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Abstract: A procedure based on trigonometric filters is proposed for parameter identification in a 

hydroelectric power generating unit approximated by a Multi Input - Single Output linear continuous-time 

varying system. First the discrete cosine transform is used as an interpolation filter and secondly an integral 

transform based on a Fourier kernel is applied to obtain a discrete-time model. Then a recursive least 

squares algorithm is performed to estimate abrupt changes of parameters and thus detect faults in the power 

plant. The whole method is successfully applied to a scenario fed with real sampled data featured by a poor 

excitation. 
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

1. INTRODUCTION 

Hydroelectricity is the first renewable energy in installed 

capacity and its advantages are well known: clean energy, 

flexibility and ancillary services. The latter are services for 

the power grid in order to guarantee the frequency and voltage 

stability of the power system. 

Concerning the frequency control service, in order to quickly 

compensate supply-demand imbalances, large hydroelectric 

power plants are required to perform two types of power 

generation control: Primary Frequency Control and 

Secondary Frequency Control. The issue for the producer is 

to early detect both deviations in power control performance 

and faults in the process.  

Fault diagnosis permits predictive maintenance in order to 

optimize maintenance planning and to anticipate failures. 

Different types of faults can occur: abnormal vibrations in the 

turbine, damages in the generator, mechanical/hydraulic 

faults in the actuator, sensor faults, detuning of the controller, 

overload of the PLC… All of these faults have an impact on 

the pattern of the active power output (power oscillations, 

saturations, slowdown of the response…). Two approaches 

are possible to monitor the power output. The first one is a 

signal processing approach by pattern recognition and 

comparison with failure signatures (Isermann, 2006), 

(Schölkopf & Smola, 2002), (Van der Heijden & Duin, 2004). 

The second one is a system identification approach by 

estimating parameters associated to a physical model (Landau 

& Gianluca, 2010), (Söderström & Stoica, 1989), (Padilla, 

2017). This latter method will be considered in this paper. 

In order to develop a diagnosis tool, an off-line system 

identification algorithm is developed in an industrial context, 

with real noisy signals featured by poor excitation. This 

problem translates into estimating parameters of a Multi Input 

– Single Output (MISO) linear continuous time-varying 

(LTV) model from sampled input-output data.  

Two approaches exist in the literature to identify a 

continuous-time (CT) system from sampled data. The indirect 

approach uses a discrete-time (DT) model equivalent to the 

CT model, estimate the discrete parameters and transpose 

them to the CT model. The direct approach used by (Garnier, 

2015) and (Padilla, 2017) estimates directly the physical 

parameters from the CT model. In the present paper, the direct 

approach is combined with a tailored trigonometric integral 

transform to both filter the measurement noise and discretize 

the LTV model.  

Recursive parameter estimation problem is made particularly 

difficult in practice by 3 main factors: firstly the lack of rich 

excitation which causes ill-conditioning or stability problems, 

secondly input and output measurement noise leading to a 

bias when the least squares estimator is used, and finally 

varying parameters yielding convergence issues. Hydro 

generating unit are concerned by these 3 issues: the excitation 

is not persistent, input and output signals are noisy and 

parameters are time varying with the operating point or in 

case of abnormal event. 

The paper goes on as follows: in section 2, the process is 

presented and described by a MISO linear continuous-time 

model with varying parameters. A data preprocessing 

technique based on Discrete Cosine Transform is developed 

in section 3. A discretization scheme based on a trigonometric 

filter is then proposed in section 4, so as to perform and 

enhance a RLS type parameter identification algorithm. An 

application to a real hydroelectric generating unit is then 

addressed in section 5, and section 6 finally concludes. 
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2. PROCESS MODELLING 

This section is concerned with obtaining a low order model of 

a hydro power plant consisting of a reservoir, a tunnel, a surge 

tank, a single penstock, several turbines and an output canal 

(see Fig. 1). The nonlinear model of a power generation unit 

is represented hereafter by a LTV model based on a hydraulic 

model and the structure of the turbine controller.  

2.1 Hydraulic Model 

We suppose that the hydroelectric power plant is connected 

to a large power grid. It is shown in (Kishor & Fraile-

Ardanuy, 2017) that in normal operating conditions a 14th 

order linearized model of a hydro generating unit has the 

following form: 

 Δ Δx A x B u    (1) 

 Δ Δ ΔP C x D u   (2) 

with  
T

a
Q Q Zx   

The variables P, Q are respectively the output power and the 

flow rate provided by the generating unit, Qa is the flow rate 

in the tunnel and Z is the water level in the surge tank. 

Parameters depend on the operating point (P0, Q0, H0) where 

H0 represents the net head (gross head Hb minus head losses) 

of the power plant. The gate opening u is the control input 

computed by the turbine controller. 

Hb 

 

Qa 

Q 

Z 

 

Fig. 1. Hydropower plant with surge tank 

 

2.2 Turbine Controller 

The process related to power generation consists of a turbine 

controller (see Fig. 2), an actuator and a generating unit 

(turbine + power generator). The output is the active power P 

and inputs are: the power setpoint Pco(t) including the 

production program, the signal N(t) from the grid operator and 

the network frequency deviation ( ) ( )
n

f t f t f    where fn 

is the nominal frequency (50 Hz). 

In Fig. 2, Q(K,s) and R(s) refer to filters associated to the PI 

controller C(s), with s for Laplace variable. Parameters K and 

Pr are respectively the gains for the primary and secondary 

frequency control. 

 

Fig. 2. Power control of a generating unit 

 

2.2 Equivalent LTV Model 

Closed-loop frequency responses of ∆P with respect to ∆f and 

∆Pc were simulated for structure of Fig.2 with realistic 14th 

order models developed from (1)-(2), from which it appears 

that they can be simplified into 2nd order systems in the 

frequency range of the excitation banwidth (see Fig. 3): 

 
2 2

1
( )

2 1c

P
s

P s s 




  
  (3) 

 
2 2

( )
2 1

P K
s

f s s 

 


  
 (4) 

Since parameters of these transfer functions depend on the 

operating point, the plant in the present paper is approximated 

by a continuous-time LTV model (5)-(6) where all parameters 

, , , ,
co r

P K P    can vary with time. The aim is to estimate these 

5 varying parameters from sampled data P, ∆f, N. 

2 ( ) 2 ( ) ( ) ( ) ( )cP t P t P t P t K F t        (5) 

 
r( ) ( ) P ( )c coP t P t N t    (6) 

Varying parameters of this model are gains, time constant and 

damping ratio which characterize the dynamic behavior of the 

plant with regard to grid operator requirements. 

Variables of model (5)-(6) are centred with respect to mean 

values by setting 
1 2

, u f f u N N      and y P P  : 

 
2

0 1 22 ry y y u Ku Pu       (7) 

where u0 is the unknown input: 

 
0 co r

u P P K f P N      (8) 

The output P(t) and the frequency ∆f(t) are corrupted by zero-

mean white measurement noises (see Fig. 4). The signal N(t) 

is a noise-free numerical signal (negligible noise) coming 
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from the grid operator. Hence, taking into account these 

noises, equation (7) becomes: 

 ( ) ( ) ( ) ( )Ty t h t t e t   (9) 

 

with the regressor  

 
1 2( ) [   1  ]Th t y y u u    (10) 

 

and parameters vector 2

0 2       P
T

ru K     
 

The variable e is the so-called equation error term containing 

model error and measurement noise correlated with the 

regressor. It is well known that this correlation yields a bias 

in the estimation of θ with the least squares method. Yet, we 

will show in section 5 that with a suitable filtering, it is 

possible to reduce this bias. 

 

 

Fig. 3. Bode diagram of P 

 

 

Fig. 4. Measurements signals (inputs u1, u2 and output y) 

3. DATA PREPROCESSING 

Preprocessing of measurement signals is an essential step to 

obtain good performance in system identification 

(Söderström & Stoica, 1989). It is well known that the 

accuracy of any estimation method depends greatly on the 

quality of measurement data expected to be featured by a rich 

and persistent excitation with some uncorrelated equation 

error e.  

Unfortunately these conditions are not met in hydroelectric 

power plants: production demand (Pco, N) varies slowly and 

measurement noise makes e dependent of the regressor h.  

To cope with measurement noise and prepare data to 

transform (9) into a discrete-time model, a procedure based 

on the Discrete Cosine Transform (DCT) is proposed: firstly, 

data are upsampled thanks to a DCT trigonometric 

interpolation, and secondly a denoising is carried out with a 

DCT smoothing filter. 

3.1 Discrete Cosine Transform 

Like the Discrete Fourier Transform (DFT), DCT is a unitary 

transform, that is an orthogonal transform preserving the 

length of the input vector and hence its energy. This real (not 

complex, thus easy to implement in an industrial computer) 

transform is currently used in audio and image compression 

(JPEG for example) in preference to the DFT because of its 

property of “energy compaction” meaning that its coefficients 

are less numerous (concentrated in the low indices) than in the 

DFT (Rao & Yip, 1990). We can also notice that High 

Efficiency Video Coding (HEVC) uses an interpolation filter 

based on the DCT type II (DCT-II) in order to predict pixels 

close to neighbours. This technique is chosen in the present 

paper for upsampling and smoothing purpose.  

The DCT-II applied to a discrete-time signal x(k) with the 

integer k = 0, 1, …, N-1 is defined by (Rao & Yip, 1990): 

 

1

0

(2 1)
( )  ( )cos

2

N

n

k

n k
X n c x k

N






   (11) 

 

 

1

0

(2 1)
( )  ( )cos

2

N

n

n

n k
x k c X n

N






   (12) 

where 
0 1/   and 2 /  for 0.nc N c N n    

Here X(n) are the coefficients for the discrete cosine transform 

of x(k) with the frequency index n = 0, 1, …, N-1.  

3.2 Upsampling and Smoothing with DCT 

The sampling period of measured signals is Ts = 1 s and the 

time constant of the process is about 5 s, thus the sampling 

frequency is suited for identification purpose (Aström & 

Wittenmark, 2011). Nevertheless, upsampling the signals 

may be of interest for increasing the number of points in the 

computation of integral transforms used in the identification 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11865



 

 

     

 

procedure and hence improve the fault estimation 

performance (see section 4). 

The basic idea of the DCT interpolation is to calculate 

coefficients X(n) from (11) with the known integer indices k, 

n, and then use the inverse DCT transform (12) at desired 

fractional indices  (for instance 0.1,  0.2,... ) instead of 

integer indices k. Hence, a trigonometric interpolation 

polynomial xp associated to x is given by (Sauer, 2018):  

 

1

0

(2 1)
( )  ( )cos

2

N

n

n

p

n
x c X n

N






   (13) 

with 0 1N   ,  . 

It is a cosine series of the signal x constrained to pass through 

the points x(kTs). To filter the noise, it is convenient to relax 

this last constraint by using only the first M frequency indices 

( )M N  of the DCT transform (high frequencies are 

removed). Thus, a trigonometric interpolation filter is 

obtained by substituting the sum of N cosine in (13) by a sum 

of M cosine: 

 

1

0

(2 1)
( )  ( )cos

2

M

n

n

p

n
x c X n

N






   (14) 

Equation (14) performs an efficient smoothing filter which is 

a DCT least squares approximation of the signal x (see Sauer, 

2018). It is used in our application for upsampling and 

smoothing u1, u2 and y. An illustration is given in Fig. 5 for 

the active power signal y(t). 

 

Fig. 5. DCT interpolation and smoothing 

 

Furthermore, by setting 
s

t T , analytical expression (13) or 

(14) gives access to the continuous-time signal ( )px t  and 

hence to all time derivative terms which can be calculated 

easily from (15):  

 

1

0

(2 )
( )  ( )cos

2

M
s

n

n s

p

n t T
x t c X n

NT






   (15) 

4. PARAMETER IDENTIFICATION 

In a first section, the continuous-time model (9) will be 

transformed into a discrete-time model. Then, in the second 

section a review of RLS algorithm will be presented. 

4.1 Discretization 

To estimate parameters of the LTV model (9), the first step is 

to discretize the model. This is done by using a trigonometric 

integral transform developed in Robert, G., & Besançon, G. 

(2019a, b). This approach uses an integral kernel based on a 

Fourier series  . If n is the order of the dynamical system 

(here n = 2), the output xf of the filter (input x) is given by: 

 
( 1)1

( ) ( ) ( )
k T

f
kTT

x k x t t kT dt


   (16) 

 
( 1)

( )1
( ) ( ) ( )

k T
i i

f
kTT

x k x t t kT dt


   (17) 

where (i) is the ith derivative with respect to t, 1,...,i n . 

The discretization period T is a multiple of the sampling Ts. It 

constitutes a tuning parameter for which some guideline is 

given in section 4.2. Thanks to integral transform, this 

discretization scheme can be applied for regular or irregular 

sampling. 

The kernel   verifies the following equality: 

 
( ) ( )(0) ( ) 0 ,   for 0,1,..., -1j j

n n T j n     (18) 

For a 2nd order system, by choosing ( ) 1 cost t   , 

computation of derivative terms are avoided thanks to 

integration by parts yielding: 

( 1) ( 1)
( ) ( )( ) ( ) ( 1) ( ) ( )

k T k T
i i i

kT kT
x t t kT dt x t t kT dt 

 

    
 (19) 

Applying this filter to the continuous-time model (9) and 

assuming that θ(t) is constant in the interval [kT, (k+1)T], we 

obtain: 

 ( ) ( ) ( ) ( )T

f f fy k h k k e k   (20) 

 
2 1

1 2( ) [   1  ]T

f f f f fh t y y u u    (21) 

Applying (16) with a zero-mean error e(t), we obtain: 

 
( 1)1

( ) ( )cos
k T

f
kTT

e k e t tdt


   (22) 

Let TN = NT the duration of the considered signals. Hence, e(t) 

can be extended with a periodicity TN. and expanded with a 

Fourier series where coefficients an, bn are random variables: 

1

( ) cos sin  , 2 /n n N

n

e t a n t b n t T




       (23) 
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Hence, e  will be orthogonal to cos t  if it exists an integer 

1m   such that 2 /n m m T     that is for n N . 

Thus harmonics higher than N  will be filtered by (22). 

 

4.2 RLS algorithm 

To deal with varying parameters, the conventional RLS 

algorithm with forgetting factor   is used (Landau & 

Lozano, 2011). Multiplying (20) by ( ),k i

fh i 
 it comes:  

 
1ˆ( ) ( ) ( )k R k z k   (24) 

where  

1

( ) ( ) ( )
k

k i T

f f

i

R k h i h i 



       

and 

1

( ) ( ) ( )
k

k i

f f

i

z k h i y i 



  

The matrix R is very important since it determines the 

performance of the RLS estimator (stability, accuracy and 

convergence rate). It is a symmetric matrix which is positive 

definite in our application since elements of h are linearly 

independent. Thus, R is invertible and its determinant 

(product of its eigenvalues) is strictly positive. However, poor 

excitation of our system renders this matrix ill-conditioned 

(condition number of order 105) that is the spread of 

eigenvalues is large and sensitive to noise (Stenlund & 

Gustafsson, 2002).  

As a consequence, numerical instabilities may appear 

depending on the value of the tuning parameter T. If T is large, 

the filtering of the noise will be high, the estimation bias will 

be low (attenuation of the correlation between h and e) and 

the condition number will be high because of the loss of 

information (leakage effect giving numerical instabilities and 

slow convergence). On contrary, if T is small, the filtering of 

the noise will be low, the estimation bias will be high and the 

condition number will be low (good numerical stability and 

fast convergence). Thus a trade-off is to be found between 

numerical stability, accuracy and convergence rate.  

In recursive form the trade-off holds again. From (24), the 

RLS estimator can be written (Landau & Lozano, 2011): 

 

 
( 1) ( )

( )
( ) ( 1) ( )

f

T

f f

P k h k
G k

h k P k h k




 
 (25) 

  ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)
T

f f
k k G k y k h k k        (26) 

  ( ) ( ) ( ) ( 1) /
T

f
P k I G k h k P k     (27) 

Having 
1

( ) ( )P k R k


 , Riccati equation (27) suffers from 

round-off error propagation linked to the ill-conditioning 

problem discussed hereinbefore.  

 

5. INDUSTRIAL APPLICATION 

The identification procedure is evaluated for a 240 MW 

power generating unit (Pelton turbine) installed in France, 

with real input data injected in a linear simulator yielding the 

power output.  

In order to simulate a fault, abrupt changes of 3 parameters 

are considered: the gain Pr is doubled, the time constant   is 

reduced and the damping coefficient   is lowered from 1.7 

to 0.5 in order to identify two different behaviours, from non-

oscillatory (real poles) to oscillatory one (complex poles). 

Input and output signals are available with a sampling period 

Ts = 1 s. An upsampling to Ts/10 and a smoothing are carried 

out with the DCT interpolation filter (14). Then, parameters 

are estimated with the procedure given in section 4 and with 

formula given in appendix. 

Good results are obtained, as displayed in Fig. 6 and 7: from 

the estimates indeed, model parameters K, Pr,  , together 

with unknown input Pco can be well recovered.  

Let us notice that the Least Mean Square (LMS) algorithm 

given by (28) (Diniz, 2012) was also tested for comparison, 

but yielding a too slow convergence because of an excitation 

not persistent enough (see Fig. 8). 

 

  ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)
T

f ffk k h k y k h k k         (28) 

 

 
Fig. 6. Tracking performance for a variation of Pr 
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Fig. 7. Tracking performance for a variation of ,  

 

 

 
Fig. 8. Tracking of Pr 

 

6. CONCLUSION 

For fault detection in hydroelectric power plants, an 

identification procedure based on trigonometric filters and 

RLS algorithm was developed. These filters enabled to 

discretize the model and to identify the changes in process 

parameters from an overdamped to an underdamped 2nd order 

LTV system. 

Simulation results indeed show a good matching between 

expected and estimated parameters despite poor excitation and 

noisy signals. 
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APPENDIX 

Physical parameters and identification parameters are linked 

with the following relations: 

 
2

1 2 3 0

4 5

 ; 2  ;  ; 

 ;  r

u

K P

    

 

  

 
  (29) 

and reciprocally: 

 

4 5 0 3

2
1

1

3 4

=  ;  ;  ; 

 ;  ;
2

r

co r

K P u

P P f P N

  


  



 

 

 

    

  (30) 
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