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Abstract: This paper addresses the problem of formation control for multiple Unmanned Aerial
Vehicles (UAVs) with relative sensing capabilities and operating under input–state limitations. More
specifically, we propose a novel distributed leader-follower architecture for a team of aerial robots to
follow cooperatively a desired path while maintaining a predefined formation geometry. In the proposed
control strategy, knowledge of the desired formation path is restricted to the leader UAV, which can also
broadcast its state information to all followers. In this way, the leader UAV, by employing a Nonlinear
Model Predictive Control (NMPC) law, tries to navigate the whole group of agents towards the desired
path while ensuring the connectivity of the team. More specifically, in order to maintain the connectivity,
the leading UAV estimates the followers motion, by employing a fast geometric propagation that exploits
the knowledge of the desired formation and sensing capabilities. On the other hand, the followers
estimate the motion of the leading UAV by receiving its local state information and implementing a
NMPC law that achieves tracking of the desired formation and maintains the connectivity with respect
to the leader UAV.

1. INTRODUCTION

During the last decades, considerable progress has been made
in the field of Unmanned Aerial Vehicles (UAVs), with a
significant number of results in a variety of aerial surveillance
activities, as in Tsourdos et al. (2010).

Classic approaches such as feedback linearization in Akhtar
et al. (2012), Lyapunov based stabilization in Castillo et al.
(2004), dynamic inversion in Das et al. (2009), PID and LQR
in Tayebi and McGilvray (2006) and backstepping in Frazzoli
et al. (2000) have been used in the past to design motion con-
trollers for rotary wing aerial robots. Nevertheless, the afore-
mentioned methods yield poor closed-loop performance and
the results were local, around only selected operating points. In
addition, the aforementioned motion control strategies do not
guarantee input and state constraints. In this context, Nonlinear
Model Predictive Control (NMPC) Allgöwer et al. (2004) is
a suitable approach for complex surveillance missions, as it
is able to combine motion planning with input and state con-
straints satisfaction, as in Heshmati-Alamdari et al. (2019).

Most of the aerial surveillance tasks can be carried out more
efficiently if multiple UAVs are cooperatively involved, as
shown in Chen et al. (2010). Therefore, cooperation between
multiple UAVs, and especially the decentralized case, gained
a significant attention during the last years. Decentralized co-
operative schemes usually depend on explicit communication
among the robots (e.g., online sharing of all internal and ex-
ternal information to improve coordination performance, as in
Rucco et al. (2015)). For instance, in Bemporad and Rocchi
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(2011) decentralized control strategies have been proposed for
formation of UAVs considering obstacles and collision avoid-
ance constraints. However, employing all of the aforementioned
strategies requires each robot to communicate with the whole
team. This requires an accurate common global localization
system for all participating robots which is either difficult to
be achieved in indoor environments or in the most optimistic
case would raise the mission cost. Moreover, in general, such
approaches may become infeasible, in terms of bandwidth and
computational complexity, as shown in Rucco et al. (2015).

Motivated by the aforementioned considerations, this work
presents a novel cooperative control framework for a group of
multiple UAVs in order to follow a desired path while maintain-
ing a predefined formation geometry and satisfying input and
state constraints. In particular, we propose a novel decentralized
leader-follower architecture, where the leader UAV, which has
knowledge over a predefined formation geometry and desired
path, tries to navigate the whole group of agents while ensuring
the connectivity of the team. More specifically, in order to
maintain the connectivity, the leader UAV estimates the fol-
lowers’ motion, by employing a fast geometric propagation that
exploits the knowledge of the desired formation and sensing ca-
pabilities. On the other hand, the followers estimate the motion
of the leader UAV, by receiving its local state information and
implementing a NMPC law that tracks the desired formation
and maintains the connectivity with respect to the leader UAV.
Specifically, no explicit data is sent from the followers to other
agents involved in the cooperative task, making in this way the
whole system scalable regarding the number of agents involved
in it.
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2. PROBLEM FORMULATION

Consider M + 1 aerial robotic agents under a single leader
- multiple followers architecture operating in a workspace
W ⊂ R3. We denote the agents state vectors by ξi, i ∈
A = {L,F1, . . . , FM}, where L represents the leader,
F1 . . . FM the followers. Let F = A\L. More precisely, ξi ,
[xi,vi,qi,ωi]

T ∈ R3 × R3 × S3 × R3, i ∈ A, includes the
position (i.e., xi = [xi, yi, zi]

> ∈ R3), linear velocity (i.e.,
vi = [ui, vi, wi]

> ∈ R3), attitude quaternion (i.e., qi ∈ S3),
and angular velocity (ωi ∈ R3) vectors for agent i. Unless
otherwise stated, xi and vi are represented in the inertial frame
I, while qi and ωi are represented in the body frame of agent i.
Relative positions in the agents’ body frame are defined as χij ,
and represent the position of agent j, in the frame of agent i. It
is often more practical to use rotation matrices that are derived
from the attitude quaternion q. Such matrices are represented
as Ri/b(qi) : S3 → SO(3) and rotate a vector from frame i
to frame b. When the target frame is the inertial frame I, then
this frame might be omitted, as in Ri/I = Ri. Accordingly,
all rotation matrices Ri/I have the property ||Ri/I|| = 1 and
det(Ri/I) = 1. Without loss of generality, according to the
standard aerial vehicle’s modeling properties in Mahony et al.
(2012), the dynamic equations of each agent i ∈ A can be given
as:

ẋi = vi, v̇i = Ri
νi
mi

+ g, (1a)

q̇i =
1

2
Ω(qi)ωi, ω̇i = J−1i (τi − ωi × Jiωi), (1b)

where mi is the vehicle’s mass, g the gravity vector expressed
in the inertial frame I, Ji the vehicle’s inertia matrix, τi ∈ R3

is the 3-DoF (Degree-of-Freedom) torque vector in the body
frame, and Ω(qi) is defined as:

Ω(qi) =

 qi(w) −qi(z) qi(y)
qi(z) qi(w) −qi(x)
−qi(y) qi(x) qi(w)

−qi(x) −qi(y) −qi(z)


Moreover, νi , [0 0 νi(z)]

T represents a 1-DoF thrust aligned
with the z axis of the agent body frame. From now on, we
denote by ui ,

[
νi(z), τ

T
i

]T ∈ R4 the concatenated control
input of the robotic agent i. Based on the aforementioned
considerations, the dynamics of (1a)-(1b), can be written in
discrete-time form as:
ξi(k+ n+ 1|k) = fi(ξi(k+n|k),ui(k+n|k)), i ∈ A, (2)

where fi : R9 × S3 × R4 → R9 × S3 defines the discrete-
time dynamics for (1a)-(1b), discretized through a zero-order-
hold (ZOH) sampling method. We denote estimations for time
k+n at time k as (k+n|k) and measurements at time k as (k).
Assume that the velocity that the UAV can generate is bounded
by viMax

, i ∈ A. Moreover, quaternions are unit-norm vectors.
These requirements are captured by the state constraint set Ξi,
given by
Ξi , {ξi ∈ R9 × S3 : ||vi|| ≤ viMax

, ||qi|| = 1}, i ∈ A. (3)
The actuation forces and torques are generated by the thrusters.
Thus, we define the control constraint set Ui, i ∈ A, corre-
sponding to the physical actuator limits, as follows:
Ui ,

{
ui ∈ R4 : −

νi(z)
4 ali ≤ τ(x,y) ≤

νi(z)
4 ali ,

−0.01 ≤ τ(z) ≤ 0.01,0 ≤ νi(z) ≤ 4 · 9.81 ·mi

}
, (4)

where ali is the quadrotor’s arm length, i.e., the distance be-
tween the center of the UAV and the motors.

r

Fig. 1. Connectivity for a team of agents including one leader
and two followers. The sensing areas are denoted by
B(xi, r), i ∈ A.

Consider the set of agents A = {L,F1 . . . , FM}. Without loss
of generality, let B(xi, r) be a sensing area where the agent
i ∈ A can measure a relative distance dij and a unitary relative
bearing vector βij with respect to its neighbor j ∈ Ni, where

Ni , {j ∈ A, j 6= i : ||xi − xj || ≤ r}. (5)
It should be noted thatNi denotes the agents that are required to
remain connected (see Fig 1). The aforementioned values can
be defined as

dij = ||xj − xi||, βij = RT
i

xj − xi
dij

, χij = dij βij , (6)

where dij > 0. Note that from a range dij and bearing βij we
can uniquely reconstruct χij - the relative position of agent j in
the frame of i - and that these measurements can be obtained
locally, therefore requiring no communication. Accordingly,
the formation geometry is defined as

χ̂ij = d̂ij β̂ij , i ∈ F , j ∈ Ni, (7)

where d̂ij , β̂ij and χ̂ij are desired relative distances, bearings
and positions. Note that each follower i ∈ F is only aware of it
own desired relative distance, bearing and position with respect
to the leader UAV.

Moreover, we consider that each follower i, i ∈ F receives a
set of information broadcasted by the leader denoted as

wL = [ξTL , v̂
T
L ]T ∈ R12 × S3 ⊂W (8)

where v̂L is the reference leader velocity on the desired path
Akhtar et al. (2012); Gandolfo et al. (2016) andW is a compact
set capturing the information broadcasted by the leader and
satisfies W ⊂ ΞL.
Problem 1. Consider M + 1 UAVs described by (2), with state
and input constraints imposed by the sets Ξi, Ui, i ∈ A, given
in (3) and (4), respectively. Considering that i) only the leader
UAV is aware of a desired path, and ii) the followers have access
only to information broadcasted by the leader UAV defined
in (8), design a distributed control protocol ui, i ∈ A, that
impose the team of agents to follow cooperatively the desired
path pd while guaranteeing i) the maintenance of the predefined
formation geometry in (7), and ii) the connectivity among the
agents with respect to their sensing capabilities defined in (5).

3. CONTROL METHODOLOGY

We propose a control strategy that requires the desired path
pd to be known and tracked by the leader. The leader UAV
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navigates the whole team by keeping the whole group con-
nected and organized according to the desired relative positions
(7). We propose a Decentralized Nonlinear Model Predictive
Control-based (DNMPC) approach to solve Problem 1.

3.1 Control Strategy

At each sample time k, a cost function Ji(·), i ∈ A, is mini-
mized with respect to a control sequence ui = {ui(k|k),ui(k+
1|k), . . . ,ui(k+N−1|k) }, yieldingN predicted states {ξi(k+
1|k), . . . , ξi(k + N |k)} by applying the optimal control input
to the agents dynamics. We also have that ξi(k|k) = ξi(k),
corresponding to the actual feedback of agent i at time k. De-
pending on the agent’s role - either leader or follower - different
assumptions and costs Ji(·) are defined.

Error Definition The vector of errors for the leader UAV as
well as followers UAVs are, respectively,

eL =

[
eLF
evL
eRL

]
=


∑

Fi∈NL

(χ̂LFi − χLFi)

v̂L − vL
eRL

(RL, R̂L)

 ∈ R7, (9a)

eFi =

[
eFiL

evFi

eRi

]
=

 χ̂FiL − χFiL

v̂Fi
− vFi

eRFi
(RFi

, R̂Fi
)

 ∈ R7, i ∈ F , (9b)

where v̂Fi
is the reference leader velocity (i.e., v̂L broad-

casted by the leader) transformed to the followers body frame,
R̂i, i ∈ A, is a predefined desired attitude for the agents in
the formation, and eRi(Ri, R̂i) the same as of eq. (8) in Lee
et al. (2010), eRi

(Ri, R̂i) = 1
2 tr(I − R̂T

i Ri), where tr(·) is
the trace operator. Note that eRi

(Ri, R̂i) ∈ [0, 2). The feasible
error sets are defined as:
EL={eL∈R7:{{χ̂Li

} 	 ΞFi
	ΞL} ∪ {{v̂L}	{vL}} ∪ [0, 2)}

(10a)
EFi={eFi∈R7:{{χ̂FiL}	 ΞL	ΞFi}∪{{vFi}	{v̂Fi}} ∪ [0, 2)}

(10b)

3.2 Leader Control Framework

The following section defines the controller for the formation
leader, as well as the propagation method used to predict the
followers motion. We assume that the leader has access to its
state ξL, relative distance dLFi

and bearing βLFi
measure-

ments, with corresponding desired values d̂LFi and β̂LFi , for all
i ∈ Ni, given in (7). Note that dLFi = dFiL, but βLFi 6= βFiL,
due to (6), which results in χLFi 6= χFiL. We further consider
a prediction function Υei(·), which will be defined hereafter,
predicting the relative position of the followers for a time hori-
zon k + n, n = 1, . . . , N , based only on the measurements
χLFi(k) = dLFiβLFi obtained at time k.

Now we are ready to formulate the NMPC problem for the
leading agent L as

min
uL

JL = min
uL

N−1∑
n=0

[
JP
(
evL(k + n|k),uL(k + n|k)

)
+

JQ
(
eLF (k + n|k)) + JA

(
eRL

(k + n|k))
]
+

JV
(
evL(k +N |k)

)
. (11)

subject to

ξL(k + n+ 1|k) = fL
(
ξL(k + n|k),uL(k + n|k)

)
eLF (k + n+ 1|k) =

∑
Fi∈NL

ΥeFi

(
χ̂LFi−χLFi(k + n|k), viMax

)
eL(k + n|k) ∈ EL, eL(k +N |k) ∈ EfL
uL(k + n|k) ∈ UL , n = 0, . . . , N − 1,

where
JP
(
evL(k + n|k),uL(k + n|k)

)
=

= ‖eL(k + n|k)‖QV
+ ‖uL(k + n|k)‖QR

, (12a)
JQ
(
eLF (k + n|k)

)
= ‖eLF (k + n|k)‖QF

, (12b)
JA
(
eRL

(k + n|k)) = ‖eRL
(k + n|k)‖QA

(12c)
JV
(
evL(k +N |k)

)
= ‖evL(k +N |k)‖QN

, (12d)

and where EfL ⊂ EL is the terminal set, viMax
the maximum

velocity for all i ∈ Ni given in (3), and QF , QV , QR, QA and
QN are positive definite diagonal weighing matrices (QA is a
scalar).

Follower Position Propagation Let χLFi(k) be the relative
position of agent i in the frame of the formation leader, at time
k. This position is calculated based on the leader measurements
i.e, dLFi(k) and βLFi(k) through equation (6).

Taking into account the state constraints in (3), a ballB(χLFi
(k+

n|k),∆viMax
δ) defines the set of all possible relative positions

χLFi
(k+n+1|k) where ∆viMax

= viMax
−‖vL(k+n|k)‖, and δ

is a constant sampling interval;B(χLFi
(k),∆viMax

δ) represents
the set of all possible positions for the neighbor i over one step
of the controller.

The formation leader, acting as a central coordinator in the
formation setting, assumes that the followers strive to achieve
their desired positions as fast as possible, navigating at maxi-
mum velocity to do so. However, as the movement is relative
to the leader, its velocity also influences the set of possible
positions to be achieved by the followers. The relative position
propagation of the followers in the leader frame through the
whole receding horizon is then

ΥFi(χLFi(k + n|k), χ̂LFi , viMax
) = χLFi(k + n|k)+

+
χ̂LFi

− χLFi
(k + n|k)

‖χ̂LFi − χLFi(k + n|k)‖
(viMax

− ‖vL‖)·

· (1− e−α·‖χ̂LFi
−χLFi

(k+n|k)‖) · δ, (13)
where α is a tuning parameter that adjusts the speed gradient of
the followers prediction, and ex the exponential of x.

Finally, it is convenient to define the function Υi in terms of the
error eLF , so that we can include it on the NMPC formulation:

eLF (k + n|k) =
∑

Fi∈NL

(
χ̂LFi − χLFi(k + n|k)

)
(14)

eLF (k + n+ 1|k) =

=
∑

Fi∈NL

χ̂LFi
−ΥFi

(χLFi
(k + n|k), χ̂LFi

, viMax
) =

=
∑

Fi∈NL

ΥeFi
(χLFi(k + n|k), χ̂LFi , viMax

). (15)

3.3 Followers Control Framework

The follower’s objective is to maintain a desired relative po-
sition with respect to the leader. The followers i ∈ NL do
not possess any knowledge over the desired formation path,
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which is known only to the formation leader. The leader, then,
broadcasts through wL(k) the velocity that it tracks at time
k, which the followers use to unify the formation movement.
This means that the desired tracking velocity is kept constant
for all followers along the receding horizon, whereas the leader
can update this desired velocity based on its predicted states.
Accordingly, we assume that the followers have access to their
state ξFi , the relative distance dFiL and bearing βFiL measure-
ments, as well as to the desired formation constraints - d̂FiL and
β̂FiL . We are ready to define the NMPC for the followers as:

min
uFi

JFi = min
uFi

N−1∑
n=0

[
JP
(
evFi

(k + n|k),uFi(k + n|k)
)
+

+ JQ
(
eFiL(k + n|k),wL(k)) + JA

(
eRFi

(k + n|k))
]
+

+ JV
(
evFi

(k +N |k)
)
. (16)

subject to
ξFi

(k + n+ 1|k) = fFi

(
ξFi

(k + n|k),uFi
(k + n|k)

)
eFiL(k + n+ 1|k) = geL

(
eFiL(k + n|k),wL(k)

)
eFi

(k + n|k) ∈ EFi
,uFi

(k + n|k) ∈ UFi
, n = 0, . . . , N − 1

eFi
(k +N |k) ∈ EfFi

, wL(k) ∈W
where
JP
(
evFi

(k + n|k),uFi
(k + n|k)

)
=

= ‖evFi
(k + n|k)‖QV

+ ‖uFi(k + n|k)‖QR
, (17a)

JQ
(
eFiL(k + n|k)

)
= ‖eFiL(k + n|k)‖QF

, (17b)
JA
(
eRFi

(k + n|k)) = ‖eRi
(k + n|k)‖QA

(17c)

JV
(
evFi

(k +N |k)
)

= ‖evFi
(k +N |k)‖QN

, (17d)

and where EfFi
⊂ EFi is the terminal set andQA, QF , QV , QR

and QN are positive definite diagonal weighing matrices - QA
is again a scalar matrix. Moreover, geL

(
eFiL(k+n|k),wL(k)

)
is a propagation process used for prediction of the relative error
with respect to the leader UAV (i.e., eFiL(k+n+1|k)), defined
hereafter.

Leader Position Propagation: In order to estimate the relative
position of the leader along a horizon of lengthN , the followers
measure dFiL and βFiL at the sampled instant k which, from
(6), uniquely define χFiL(k), i ∈ F . Having the vector
of wL(k) broadcasted from the leader to all followers, the
prediction for the leader position over the receding horizon, on
behalf of follower i, for n = 0, . . . , N − 1 is given as:
χFiL(k + n+ 1|k) = gL

(
χFiL(k + n|k),wL(k)

)
= χFiL(k + n|k) + RT

Fi
(k + n|k) [vL(k)− vFi

(k + n)].
(18)

With (9b), the dynamics (18) in error form can be rewritten
eFiL(k + n+ 1|k) = geL

(
eFiL(k + n|k),wL(k)

)
= χ̂FiL − χFiL(k + n|k)−RT

Fi
(k + n|k) [vL(k)− vFi

(k + n)]

= eFiL(k + n|k)−RT
Fi
(k + n|k) [vL(k)− vFi

(k + n)].

4. STABILITY ANALYSIS

Before proceeding to the necessary analysis of the proposed
NMPC strategy, we employ standard stability conditions that
are used in MPC frameworks:
Assumption 1. Consider the running costs Jli(ei,ui) =
JQi

(ei) + JP
(
ei,ui

)
, and the terminal cost function JV (ei)

for the formation leader, such that:

(1) EL, E
f
L, and UL are closed sets containing the origin, and

EfL is a control invariant terminal set containing the origin;
(2) The cost functions J?(e(·)), as well as system dynam-

ics and propagation functions fe and Υei , are Lipschitz
continuous, with Lipschitz constants LJ? , where ? =
{P,Q, V };

Property 1. In view of (9a), the difference between the nomi-
nal prediction state-error and the real state-error of the relative
position of the followers relative to the leader is defined as
‖eLF (k + n|k) − eLF (k + n)‖ =

∑
Fi∈NL

‖χLFi
(k + n|k) −

χLFi
(k + n)‖ ≤

∑
Fi∈NL

∆viMax
δt · n.

Regarding the followers, their prediction of the leader move-
ment is based on the information vector wL(k). We have:
Lemma 1. The difference between the actual state eFiL(k+n)
at time k+n and the predicted state eFiL(k+n|k) at the same
time under the control law defined in (16), is upper bounded by:
‖eFiL(k+n|k)−eFiL(k+n)‖ ≤ (1+Lnf )‖xL(k)−xFi(k)‖+
(1 + n)vLMax

+
(∑N

n=0 L
n
f

)
Lu‖uL(k)− uFi(k)‖.

Proof. Initially notice that eFiL
(k + 1|k) = χ̂FiL

− χFiL
(k)

−RT
Fi

(k) [vL(k)− vFi
(k)] and eFiL

(k+1) = χ̂FiL−χ(k+1)

= χ̂FiL
− RT

Fi
(k + 1) [xL(k + 1)− xFi

(k + 1)]. From the
equations, at step n = 1, ..., N , and the fact that ||RT

Fi
(k)|| =

1,∀k ∈ N we get the general form

||eFiL(k + n|k)− eFiL(k + n)|| =
= || −RT

Fi
(k)[xL(k)− xFi(k)]−

[n+ 1]RT
Fi

(k) [vL(k)− vFi(k + n)] +

+ RT
Fi

(k + n)[xL(k + n)− xFi(k + n)]||
≤ ||xL(k)− xFi

(k)||+ (n+ 1) · 2vLMax
+

+ ||xL(k + n)− xFi
(k + n)|| ≤

≤ (1 + Lnf )||xL(k)− xFi
(k)||+ (n+ 1) · 2vLMax

+

+
( N∑
n=0

Lnf

)
Lu‖uL(k)− uFi(k)‖ = γ + ρ+ κ,

where γ = (1 +Lnf )‖xL(k)− xFi
(k)‖, ρ = (n+ 1) · 2vLMax

,

and κ =
(∑N

n=0 L
n
f

)
Lu‖uL(k)− uFi

(k)‖.

We are now ready to state the result of this work:
Theorem 1. Consider the team of UAVs described by (2),
which are subject to constraints (3) and (4). The control inputs
provided by (11), (12a)-(12d) as well as (16), (17a)-(17d) drive
the errors eL and eFi

, i ∈ F , to sets EfL and EfFi
, i ∈ F ,

containing the origin, while satisfying the constraints imposed
by the sets Ei, Ui, i ∈ A, given in (10a)-(10b) and (4)
respectively.

Proof. Let us define BnL = {z : ||z|| ≤ ∆viMax
δt · n},∀n =

0 . . . N , and BnFi
= {z : ||z|| ≤ γ + ρ+ κ},∀n = 0, 1, . . . , N .

By restricting the constraints over the horizon as EL 	 BnL,
EFi
	 BnFi

, and employing similar arguments to (Marruedo
et al., 2002, Theorem 1, page. 4), we conclude that for every
n = 0, 1, . . . , N it holds that uFi

(k + n|k) ∈ UFi
, uL(k +

n|k) ∈ UL, eFi
(k+n|k) ∈ EFi

	BnFi
, eL(k+n|k) ∈ EL	BnL,

eFi
(k +N |k) ∈ EfFi

and eL(k +N |k) ∈ EfL.
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Define the optimal cost at step k by J∗i (k), and the feasible
cost by J̄i(k + 1), i ∈ A, and following the approach pre-
sented in Marruedo et al. (2002), by employing Property-1 and
Lemma-1, we can deduce that ∆JL = J̄L(k + 1) − J∗L(k)
≤ LJL

∑
Fi∈NL

∆viMax
δt − ‖eL(k)‖2, ∆JFi

= J̄Fi
(k + 1) −

J∗Fi
(k) ≤ LJFi

(γ + ρ+ κ)− ‖eFi(k)‖2.

Considering the optimality of the solution, we conclude that
J∗L(k + 1) − J∗L(k) ≤ LJL∆viMax

δt − ||eL(k)||2, J∗Fi
(k +

1) − J∗Fi
(k) ≤ LJFi

(γ + ρ + κ) − ||eFi(k)||2, which implies
that the closed loop system is Input-to-State-Stable (ISS) Jiang
and Wang (2001). This implies that the optimal costs are mono-
tonically decreasing which consequently implies that the norm
of the errors ‖eL(k)‖, ‖eFi

(k)‖ converge to a neighborhood of
the origin, as k →∞.

5. RESULTS

In order to validate the algorithm in an application scenario,
formation navigation with a time varying velocity, with 2 and 5
followers, were tested.

All simulations ran on an Intel Core-i7 8750H CPU, with
16GB of RAM available, performed in a Matlab environment.
The Nonlinear MPC was implemented in ACADO, particularly
Houska et al. (2011).

The desired relative positions are set as χ̂F1L = [0 −1 0]
T

[m],
χ̂F2L = [0 1 0]

T
[m]. The desired attitude of the agents is

kept constant and aligned with the inertial frame throughout
the experiment, and therefore χ̂LFi

, for i = 1, 2, is implicitly
defined for this test. For the second test, three followers are
added to the formation, with desired relative positions χ̂F3L =

[0.65 −0.65 0]
T

[m], χ̂F4L = [0.65 0.65 0]
T

[m], χ̂F5L =

[1 0 0]
T

[m].

The first test shows the tracking capabilities of the proposed
framework when a time-varying velocity is defined. This makes
it possible to extend the framework to more complex scenarios.
For this test, the desired formation velocity v̂F is set as

v̂F (k|k + n) =

[
0.05

0.06 sin(0.5 · δ · n+ k)
0

]
,∀n = 0...N − 1

(19)
leading to a sinusoidal trajectory as shown in Figure 2.

Figures 4 and 3 show the bearing error and velocity for each of
the vehicles. Due to the time-varying trajectory, we observe that
the agents achieve the equilibrium formation at t = 10s. For
this test and for the followers, the desired velocity v̂F (k|k +
n) = v̂F (k), resulting in a bounded error for the predicted
trajectory, as proved on Section 4. We also observe that the
leader slowly accelerates to allow the formation to converge
to the desired geometry at first, and then to track the desired
formation velocity.

In this experiment, the average computational times were 4ms
for the leader and 2.2ms for the follower. The maximum
and minimum computational times are, respectively, 13ms and
3.5ms for the leader, and 7.3ms and 1.7ms for the followers.
The settings for the NMPC are a receding horizon length of
N = 20 and a sampling time δ = 0.05s. Finally, the maximum
velocity for the agents was set to viMax

= 0.1 [m/s].
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Fig. 2. Formation trajectory in the XY inertial plane.
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Fig. 3. Evolution of the bearing error through time, when the
formation tracks a time-varying velocity.
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Fig. 4. Formation velocity error over time.

To better understand how the computational times are affected
when followers are added to the formation, the second test was
performed with 5 followers. For this test, we show the trajectory
for the time-varying velocity, Figure 5, and the leader bearing
and velocity error, on Figure 6.

For this test, the average computational time is 11ms for the
leader, and 2.2ms for the followers. The maximum computa-
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Fig. 5. Trajectory of the formation while tracking a time-
varying velocity.
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Fig. 6. Leader bearing error norm and velocity error.

tional times are 21ms and 4ms, while the minimum are 9ms
and 1.6ms, for the leader and followers, respectively. Although
the leader’s computational time increase (although not propor-
tionally) with the number of followers, we observe that the
followers controller computational time remains the same.

6. CONCLUSION AND FUTURE WORK

In this work we presented a novel decentralized nonlinear
model predictive control framework, with significant communi-
cation reduction and ensured stability properties. The approach
is specially relevant for safety critical systems, where autonomy
and resilience to failures is needed, as well as in scenarios
where communication is costly, such as underwater robots.
Moreover, these contributions also result in a fast controller,
suitable to applications with agile systems. In the future, we
plan to implement these methods on a experimental scenario, as
well as extend the framework to allow other graph geometries,
increasing the resilience of the system and better scale the
leader controller to larger formations.
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