have to be extracted so that models
can be trained accurately to detect and isolate faults. This
feature engineering process is a key aspect to develop a
robust and reliable detection system. This involves the
correct choice and setting of the most useful sensors.
Further, most ML methods require labelled dataset to be
trained on, in the sense that for any sample in the dataset
a precise indication regarding the state of the system
must be provided; such methods are usually referred to
in literature as supervised learning methods. The above
specification is often not available, meaning that indication
regarding the state of the system needs to be retrieved
having no precise a priori information. Methods that can
classify samples without any indication on the working
condition of the system are referred to as unsupervised
learning methods, Kuhn and Johnson (2013), or see, e.g.
Routray et al. (2010), Venkataraman et al. (2007) for an
application of unsupervised methods to fault detection
problems.

We recall that in an unsupervised learning problem, a
model detects clusters in which data are divided without
any knowledge on the class they belong to. It is clear
that supervised methods are stronger and more reliable,
nonetheless they necessitate of an expert operator that
properly labels each outcome so that a model can be

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10893



trained. Therefore having a dataset well structured that
allows to efficiently use unsupervised methods can avoid
the long and costly procedure of suitably labelling each
machine (for fault detection) and product (for quality
monitoring).

In the present work we propose a fully unsupervised tech-
nique for a fault classification problem, where data will be
divided into suitable clusters without exact knowledge on
fault labels. This technique will be applied to an industrial
fault detection problem in a refrigerator test line. Several
sensors have been mounted on the devices; in particular
temperature, current and power measurements have been
collected for any machine in the process. A particular
testing procedure, obtained enabling and disabling sequen-
tially some component(s) of the devices, (refrigerator in
this study), has been implemented allowing to extract rel-
evant features that characterize the state of the household
appliances. Several ML techniques have been developed in
order to detect if either the machine is faulty or not, and
then subsequently, if a fault occurs, to also detect the exact
type of fault. Data from the production line have been
collected and each household appliance has been carefully
labelled by an expert operator with the type of fault, if
any: this labels will be used as ground-truth.

The main contributions of the paper are:

(1) to test different unsupervised techniques to fault
diagnosis using real production data;

(2) to present an efficient testing procedure allowing to
detect precisely the type and location of the fault on
unlabelled datasets.

The paper is structured as follows: in Section 2 the problem
and the available data are presented; in Section 3 the
proposed methodology is discussed whereas in Section 4
the experimental results are shown. Conclusions are drawn
in Section 5 together with the future works.

2. PROBLEM STATEMENT

The objective of the present work is to develop a robust
fault classification technique that, monitoring adequately
a production line, allows to promptly detect when a fault
occurs as well as the exact type of fault. In order to achieve
this goal, a precise and highly controlled testing procedure
has been designed, implemented and verified on real data.
Different types of sensors have been used to collect data
from each refrigerator in the production line; in particular
temperature as well as current and power have been mea-
sured over time. The household appliances under study
have two different modes. The testing procedure consists in
enabling and disabling different components of the device
working alternately in one of the possible modes. Figure 1
shows typical curves of the measured signals. The detailed
testing scheme and feature extraction will be treated in
later section. The testing procedure, with particular refer-
ence to the sequence of different working conditions, allows
to extract important information from power, current and
temperature profiles, that in turn yields to a set of features
characterizing the status of the refrigerator. On these
suitable features ML classifiers are designed and trained.

Fig. 1. Temperature and power time series collected during
the testing procedure.

2.1 The data

Data consists of 11 features extracted from characteristic
power, current and temperature time series alongside with
ambient temperature. Each feature is extracted from either
power curve or temperature curve and has been chosen
to contains useful information for analysing the electro-
mechanical device by expert personal.
The dataset consists of 12,726 machines, of which 12,235
non–faulty. The remaining 491 household appliances have
been label as faulty (259 machine faults and 232 server
faults). The dataset contains 2 different types of fault,
the former type represents a specific fault of the machine
whilst the latter type of fault represents a fault occurred at
the software level (server fault). It is worth remarking that
the server fault is the most difficult to characterize since
the testing procedure has been designed to detect machine
faults. This means that this fault is the less important one
since it does not require any electrical/mechanical repair.
We will therefore consider 3 clusters, where non–faulty
devices belong to a cluster, devices with a fault at server
level to a second cluster and faults of devices should be
collected into the last cluster.

2.2 Feature engineering

As briefly mentioned above, in order to apply ML methods
to fault diagnosis, a highly controlled testing procedure
needs to be implemented. Such a procedure is composed
by 6 phases, switching between different operating modes
by enabling/disabling particular components of the refrig-
erator. Table 2 reports the implemented testing procedure;
when mode 1 is on, only the refrigerator works, whereas
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mode 2 enables both the refrigerator and freezer; we stress
that phases have fixed duration, as reported in Table 2.
Some components are further enabled or disabled based on
a precise condition that the resulting curve should satisfy.

Component Phase 1 Phase 2 Phase 3
Mode 1 Mode 2 Mode 2

Duration: 2’ 15’ 10’
Freezer fan on off on
Compressor on on on

Refrigerator valve on on off if T1 − T2 > 3◦

Freezer valve on on on
Resistor off off off

Component Phase 4 Phase 5 Phase 6
Mode 2 Mode 2 Mode 2

Duration: 25’ 2’ 2’
Freezer fan off off off
Compressor on on off

Refrigerator valve off off off
Freezer valve on off if T3 − T4 > 3◦ off

Resistor off off on

Table 2. Testing procedure; Ti means temper-
ature registered at the end of phase i.

At the end of the testing procedure, relevant features
from the characteristic power, current and temperature
curves are extracted. The extracted features accurately
characterize the state of the device and are reported in
Table 3.

Feature # Meaning
1 ambience temperature
2 power at the end of phase 4
3 current at the end of phase 4
4 power differential between phase 3 and 4
5 resistance at phase 4
6 power after 16’
7 power after 20’
8 power after 48’
9 current after 16’
10 current after 20’
11 current after 48’

Table 3. Extracted features

Figure 4 shows the existing relation between two of the
11 extracted features. It is evident how some faults (red
and blue samples in Figure 4) clearly emerge from non–
faulty devices whereas some other types of fault are more
complicated to retrieve by simple visual inspection.

Fig. 4. Scatterplot between Feature 1 and Feature 2

3. FAULT DIAGNOSIS: THE METHODOLOGY

In order to identify faults and malfunctioning in indus-
trial process several techniques may be used. The classi-
cal approach is based upon the development of a model,

which may be either based on physical laws or identified
from input/output measurement data, see, e.g. Qin (2012);
Willsky (1976). Although being able to provide strong
and accurate fault detection, it relies on the assumption
that an accurate mathematical model of the plant is
available and that such a model does not change over
time (otherwise recurrent identification techniques must
be implemented to keep the model updated). Moreover,
the identification step often requires a deeply and precise
physical/chemical/mechanical knowledge of the process
under study. Since this last assumption is rarely true
in complex industrial plants, recently fault identification
methods based on machine learning have proven to provide
as accurate results as model-based fault identification.
We propose a two–stage methodology that combines se-
quentially different unsupervised methods, where 1) an
autoencoder neural network is firstly applied to learn a
new compressed data representation, then 2) a cluster-
ing technique is applied to the new data representation.
This new data representation will be able not only to
clearly separate faulty and non–faulty samples, but also to
emphasize differences between server faults and machine
faults, see, e.g. Chopra and Yadav (2015); Tagawa et al.
(2015) for methods exploiting autoencoder neural network
in fault detection. It is worth remarking that rather that
an extensive automatic feature engineering based on sta-
tistical indicators and rolling windows, we extract specific
values from, or suitable functions of, the above charac-
teristic curves. This operation has the advantage that
our procedure captures the physical sense of the original
curves. Therefore, a deep autoencoder is trained to learn
a new data representation, so that, based on the new data
representation, standard clustering techniques, such as k–
means clustering and hierarchical clustering will be ap-
plied to classify data. The proposed approach is compared
with both standard approaches, where clustering methods
are applied directly to data without pre-processing data
through the autoencoder neural network, and clustering
methods applied after a dimensionality reduction through
principal component analysis (PCA).

3.1 Clustering methods

In unsupervised learning, unlike supervised learning, the
target variable is unknown. We are dealing with the

unlabelled dataset D := {Xi}Ni=1 composed by N samples,
with

Xi :=
(
xi1, . . . , x

i
n

)
, n ∈ N , i = 1, . . . , N ,

where N <∞ and N denotes the natural numbers.
In the clustering problem, the main goal is to divide each
sample Xi of the dataset D into L clusters S1, . . . , SL; in
the present situation the clusters should correspond either
to the label fault/no fault or to different types of fault.
There exists several clustering methods; one of the most
popular is known as k-means clustering and it is a centroid-
based clustering method. In this type of method each
sample is assigned to the cluster Sk such that within each
cluster the average dissimilarity of the observations from
the cluster mean is minimized, see, e.g. Friedman et al.
(2001). In particular, one aims at finding the cluster Sk

that minimizes the following loss function
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L∑
k=1

∑
xi∈Sk

‖
(
xi1, . . . , x

i
n

)
− x̄k‖2 ,

being x̄k the k−th cluster mean.
Another different type of clustering method is the hierar-
chical clustering, see, e.g. Friedman et al. (2001). As k-
means clustering is based on the assumption of L clus-
ters specified by the user, hierarchical clustering on the
contrary does not require any prior specification on the
number of clusters but the best number is searched based
on a measure of dissimilarity between groups of observa-
tions specified by the user. The output is a hierarchical
representations of the dataset, allowing to derive a hier-
archy in the clusters. Several dissimilarity measures can
be used, such as the standard Euclidean norm or squared
Euclidean norm.

3.2 The Autoencoder Neural Network

The AutoEncoder (AE) neural network, see, e.g. Vincent
et al. (2010), is an unsupervised network used to learn
a new representation for a given dataset, typically with
the final goal of reducing dimensionality or removing
noise. Main applications of autoencoders are found in
highly unbalanced datasets where the majority of data
belongs to a given class. The classification problem under
analysis in the present work is of this type since most of
the data belong to the no–fault class. The autoencoder
consists of two parts: the encoder and the decoder. An AE
neural network works similarly to a classical feed–forward
network, the first layer receives the raw input data Xi and
compresses them into a lower dimensional representation
Hi through a non–linear function σ1,

Hi = σ1
(
W 1Xi + b1

)
,

whereas the decoder part takes the new representation Hi

as input and then reconstructs the input with a non–linear
function

Zi = σ2
(
W 2Hi + b2

)
,

where σ1 and σ2 are suitable activation functions, W 1 and
W 2 are weights matrices, and b1 and b2 are biases.
A further typical structure of the autoencoder is the
bottleneck joining the encoder and the decoder, see, e.g.
Bengio et al. (2009); LeCun et al. (2015).
In particular, given the unlabelled dataset D, the AE
solves the following optimization problem

min
W,b

1

2N

N∑
i=1

∥∥Xi − σ2
(
W 2σ1

(
W 1Xi + b1

)
+ b2

)∥∥2 +

+
λ

2

(∥∥W 1
∥∥2 +

∥∥W 2
∥∥2) ,

where λ is a constant weight decay parameter needed for
regularization reasons.
Given D, the final goal of the autoencoder is to learn the
function f that maps Xi ∈ Rn into a lower dimensional
vector Hi ∈ Rd, d < n, that is

Hi = f (Xi) .

3.3 Evaluation of results

The confusion matrix reported Table 5 will be considered
to easily visualize the results of a classification method. In

particular in a confusion matrix, predicted classes (rows)
are reported against actual classes (columns) in order to
highlight true prediction but also wrong prediction, Kuhn
and Johnson (2013).

Predicted class

Actual

class

Fault No Fault

Fault True Positive (TP) False Positive (FP)

No Fault False Negative (FN) True Negative (TN)

Table 5. Confusion matrix

Due to the higher portion of non faulty devices in our
dataset 1 , we will not base our analysis on accuracy,
which is the proportion between right predictions and total
number of samples; instead we will focus on other metrics
such as positive predicted value (PPV), negative predicted
value (NPV), true positive rate (TPR) and true negative
rate (TNR) which provide measures of how frequently a
faulty device is classified as non–faulty, and vice-versa. In
particular given the nature of our problem, our main focus
will be on PPV and TPR: metrics that emphasize how
many faults have been misclassified. Table 6 reports the
definitions of those metrics, Kuhn and Johnson (2013).

Metric Definition

Accuracy TP+TN
TP+TN+FP+FN

Positive predicted value (PPV) TP
TP+FP

Negative predicted value (NPV) TN
TN+FN

True positive rate (TPR) TP
TP+FN

True negative rate (TNR) TN
TN+FP

Table 6. Metric definitions

4. FAULT DIAGNOSIS: THE CASE STUDY

The unsupervised methods introduced in Section 3 will be
tested on data from a real production line of household
appliances.
We will test six methods. First we will apply k-means
clustering, second we will apply the same k-means method
to a new representation of the data learned via principal
component analysis (PCA) and, third, k-means clustering
is applied after an autoencoder neural network is used
to learn a new data representation. Finally, hierarchical
clustering will be applied to raw data, PCA representation
and autoencoder representation. It is worth mentioning
that both PCA and the autoencoder are unsupervised
methods so that the procedure is in fact fully unsupervised.
We will require the method to divide the dataset into three
clusters, that in principle should coincide with server fault,
machine fault and no fault.
The confusion matrices in Tables 7 summarize the results
applying k-means, PCA plus k-means and the autoencoder
plus k-means clusterings; it can be seen that all methods
perform poorly. In particular, although the autoencoder
representation, as it can be seen in Figure 10, highlights
three clusters, k-means method fails to understand real

1 Such a small number of faults is due to the fact that the production
line under study has been accurately optimized in the last years for
mass production.
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division between clusters, with very poor results. We stress
that, given poor results showed by the k-means method,
we will not report graphical results for this method but
only confusion matrices.

Predicted class

Actual

class

Machine Fault Server Fault No Fault

Machine Fault 222/184/221 10/0/7 0/48/4

Server Fault 182/74/182 52/156/50 25/29/28

No Fault 0/6033/0 5340/0/5956 6895/6202/6279

Table 7. Confusion matrix for k-
means/PCA+k-means/autoencoder+k-means.

In particular, the poor results emerging after the applica-
tion of the autoencoder might be motivated by the fact
that clusters, as defined above, are hierarchical, in the
sense that the two faulty clusters, i.e. machine fault and
server fault, belong to the same cluster of faulty devices.
We report that similar results hold even if one tries to add
more clusters to the method.
Based on this intuition we have therefore applied hierar-
chical clustering, so that we are trying to divide data into
three hierarchical clusters. In particular the dissimilarity
measure highlights a structure composed by two main
clusters, which should correspond to no fault and fault,
this last cluster further divided into two more clusters,
machine fault and server fault.
The confusion matrix in Table 11, report the results for
the hierarchical clustering applied directly to raw data and
PCA plus hierarchical clustering ; Figure 8 reports results
PCA plus hierarchical clustering ; in particular top panel
represents real data classes whereas the bottom panel
represents data divided into cluster using the proposed
method. As for the k-means clustering case, also applying
hierarchical clustering directly to raw data or after PCA
has been applied, shows poor results. In particular, the
hierarchical clustering exhibits a typical problem of highly
unbalanced dataset, where the majority of samples are
classified as non–faulthy, resulting in high accuracy but
very low true negative rates. On the contrary PCA seems
to separates three clusters, with some of the server faults
being isolated from the rest, but still no clear clusters
emerge from the new representation. This might be due to
some non–linear relations in the data, that can be learned
via a deep autoencoder neural network.

Predicted class

Actual

class

Machine Fault Server Fault No Fault

Machine Fault 0/14 1/0 258/218

Server Fault 8/1 8/156 216/102

No Fault 0/0 1/ 12234/12234

Table 9. Confusion matrix for hierarchical clus-
tering/PCA+hierarchical clustering

Figure 10 and the confusion matrix in Table 11, report
the results for the hierarchical clustering applied after the
autoencoder neural network has been used to learn the
new data representation. It can be seen how now three
clusters clearly emerges in the new representation space,
so that hierarchical clustering is able to detect a great
proportion of data classes with high accuracy, with only
113 misclassified devices out of 12726.

Fig. 8. Representation of real data (top panel) and division
into clusters (bottom panel) for PCA plus hierarchical
clustering

Predicted class

Actual

class

Machine Fault Server Fault No Fault

Machine Fault 222 10 0

Server Fault 26 145 88

No Fault 0 0 12235

Table 11. Confusion matrix for autoen-
coder+hierarchical clustering

Table 12 reports main metrics with respect to the two
classes Fault and No Fault. It appears that the autoen-
coder with hierarchical clustering has better performance
in terms of accuracy, NPV and TNR metrics. Regarding
PPV and TNR metrics, k-means algorithm shows better
performance. It is worth highlighting that, although k-
means shows excellent PPV and TNR performance, the
results for the other metrics are very poor. This means
that, as reported in Table 7, k-means method has a large
number of false negative, predicting that a sample presents
some type of fault even though the machinery is working
properly. This fact goes against the requirement of a fully
automated and reliable testing procedure where the oper-
ator has to intervene only when the algorithm reports a
(real) malfunctioning. A TPR of 8% means that only the
8% of total faulty predicted samples presents a real fault.
The autoencoder with hierarchical clustering is then the
more reliable solution since the new representation learned
via the autoencoder allows to efficiently separate samples
according to the type of fault.
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Fig. 10. Representation of real data (top panel) and
division into clusters (bottom panel) for autoencoder
plus hierarchical clustering

Method Accuracy PPV NPV TPR TNR

k-means 57.8% 94.9% 56.3% 8% 99.6%

Hierarchical 96.2.8% 34.6% 99.9% 94.4% 96.2%

PCA + k-means 52% 84.3% 50.6% 6% 98.7%

PCA + Hierarchical 97.4% 34.8% 99.9% 99.4% 97.4%

AE + k-means 52.9% 51.3% 7.1% 100% 99.4%

AE + Hierarchical 99.3% 82% 100% 100% 99.2%

Table 12. Results for clustering methods

5. CONCLUSION

This work shows how a fully unsupervised two–stage
method that combines modern autoencoder neural net-
work and classical clustering methods can be successfully
applied to the fault detection and diagnosis problems.
Proper feature extraction based on precise physical mean-
ing has been collected on power, current and tempera-
ture curves to obtain relevant features to base the ML
methods upon. We have shown that the dimensionality
reduction capability of an autoencoder neural network
can improve performance of standard clustering method
for highly unbalanced datasets. More important we have
shown how the autoencoder can also learn a new data
representation that can lead to high accuracy, especially
in the fault diagnosis case. The results reported in Table
12 show that the proposed algorithm presents the higher
accuracy with respect to the most important metrics. This

is clearly important on real manufacturing processes where
a fully unsupervised testing procedure allows to ask for
an expert human intervention only when really needed.
Future possible extensions to the above method include
the usage of autoencoder directly on raw time series data,
such as the long–short time memory (LSTM) autoencoder.
This allows to avoid feature extraction, exploiting feature
extraction capability typical of deep learning methods.
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