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Abstract: In this paper we developed a modified Hidden Markov Model (HMM) to analyze the raw 
nanopore experimental data. Traditionally, prior to further analysis the measured nanopore data must be 
pre-filtered, but the filtering usually distorts the waveform of the blockage current, especially for rapid 
translocations and bumping blockages. The HMM is known to be robust with respect to strong noise and 
thus suitable for processing the raw nanopore data, but its performance is susceptible to the setting of 
initial parameters. To overcome this problem, we use the Fuzzy c-Means (FCM) algorithm to initialize 
the HMM parameters in this work. Then we use the Viterbi training algorithm to optimize the HMM. 
Finally, both the simulated and experimental data analysis results are presented to show the effectiveness 
of the proposed method for detection of the nanopore current blockage events in analytical chemistry. 
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1. INTRODUCTION 

The basic principle of nanopore analysis technique is that a 
molecule passes the nanopore resulting in a temporary 
reduction in the ionic current and through analyzing the 
current amplitude and time duration of the blocked current 
signal, we can identify the biochemical information of 
analyte. It has been widely used for single-molecule detection 
of ion, DNA, RNA, protein and peptide (Braha et al., 2000; 
Kasianowicz et al., 1996; Ying et al., 2011; Movileanu et al., 
2005). Recent work (for example Ashton et al., 2015; Loose 
et al., 2016; and Quick et al., 2016) revealed that the 
nanopore analysis is able to accurately sequence virus and 
bacterial pathogens.  

The ionic current signal measured from the nanopore 
experiment is inevitably corrupted by noises. Therefore, the 
short blockage events with low current amplitude are easily 
buried in noise and hard to detect. To facilitate signal 
detection and processing, it is necessary to remove the 
higher-frequency noise using a low-pass filter. However, the 
low-pass filter usually distorts the signals especially for the 
short events with duration shorter than 2 rT∗ , 
where 0.3321/r cT f=  is the rising time of the filter with cf  
its cut-off frequency (Gu et al., 2015). It increases the 
duration and reduces the current amplitude, which makes it 
difficult to determine the molecules’ biochemical information 
accurately.  

Two strategies have been commonly used to mitigate the 
above issues induced by pre-filtering: 1) retrieve the distorted 
events based on the method of equivalent electric circuit of 
nanopore (Balijepalli et al. (2014)), Full-width-half-
maximum (FWHM) (Arjmandi et al. (2012); Plesa et al. 
(2015)), the slope of event (Pedone et al. (2009)), or the area 

of event (Gu et al., 2015) to improve the performance of pre-
filtered data analysis; 2) Improve the experimental equipment 
performance (Garalde et al. 2013; O'Donnell et al. 2012), 
such as increase the bandwidth of experimental equipment to 
reduce the degree of signal distortion, but this would 
introduce strong noise and make traditional methods no 
longer applicable. In addition, due to the high degree of 
system integration, parts of the experimental device become 
easily consumable, which highly increases the detection cost.  

In order to overcome the disadvantages of the above two 
strategies, we directly process the highly noisy raw 
(unfiltered and almost undistorted) nanopore experimental 
data based on the Hidden Markov Model (HMM) to detect 
the current blockage events’ biochemical information. The 
HMM (Rabiner et al. (1989); Dugad et al. (1996)) is tolerant 
of the strong noise and thus has been successfully used to 
detect events from the noisy ionic current signal measured by 
patch-clamp (Chung et al. (1990); Chung et al. (1991); Qin et 
al. (2004)). Unfortunately, the HMM is sensitive to its initial 
parameters usually pre-set manually in previous work, which 
is not suited to implementation of automatic data processing. 
In this work, we utilize the Fuzzy c-means (FCM) clustering 
algorithm to initialize the parameters of HMM for practical 
applications. 

2. EXPERIMENTS 

2.1  Materials 

α-Hemolysin (α-HL) wildtype-D8H6 was produced by 
expression in BL21 (DE3) pLysS Escherichia coli cells and 
self-assembled into heptamers, and decane were purchased 
from Sigma-Aldrich (≥99%, St. Louis, MO, USA). 1, 2-
Diphytanoyl-sn-glycero-3-phosphocholine (chloroform, ≥
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99%) was purchased from Avanti Polar Lipids (Alabaster, 
AL). All oligonucleotides used in our experiments were 
synthesized by Invitrogen Life Technologies (Shanghai, 
China). Ultrapure water (resistivity of 18.2 MΩ•cm at 25 °C) 
was obtained from a Milli-Q system (EMD Millipore, 
Billerica, MA). The pH 8.0 buffer solution used was 
composed of 1 M KCl. 

2.2  Experimental Procedure 

As described in (Ying et al. (2013), Ying et al. (2011) and 
Liu Y et al. (2013), the lipid bilayers were created by 
applying 1,2-diphytanoyl-sn-glycero-3-phosphocholine (30 
mg/mL) in decane (≥99%, Sigma-Aldrich, St. Louis, MO, 
USA) to a 150 µm orifice in a 1 mL bilayer chamber (Warner 
Instruments, Hamden, CT, USA) filled with KCl (1.0 M) and 
Tris-HCl (10 mM, pH = 8.0). The stability of the bilayer was 
evaluated by monitoring its resistance and capacitance. The 
solution of α-hemolysin was injected into the cis chamber 
proximal to the bilayer. Then seven monomers of α-
hemolysin assembled to form a hydrophilic channel in the 
bilayer. The two compartments of the bilayer cell are termed 
cis and trans. A pair of Ag/AgCl electrodes was inserted into 
the two compartments. After a single nanopore was formed 
on the bilayer, the analyte was injected into the cis chamber. 
The voltage was set to +100 mV during the experiments. A 
ChemClamp instrument (Dagan Co., Minneapolis, MN) in 
the voltage clamp mode was used to amplify and measure the 
ionic current flowing through the nanopore. The filtered and 
unfiltered data were measured simultaneously at a sampling 
rate of 100 kHz by using a DigiData 1440A A/D converter 
(Axon Instruments, Forest City, CA, USA) and the filter cut-
off frequency is 3 kHz. Data was recorded by the PClamp 
software (Axon Instruments). 

3. METHODS 

3.1  Data Analysis Procedure 

The data processing procedure developed is shown in Fig. 1. 

 

Fig. 1. The data analysis procedure. 

The HMM has been successfully used in the single-channel 
current signal recorded by Patch-clamp, which is similar to 
the nanopore data (Chung et al. (1990); Qin et al. (2004)). It 
can be assumed that nanopore current signal is generated by a 
1st-order discrete-time finite-state Markovian process with 
Gaussian white noise, but the state of the process (submerged 
in noise) is not directly observable (or measurable). Therefore, 
the nanopore data can be modelled by the HMM with the 

observable current data (O1, O2,⋯,OT) and the hidden 
(unobservable) state sequence (q1, q2,⋯, qT). 

The HMM, applied to nanopore data analysis, consists of the 
following components/parameters (Rabiner et al. (1989)): 

1. The observation (observed sample) sequence 1 2, , , TO O O  
with the length of T. For the nanopore data analysis problem, 
the observations correspond to the measured current data. 

2. The set of hidden states 1 2{ , , , }NS S S S=  , where N is the 
cardinality of the set, say the number of hidden states. The 
observed sample Ot, t=1, 2,⋯,T can be generated by several 
hidden state qt∈S with certain probability. The observation 
sequence O1, O2,⋯,OT usually corresponds to multiple hidden 
state sequences q1, q2,⋯, qT, and we call the most likely 
hidden state sequence optimal in the sense of maximum 
likelihood. In the nanopore problem, the hidden states 
correspond to the N current levels in the current signal. 

3. The N N× state transition probability matrix { }ijA a= , 
where 1( | )ij t j t ia P q S q S+= = =  , 1 ,i j N≤ ≤  denotes the 
state of the HMM at time t. In the nanopore problem, the 
transition probability denotes the probability of a transition 
from current level Si to  Sj. 

4. The initial state distribution { }iπ=π , 
where 1( ),1i iP q S i Nπ = = ≤ ≤ is N-dimensional column 
vector. In the nanopore problem, it denotes the probability 
that the first observed sample O1 results from each current 
level. 

5. The observation probability distribution matrix in the 
state jS : { ( )}j tB b O= , where tO  is the observation at time t, 
and ( ) ( | ),1j t t t jb O P O q S j N= = ≤ ≤ . In the nanopore 
problem, the probability distribution of the observed data due 
to the state Si is assumed to be Gaussian. 

The HMM is usually used to solve the following three typical 
problems: 

Problem 1. Given the model ( , , )A Bλ = π , determine the 
occurrence probability ( | )P O λ  of observation 
sequence 1 2, , , TO O O . The typical method for this problem 
is Forward and Backward algorithm (Devijver et al. (1985); 
Rabiner et al. (1990)). 

Problem 2. Given the model ( , , )A Bλ = π  and observation 
sequence 1 2, , , TO O O , find the optimal state 
sequence 1 2, , , Tq q q to maximize the probability ( , | )P O S λ . 
The typical method for this problem is Viterbi algorithm, 
which will be briefly introduced later on (Forney et al. (1973); 
Rabiner et al. (1990)). 

Problem 3. Adjust the parameters in the model ( , , )A Bλ = π  
such that the probability ( | )P O λ is maximized. There are 
two typical methods to optimize the HMM parameters: the 
Viterbi training algorithm (aka. segmental k-means in some 
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literature) (Bhowmik et al. (2011); Juang et al. (1990); 
Rabiner et al. (1990)) and Baum-Welch algorithm. 

As mentioned above, in the nanopore data analysis problem 
under study, the observations correspond to the current 
sample data; the hidden states correspond to the current 
blockage events (stairs), N  denotes the number of current 
blockage events in the current signal, the transition 
probability is the probability of state transition from current 
level iS  to jS , and the probability distribution of the 
observation belonging to state iS  is assumed to be Gaussian 
distribution 2( , )i iN µ σ , where iµ  is the mean of sample 
belonging to iS and 2

iσ  is the variance (Chung et al. (1990); 
Qin et al. (2004)). The probability of observation tO  
generated by iS  can be calculated by: 

                    
2

2

( )1( ) exp
ˆ22

t i
i t

ii

O
b O

µ
σπσ

 −
= − 

 
 .                 (1) 

The task is to assign each sample data tO  to the 
corresponding current level iS  by using the HMM to remove 
the noise and estimate the current events. In other words, we 
want to accurately estimate the information of current 
blockage events, such as the amplitude and duration of each 
current level by means of the Viterbi algorithm. 

3.2  Data Preprocessing 

In a long raw experimental data, we are interested in the 
detection of those current blockage events only. Therefore, in 
order to improve the computational efficiency of our 
algorithm, we set a small threshold and find the data points in 
the current time-series signal whose current amplitudes are 
smaller than the threshold. Then we only need to process 
these data points using our algorithm. 

3.3  Initialization of HMM Parameters 

Before using the Viterbi training algorithm to optimize the 
HMM parameters, a set of initial parameters must be set, 
including the initial state distribution probability vector π, 
state transition probability matrix A, and probability matrix of 
observation B consisting by the means and variances of each 
state. In most cases, the initial parameters π and A have little 
influence on the results, hence these two parameters can be 
set randomly or fixed. However, the initial value of B usually 
has significant effect on the result. It was found by Qin et al. 
(2004) and Hu et al. (2011) that the Viterbi training algorithm 
is more sensitive to the means μ and variances σ2 than to state 
transition probabilities. Thus it is important to use an 
appropriate method to estimate the initial mean μ and 
variance σ2 of each state. 

Here we use clustering algorithm to initialize the HMM 
parameters. The most commonly-used clustering algorithm is 
k-means (Likas et al. (2003)), but it is very sensitive to the 
initial cluster centroid and its performance could be affected 

if the data of different classes have obvious overlapping. 
Fuzzy c-means algorithm (Bezdek et al. (1984); Pal et al. 
(1995)) is an improved version of the k-means algorithm. In 
the k-means algorithm, each sample belongs to each cluster 
with a probability of either 0 or 1, while in fuzzy clustering, 
each data point belongs to each cluster with a membership 
degree between 0 and 1. When the data of different classes 
overlap severely, the performance of FCM is more stable 
than k-means and traditional hierarchical clustering 
algorithms (Mingoti et al. (2006)). 

In our problem the samples of neighbouring current levels 
often overlap, so we choose the FCM algorithm to initialize 
the HMM parameters. More specifically, we firstly cluster 
the observations to obtain the class label for each data point 
using the FCM algorithm, then based on the clustering results 
we can determine the initial value of π, A, and B according to 
(11)-(15). 

The FCM algorithm partitions a set of observation 
1 2, , , TO O O into several clusters by minimizing the 

objective function: 

                      
2

1 1
,1

T N
m

m ij j i
j i

J w O mµ
= =

= − ≤ < ∞∑∑  .           (2) 

Where T   is the number of samples, N the number of 
clusters (i.e., the number of current levels in our problem), m  
the fuzziness parameter, iµ  the center of the i -th cluster, 

(0,1)ijw ∈  the degree of membership of data jO in the i -th 

cluster, and ∗  denotes the Euclidean distance. 

The previous work showed that the weighting exponent m  
greatly influences the FCM performance. For instance, 
Bezdek et al. (1984) stated that the value of m controls the 
degree of samples shared by different clusters. Pal and others 
(1995) examined effect of the parameter m  on cluster 
validity and found that the optimum range of m  is [1.5, 2.5]. 
Therefore, we set the value of m  as 2. 

Fuzzy partitioning is carried out through an iterative 
optimization of the objective function defined in (2). The 
membership degrees and cluster centres iµ  are updated by 

                            

2
1

1

1

1

1
ij

mN
j i

k j k

T
m
ij j

j
i T

m
ij

j

w
O

O

w O

w

µ

µ

µ

−

=

=

=

 =
  −

 
 −  


 ⋅


=



∑

∑

∑

                     (3)                                                                     

Bezdek et al. (1984) showed that the numerical convergence 
of FCM algorithm can usually be achieved in 10-25 iterations. 
So in our problem, the algorithm iteration is terminated if the 
variation of membership degree matrix is less 
than 0.0001ε = or the maximum number of 
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iterations 100k = is reached. The iterative procedure of the 
FCM algorithm consists of the following computational steps: 

Step 1: Initialize membership degree matrix ijW w =   , 

where (0,1)ijw ∈ . 

Step 2: At the k-th iteration, calculate the class centre 
[ ]k

iµ µ=  and update kW by using (3), where kW denotes the 
membership degree matrix in the k-th iteration. 

Step 3: If 1k k
m mJ J ε−− < or 100k > , terminate the algorithm; 

Otherwise loop back to Step 2. 

3.4  Optimization of HMM Parameters 

Given the initial model parameters and a set of observed data, 
the Viterbi or Baum-Welch algorithm can be used to 
optimize the HMM parameters. However, the two algorithms 
are quite different. In the Baum-Welch algorithm, the model 
parameters ( , , )A Bλ = π  are tuned until ( | )P O λ  (the 
probability of the observation sequence O  generated by 
model λ ) is maximized. In the Viterbi algorithm, the model 
parameters ( , , )A Bλ = π  are tuned until the probability 

( , | )P O S λ  (the probability of the observation sequence 
O generated by model λ  and the optimal state sequence S ) 
is maximized. The Viterbi training algorithm only considers 
the best possible state sequence when tuning the model 
parameters in the iterative process, while the Baum-Welch 
algorithm is a full-likelihood approach by summing up the 
probabilities of all possible state sequences and thereby 
produces better estimates of model parameters. However, the 
Viterbi algorithm is usually preferred because we are mostly 
interested in the occurrence of the observation sequence from 
the best possible state sequence. Moreover, the Viterbi 
algorithm requires much less computation than the Baum-
Welch algorithm and has confirmed nice performance in 
practical applications (Rodríguez et al. (2003); Allahverdyan 
et al. (2011)). In the sequel, we will make a detailed 
comparison between the two methods on the simulated data. 

3.5  Viterbi Training Algorithm 

The Viterbi algorithm is briefly introduced here. For a more 
complete description of the algorithm, the interested readers 
are referred to Dugad et al. (1996). 

To estimate the optimal state sequence 1 2, , , tq q q  from 
observation sequence 1 2, , , tO O O , we define the maximum 
probability along a single path at time t  which accounts for 
the first t  observations by the hidden state iS as: 

               1 2 1
1 2 1 2, , ,

( ) max ( , )
t

t t i tq q q
i P q q q S O O Oδ λ

−

= =


 

      (4) 

then we have 

                              1 11
( ) max[ ( ) ] ( )t t ij j ti N

j i a b Oδ δ+ +≤ ≤
=                 (5) 

Moreover, we use ( )t jψ  to indicate the state that 
maximized ( )t jδ . The procedure of finding the best state 
sequence can be summarized as follows. 

Step 1 - Initialization: 

                                1 1

1

( ) ( ), 1
( ) 0

i ii b O i N
i

δ π
ψ

= ≤ ≤
=

                      (6) 

Step 2 - Recursion: 

           

11

1
1

( ) max[ ( ) ] ( ), 2 , 1

( ) arg max[ ( ) ], 2 , 1
t t ij j ti N

t t ij
i N

j i a b O t T j N

j i a t T j N

δ δ

ψ δ
−≤ ≤

−
≤ ≤

= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
     (7) 

Step 3 - Termination: 

                                   
*

1
*

1

max[ ( )]

arg max[ ( )]

Ti N

T T
i N

P i

q i

δ

δ
≤ ≤

≤ ≤

=

=
                            (8) 

Step 4 - Path (state sequence) backtracking: 

                       * *
1 1( ), 1, 2, 1t t tq q t T Tψ + += = − −  .            (9) 

The input arguments of the Viterbi algorithm are 
( , , )A Bλ = π  and the observation sequence and the output 

argument is the estimated class label of each observed data. 
Given a nanopore blocking current time-series 
signal 1 2, , , tO O O , we use the Viterbi algorithm to classify 
each data point into several classes (i.e., hidden states in 
HMM) and to detect the blocking current events. More 
specifically, given an observation sequence and the initial 
HMM model λ, we classify each data point through the 
Viterbi algorithm. Based on the classification results obtained, 
we re-calculate the initial probabilities π, transition 
probabilities A and the probability distribution matrix of 
observation B. 

If the first data point’s class label is i , we can determine 

                                   ( ) 1 , 1i i N= ≤ ≤π                             (10) 

According to Qin et al. (2004), the transition probabilities A 
can be determined by 

                       ( , ) 1 1
( )ij

n i ja i N j N
n i

= ≤ ≤ ≤ ≤， ，                  (11) 

where ( , )n i j is the number of occurrences of 

{ }1t i t jO S and O S+∈ ∈ for all t  and ( )n i  the number of 

occurrences { }t iO S∈ for all t . 

We recalculate mean and variance of each current level by: 
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2

2

1

( )

1

t i

t i

t i

t i

t
O S

i

O S

t i
O S

i

O S

O

O

µ

µ
σ

∈

∈

∈

∈


 =



−
 =



∑
∑

∑
∑

                   (12) 

Then we determine B using iµ , iσ  and the Gaussian p.d.f.: 

                       
2

2

( )1( ) exp
22

t i
i t

ii

O
b O

µ
σπσ

 −
= − 

 
              (13) 

The training procedure continues iteratively until the 
variation in the probability ( , | )P O S λ falls within a pre-set 
threshold (set as 0.0001 in our data analysis). The flowchart 
of the Viterbi training algorithm is shown in Fig. 2. 

 

Fig. 2. Flowchart of the Viterbi training algorithm. 

4. RESULTS AND DISCUSSION 

4.1  Synthetic Data 

In order to validate the performance of the proposed method 
on the raw (unfiltered) signal, we firstly apply it on the 
simulated blockage current data. The frequency of the 
simulated data is 100 kHz, a total of 500 ms data were 
generated involving 800 short blockage current events with 
the duration of 70-130 μs. The baseline current is 3 pA and 
the amplitude of blocking current follows a Gaussian 
distribution with the mean and variance of 2 pA and 0.1 pA, 
respectively. Then zero-mean Gaussian white noise with s.d. 
ranging from 0.1 pA to 0.5 pA (with an interval of 0.1 pA) 
was added to generate five trials of simulated data, whose 
SNR i/σ=10, 5, 3.3, 2.5, and 2 respectively. 

Firstly FCM algorithm, with two clusters (i.e., current levels), 
is used to process the simulated data. For example, when 
σ=0.3 pA (this noise level is very close to the experimental 
data), a sample (column 1-3, …, 31186, 31187 …, 49998-

50000) of the membership degree matrix (2×50000), 
obtained by FCM algorithm, is: 

0.01 0.05 0.02 0.93 0.53 0.03 0.01 0.06
0.99 0.95 0.98 0.07 0.47 0.97 0.99 0.94

 
 
 

 

 

 

Based on this matrix, the cluster label of each data point can 
be determined by using the maximum membership degree 
approach. 

Then the initial parameter of HMM is determined by using 
(10)-(13) and the samples’ class labels. The initial parameters 
determined by FCM are: 

                              

1 0.88 0.12
= , A

0 0.37 0.63

3.05 0.26
=

2,14 0.34

   
   
   
   
   
   

π

μ σ

=

＝ ，

 

Then we use the Viterbi training algorithm to optimize these 
parameters, obtaining the optimized parameters: 

                                

1 0.98 0.02
= , A

0 0.10 0.90

3.00 0.30
=

2,00 0.31

   
   
   
   
   
   

π

μ σ

=

＝ ，

 

By comparison we can find that the values of μ and σ before 
and after optimization are very close. Then we use the class 
labels obtained to determine the time duration of each event. 
Fig. 3(A) shows the simulated data under five different levels 
of noise and the restored signal acquired by our method (in 
red line). Then the simulated signals were filtered by using a 
5 kHz low-pass Bessel filter (in this case, the event with time 
duration shorter than 130 μs will be severely distorted). The 
filtered signals were processed by the FWHM method 
(Arjmandi et al., 2012) and DBC (2nd-order Differential-
Based Calibration) method (Gu et al., 2015). 

To compare the three methods, we make a statistical analysis 
of the time duration obtained by each of them. The too short 
event with time duration shorter than 40 μs (i.e., comprising 4 
or less data points) is excluded from the statistical analysis. 
Fig. 3(B) shows the statistical distribution of the time 
duration data acquired by the three methods under different 
levels of noise. The histogram of the (known) true duration of 
simulated data is shown in Fig. 4(A). Compared with the 
results on the filtered data obtained by the FWHM and DBC 
method, the results on the unfiltered obtained by HMM are 
closer to the true value (70-130 μs). 

To evaluate the accuracy of the three methods, we define the 
mean relative error (MRE) as: 

                       norm nom
1

1 ˆ( ) /
n

i
i

MRE t t t
n =

= −∑                          (14) 
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Fig. 3. (A) Simulated data (unfiltered) with five levels of noise (~1000 samples shown) and the results of our method (red line); 
(B) The distribution of event’s duration (~800 events): (left) HMM; (middle) FWHM applied on the filtered data (5 kHz low-
pass Bessel filter); (right) DBC applied on the filtered data.

where n  is the number of the events with the same duration 
in the simulated data,   ît  the estimated duration of the i-th 
event, and nomt  the true value (70-130 μs). 

Fig. 4(B-F) compares the MRE of duration acquired by the 
three methods, from which we can find that under all five 
different levels of noise the proposed method resulted in the 
least MRE. For the strongest noise with i/σ = 2 (σ = 0.5 pA), 
the MRE of the proposed method is about 20%, which is 
much smaller than that of DBC (~55%) and FWHM method 
(~45%). Therefore, more accurate information can be 
extracted from the unfiltered data by the modified HMM 
method (MHMM). 

 

Fig. 4. Comparison of mean relative error of event’s duration 
of the three methods under five different levels of noise. 

4.2  Comparison of Viterbi and Baum-Welch Algorithms 

To further substantiate the superiority of the Viterbi training 
algorithm for our problem, we compare the performance of 
the Viterbi and Baum-Welch algorithms in this section. 

We evaluated the two methods in terms of the error rate of 
the number of the detected events (Qin et al. (2004)), defined 
by /nom nomn n n−  with nomn  (~800) being the true number of 

events set in the simulations and n the estimated number 
events detected. Fig. 5(A) shows the error rate of the two 
algorithms under 5 different levels of noise, from which we 
can find that both algorithms attained a low error rate and 
that the error rate of both algorithms increases for the noisier 
data. This is because with the increase of the noise level, it 
becomes more difficult to separate the interested current 
blocking events from the noise and when the noise is very 
strong, some noise may be mixed up with the short events. In 
general, the performance of the Baum-Welch and Viterbi 
algorithm is comparable. 

Furthermore, we also make an analysis of the time duration 
time of each detected event. The duration of the simulated 
events is in the range of 70-130 μs. The MRE of events’ 
duration is calculated by using (14). 

Fig. 5(B) shows the MRE results on the simulated data with 
event duration of 70 μs, 90 μs, 110 μs and 130 μs under five 
levels of additive noise. We can find that the error of average 
duration of the detected events increases with higher level of 
noise. With the same level of noise, the shorter events have a 
higher error rate because they are submerged in noise. 

 

Fig. 5. (left) The error rate of the detection of the number of 
events; (middle) MRE of event’s duration. Four types of 
events with the duration of 70 μs, 90 μs, 110 μs, and 130 μs 
are shown in black, blue, red and green, respectively. The 
solid and dotted line denotes the results of Viterbi and Baum-
Welch algorithm, respectively; (right) Computational time. 

In addition, we compare the computational efficiency (or 
time consumption) of the two algorithms coded and run on 
the computing environment of Intel(R) Core(TM) i5-2450 
CPU @2.5GHz, 4G RAM, 64 bit Win7 Prof. OS and Matlab 
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R2013a. The time consumption of the two algorithms under 
five levels of noise is shown in Fig. 5(C). We can find the 
computational time required by both algorithms increases 
with higher level of noise. This is mainly because for noisier 
data, they need more iteration to converge. Furthermore, we 
found that with the same level of noise, the Baum-Welch 
algorithm is much slower than the Viterbi algorithm (it takes 
nearly 5 times of computational time required by the latter). 

Moreover, the Viterbi algorithm can achieve the mean 
amplitude of current blocking events. For example, when 

0.3σ = pA (SNR ≈ 3.3), The two levels’ amplitude derived 
by the Viterbi training algorithms are 1.99 pA and 3 pA, 
which is very close to the true values. 

From the performance of the Viterbi training algorithm on 
the simulated data, we may conclude that it is very tolerant of 
the noise and thus suitable for processing the raw (unfiltered) 
nanopore experimental data with lower signal-to-noise ratio. 
By comparing the Viterbi and Baum-Welch algorithms, we 
found that both algorithms can detect the current blocking 
events accurately but the former is more efficient 
computationally especially for the challenging problem of 
large-scale data analysis in real time. 

4.3  Experimental Data 

In this section, we applied our method to the unfiltered 
experimental data of poly(dA)30 of about 100 s. A sample of 
the results (~ 70 ms) are shown in Fig. 6(A). Fig. 6(B) shows 
five sample events detected by our method. We also use the 
existing FWHM and DBC method to the corresponding 
filtered data by using a 3 kHz low-pass Bessel filter. Table 1 
presents the five events’ time duration time estimated by the 
three methods. 

 

Fig. 6. (A) The prefiltered experimental data of poly(dA)30 
(~70 ms data) and results of our method (red line); (B) a 
sample of unfiltered signal and the events detected by our 
method. 

Table 1. Comparison of the event duration estimated by the 
three methods. 

Method 
Event duration estimated (μs) 

1 2 3 4 5 
HMM 70 80 70 80 140 

FWHM 170 140 110 150 160 
DBC 250 250 200 260 290 

The histograms of the events’ time duration estimated by the 
three methods are compared in Fig. 7. All the histograms are 
fitted by a Gaussian function. The time duration obtained by 
our method on the unfiltered data is 0.13 ± 0.008 ms, while 
the results of FWHM and DBC methods are 0.17 ± 0.003 ms 
and 0.33 ± 0.003 ms, respectively. 

The significant difference in time duration between the 
proposed method and the two existing methods is mainly due 
to the unwanted filtering effect on many very short events: 
the increase of the time duration in general. The comparative 
results demonstrated the capacity of the proposed method for 
accurate and efficient elicitation of events from the raw 
experimental data. 

 

Fig. 7. The duration histogram of poly(dA)30: (A) HMM 
applied on raw data; (B) FWHM applied on the filtered data; 
(C) DBC. The statistical results were fitted by the Gaussian 
function (black line). 

5.  CONCLUSION 

In this paper, in order to alleviate the sensitivity of HMM to 
its initial parameters setting, we utilized the FCM clustering 
technique to initialize the HMM parameters. Then we used 
the modified HMM to process nanopore experimental data. 
The analysis results of both the simulated and experimental 
raw nanopore data showed that the proposed method is more 
accurate than traditional methods for detection of the current 
blocking events. The Viterbi training algorithm is shown to 
be faster than the Baum-Welch algorithm by a factor of about 
5 and thus more suitable for online data analysis. 
Furthermore, the proposed method is shown to be especially 
suited for short current blockage events, which are hard to 
accurately detect by traditional methods due to the signal 
distortion by pre-filtering. 
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