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Abstract: Exploring properties of membership functions, sufficient conditions based on linear
matrix inequalities (LMIs) for a existence of a switched polynomial Lyapunov function are
proposed. To obtain the LMIs, the time derivative of membership functions are described as
a finite polytopic representation, leading to less conservative conditions than other published
results. A numerical example illustrates the efficiency of the stabilizing conditions.
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1. INTRODUCTION

Takagi-Sugeno (TS) fuzzy models represent an important
tool for the analysis of smooth nonlinear systems. The
main attractiveness of this model consists in describing the
nonlinear system as a weighted sum of linear systems. The
matrices of each local models are known and the weights
of the sum are called membership functions (MFs) which
hold convex sum properties (Takagi and Sugeno, 1985;
Taniguchi et al., 2001; Tanaka and Wang, 2001). TS mod-
els can be applied to solve academic or industrial problems,
such as, temperature control of chemical reactors (Chiou
et al., 2010), stabilization of power system in co-generation
plants (Arrifano et al., 2007) and trajectory tracking of
quadrotors (Araujo et al., 2019).

Stability analysis of TS fuzzy systems are usually inves-
tigated via the direct Lyapunov method. This approach
allows to analyze the system without knowing its solu-
tions. On the other hand, there is no systematic approach
to obtain Lyapunov functions for nonlinear systems. As
a consequence, the most used strategy in the literature
consists in selecting a function as a candidate and checking
if it satisfies the Lyapunov conditions. In general, this step
is conservative and in some cases it is necessary to test
several types of functions to find the desired result. The
first results of the literature used a common quadratic
Lyapunov function (CQLF) to guarantee stability (Tanaka
and Wang, 2001; Tuan et al., 2001; Mansouri et al., 2009).
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However, to find a common matrix satisfying all Lyapunov
inequalities for a TS fuzzy system may be too conser-
vative (Johansson et al., 1999). Then, different types of
Lyapunov functions have been employed, among which, it
can be cited the piecewise Lyapunov functions (Johansson
et al., 1999; Tognetti and Oliveira, 2010), fuzzy Lyapunov
functions (FLFs) (Guerra and Bernal, 2009; Mozelli et al.,
2009; Faria et al., 2013; de Souza et al., 2014; Campos
et al., 2017; Valentino et al., 2019; Faria et al., 2019)
and polynomial Lyapunov functions (PLFs) (Bernal and
Guerra, 2010; Lee et al., 2012; Kim et al., 2016; Meng
et al., 2018).

This paper proposes less conservative LMI-based condi-
tions for the existence of a polynomial fuzzy Lyapunov
function. Exploring the structure of membership functions
imposed by the sector nonlinearity approach (Tanaka and
Wang, 2001) an alternative method is proposed to de-
scribe the polytopic representation of the time derivative
of the membership functions presented in Geromel and
Colaneri (2006); Mozelli and Adriano (2019). The strategy
decreases the number of LMIs to be solved, reducing the
conservativeness in the numerical process. This process
was previously explored in the work by Elias et al. (2020)
to obtain less conservative stability conditions using FLFs.
In this work we extend the result for a switched polynomial
Lyapunov function. A numerical example illustrates the
efficiency of the proposed results.

2. PRELIMINARIES

Consider a nonlinear model

ẋ(t) = f(z(t))x(t) (1)
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where f(z(t)) is a smooth nonlinear function, x(t) ∈ IRnx

is the state vector and z(t) = Lx(t) is the premise vector,
with L ∈ IRp×nx , bounded in the compact set

C = {x(t) ∈ IRnx : |xi(t)| ≤ x̃i}

where i ∈ {1, 2, . . . , p} is the set of indexes for state
variables xi(t) which compose the premise vector and x̃i
are parameters defined by designer. In this paper, we
consider that p ≤ nx.

Using the sector nonlinearity approach (Tanaka and Wang,
2001; Taniguchi et al., 2001) system (1) can be exactly
represented by the following TS fuzzy system:

ẋ(t) =

r∑
i=1

hi(z(t))Aix(t) (2)

where Ai ∈ IRnx×nx are known constant matrices, r is
the number of local models of the TS fuzzy system. The
membership functions hi(z(t)) are built as

hi(z(t)) =

p∏
j=1

wjkij (zj) (3)

with kij ∈ {0, 1}, j ∈ {1, . . . , p}

wj0(z(t)) =
nlj − nlj(z(t))

nlj − nlj
wj1(z(t)) = 1− wj0(z(t)) (4)

and nlj(z(t)) ∈ [nlj , nlj ] are the nonlinearities (Tanaka

and Wang, 2001). By (3) and (4), hi(z(t)) satisfy the
convex properties

∀ i ∈ R, hi(z(t)) ≥ 0 and

r∑
i=1

hi(z(t)) = 1 (5)

with R := {1, 2, . . . , r}. By (5) it follows that

r∑
i=1

ḣi(z(t)) = 0. (6)

When convenient, the argument of the functions will be
omitted.

3. STABILITY ANALYSIS WITH POLYNOMIAL
FUNCTIONS

This work uses a polynomial function

V (x(t)) =

r∑
i=1

r∑
j=1

hihjx(t)′Pijx(t) (7)

as a Lyapunov candidate to study the dynamic behaviour
of system (2). Function (7) is known in the literature
as a polynomial Lyapunov function (PLF) and its time
derivative is given by

V̇ (x(t)) = x(t)′

 r∑
i=1

r∑
j=1

r∑
i=k

hihjhk (A′kPij + PijAk)

+

r∑
i=1

r∑
ρ=1

hiḣρ

(
Piρ + Pρi

)]
x(t). (8)

Due to property (6), function V̇ (x(t)) is nonconvex. To
analyze (2) using LMIs, it is necessary to obtain an
alternative form of (8). Thus, for chosen parameters φρ
we define the set

F = {x(t) ∈ C : |ḣρ| ≤ φρ, ρ ∈ R}. (9)

Let D be

D = {x(0) ∈ C : lim
t−→∞

x(t) = 0}

the set of initial conditions for which the solutions of
system (2) converges to the origin. An estimative of the
domain attraction D can be obtained by the level set

B = {x(t) ∈ C : V (x(t)) < C} (10)

where C > 0 is the maximum value such that all the
vectors x(t) belong to F .

Taking into account (7) and (9), Lee et al. (2012) presented
the following result.

Theorem 1. Let φρ, ρ ∈ R, be positive known numbers.

Considering |ḣρ| ≤ φρ,∀ρ ∈ R, TS fuzzy system (2) is
asymptotically stable, if there exist symmetric matrices
Pij ∈ IRn×n, Mij ∈ IRn×n and matrices Li ∈ IRn×n,

Ri ∈ IRn×n, satisfying the following LMIs

Pij + Pji � 0, i ≤ j, i, j ∈ R (11)

Υij + Υji ≺ 0, i ≤ j, i, j ∈ R (12)

Υ̃ ρij + Υ̃ ρji � 0, i ≤ j, i, j, ρ ∈ R (13)

where Υ̃ ρij = Pρj + Piρ + Mij and

Υij =

A′iL
′
j + LjAi +

r∑
ρ=1

φρΥ̃
ρ
ij ?

Pij − L′i + R′jAi −Ri −R′i

 .
Proof. See Theorem 2 of Lee et al. (2012).

To ensure the negativity of (8) using LMIs, Theorem 1
uses the relationship

r∑
i=1

r∑
ρ=1

hiḣρ

(
Piρ + Pρi

)
<

r∑
i=1

r∑
j=1

r∑
ρ=1

hihjφρ

(
Pρj + Piρ + Mij

)
, (14)

which is conservative, to study the time derivative of the
membership functions. To overcome this drawback, we use
the representation given in Mozelli and Adriano (2019) and
rewrite the left hand side of (14)

r∑
i=1

r∑
ρ=1

hiḣρ

(
Piρ + Pρi

)
=

r∑
i=1

η∑
`=1

r∑
ρ=1

hiα`(t)g̃
`
ρ

(
Piρ + Pρi

)
(15)
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where α`(t) are unknown functions satisfying

α`(t) ≥ 0,

η∑
`=1

α`(t) = 1 (16)

and g̃`ρ is the element of the ρth row and `th column of
matrix

G̃ :=

 g̃1, g̃2, . . . ,


g̃`1
g̃`2
...
g̃`r

 , . . . , g̃η̃

 (17)

that describe the region

Ω := {g̃` ∈ IRr;−φρ ≤ g̃`ρ ≤ φρ, cT g̃` = 0} (18)

with cT = [1, 1, . . . , 1] ∈ IRr and η̃ =
r!(

r
2

)
!
(
r
2

)
!
.

Defining the set

Σ =
⋂
j,u

{
x(t) :

∣∣∣∣∣∂wj0∂zj
xu

∣∣∣∣∣ ≤ λju
}

(19)

with j ∈ {1, 2, . . . , p}, u ∈ {1, 2, . . . , nx} and using (15)
the following result is proposed.

Theorem 2. If there exist symmetric matrices Pij ∈
IRn×n, and matrices Li ∈ IRn×n, Ri ∈ IRn×n, satisfying
LMIs (20)-(22), then every solution of TS fuzzy system (2)

contained in set (19), with φ̃ = max
∀j,u
{λju}, is attracted to

the origin.

Pij + Pji � 0, i ≤ j (20)

Υ `ii ≺ 0 (21)

2

r − 1
Υ `ii + Υ `ij + Υ `ji ≺ 0, i 6= j (22)

where i, j ∈ R, ` ∈ {1, . . . , η̃}

Υ `ij =

[
A′iL

′
j + LjAi + P̃`

ij ?
Pij − L′i + R′jAi −Ri −R′i

]
P̃`
ij = φ̃

r∑
ρ=1

g̃`ρ(Piρ + Pρj).

Proof. Let us consider a PLF candidate (7). If (20) holds
then V (x(t)) > 0. Moreover, if (21) and (22) hold, then
by Tuan et al. (2001) it follows that

r∑
i=1

r∑
j=1

hihjΥ
`
ij ≺ 0.

Multiplying inequality above by α`(t) and adding the
terms we obtain[

A(h)′L(h)′ + L(h)A(h) + P̃ ?
P(h)− L(h) + R(h)A(h) −R(h)−R′(h)

]
≺ 0 (23)

where

A(h) :=

r∑
i=1

hiAi, L(h) :=

r∑
i=1

hiLi

R(h) :=

r∑
i=1

hiRi, P(h) :=

r∑
i=1

r∑
j=1

hihjPij

P̃ := φ̃

r∑
i=1

r∑
j=1

η∑
`=1

hihjα`(t)

r∑
ρ=1

g̃`ρ

(
Piρ + Pρj

)
Premultiplying and posmultiplying LMI (23) by matrix
[x(t)′ x(t)′A(h)′] and its transpose, respectively, it yields

x(t)′

[
r∑
i=1

r∑
j=1

r∑
i=k

hihjhk (A′kPij + PijAk) + P̃

]
x(t) < 0.

(24)

For all x(t) ∈ Σ we have |ḣρ| ≤ φ̃, ∀ ρ ∈ R. From convex
property (5) and using (15), the following holds

P̃ = φ̃

r∑
i=1

r∑
j=1

η∑
`=1

hihjα`(t)

r∑
ρ=1

g̃`ρ

(
Piρ + Pρj

)
=

r∑
i=1

η∑
`=1

hiα`(t)φ̃

r∑
ρ=1

g̃`ρ

(
Piρ + Pρi

)
≥

r∑
i=1

r∑
ρ=1

hiḣρ

(
Piρ + Pρi

)
. (25)

Then, substituting (25) into (24), it yields

x(t)′

[
r∑
i=1

r∑
j=1

r∑
i=k

hihjhk (A′kPij + PijAk)

+

r∑
i=1

r∑
ρ=1

hiḣρ

(
Piρ + Pρi

)]
x(t) < 0 (26)

Then, by (15) and (26), (8) is negative which ensures that
the solution of system (1) is attracted to the origin.

Altough Theorem 2 gives less conservative stability con-
ditions than Theorem 1, the number of LMIs increases
factorially with the number of local models, increasing the
computational burden. Thus, in the next section, less con-
servative conditions are proposed. The result explores the
use of a switching Lyapunov function and the properties of
membership functions imposed by the sector nonlinearity
approach (Tanaka and Wang, 2001; Taniguchi et al., 2001)
to decrease the number of columns in matrix (17).

3.1 Relaxing the stability conditions

In this section, less conservative results are proposed using
a polynomial Lyapunov function candidate of the form

Vσ(x)(x(t)) = x(t)′Pσ(x)(h)x(t) (27)

where σ(x) : IRnx → P, with P = {1, 2, . . . , p}, is a
piecewise constant function of the state called switching
law and

Pσ(x)(h) =

r∑
i=1

r∑
j=1

hihjPσ(x)ij .

If system (2) is continuous and function Vσ(x(t)) is de-
creasing, then it is possible to obtain a Lyapunov function
for system (2) using the following switching law:
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σ(x) = arg

 min
1≤ρ≤p

x(t)′

 r∑
i=1

r∑
j=1

hihjPρij

x(t)

 .

(28)

In what follows, we consider a particular case of region Ω in
(18) such that φ̃ = max

∀j,u
{λju}. Properties of the member-

ship functions are investigated to reduce the conservatism
of the LMI conditions given by Theorem 2.

Since wj1 = 1− wj0, it follows that

ẇj1 = −ẇj0, ∀j ∈ {1, . . . , p}. (29)

Using properties (6) and (29), it is possible to establish

relationships between functions ḣi, i = 1, · · · , r, at the
vertices of polytope Ω. That is, for any j ∈ {1, . . . , p},
there are integer numbers ν and ρ such that

ḣν+(ρ−1)2j = −ḣν+(2ρ−1)2j−1 (30)

where ρ ∈ {1, . . . , 2p−j} and ν ∈ {1, . . . , 2j−1}. Prop-
erty (30) is illustrated in Table 1 for r membership func-
tions. By the relationships obtained in (30), a simplified

convex description of matrix G̃ in (17) can be obtained.

To exemplify the use of Table 1, consider p = 2. The
columns 1 and 2 of Table 1 hold the following relationships
respectively

ḣ1
ḣ2
ḣ3
ḣ4

 =


−ḣ2
ḣ2
−ḣ4
ḣ4

 or


ḣ1
ḣ2
ḣ3
ḣ4

 =


−ḣ3
−ḣ4
ḣ3
ḣ4

 . (31)

Using the left equality of (31) to describe the vertices of
the polytope Ω we obtained the matrix G1. Following the
same steps with the right side of (31) we obtained the
matrix G2. Both matrices are showed below

G1=φ̃

−1 1 1 −1
1 −1 −1 1
−1 −1 1 1

1 1 −1 −1

 , G2=φ̃

−1 1 −1 1
−1 −1 1 1

1 −1 1 −1
1 1 −1 −1

 . (32)

Note that the addition of relationships of Table 1 decrease
the vectors number of Ω by η = 2

r/2.

For comparison purposes, note that matrix G̃ in (17),

again for the particular case φ̃ = max
∀j,u
{λju}, is given by

G̃ = φ̃

−1 −1 1 −1 1 1
−1 1 −1 1 −1 1

1 −1 −1 1 1 −1
1 1 1 −1 −1 −1

 . (33)

As a matter of fact, matrix G̃ in (33) has η̃ = 6 while
matrices Gj , j = 1, 2, in (32) have four columns. Taking
into account Theorem 2 and Table 1, the following theorem
is established.

Theorem 3. If there exist symmetric matrices Pβij ∈
IRn×n, and matrices Lβi ∈ IRn×n, Rβi ∈ IRn×n, satisfying
LMIs (34)-(34), then every solution of TS fuzzy system (2)

contained in set (19), with φ̃ = max
∀j,u
{λju}, is attracted to

the origin.

Pβij + Pβji � 0, i ≤ j (34)

Υ `βii ≺ 0 (35)

2

r − 1
Υ `βii + Υ `βij + Υ `βji ≺ 0, i 6= j (36)

where i, j ∈ R, ` ∈ {1, . . . , η}, β ∈ {1, . . . , p}

Υ `βij =

[
A′iL

′
βj + LβjAi + P̃`

βij ?
Pβij − L′βi + R′βjAi −Rβi −R′βi

]
P̃`
βij = φ̃

r∑
ρ=1

g`βρ(Pβiρ + Pβρj)

and g`βρ is the element of the ρth row and `th column of
matrix Gβ given by relations of Table 1.

Proof. Let us consider a PLF candidate (27). If (34) holds
then Vσ(x)(x(t)) > 0. Moreover, if (35) and (36) hold, by
Tuan et al. (2001) it follows that

r∑
i=1

r∑
j=1

hihjΥ
`
βij ≺ 0.

Following the same steps of the proof of Theorem 2 we
obtain

x(t)′

[
r∑
i=1

r∑
j=1

r∑
i=k

hihjhk (A′kPβij + PβijAk) + P̃β

]
x(t)<0.

(37)

For all x(t) ∈ Σ we have |ḣρ| ≤ φ̃, ∀ ρ ∈ R. By Table 1 and
property (15), for any t there is at least one β ∈ {1, . . . , p},
such that

P̃β = φ̃

r∑
i=1

r∑
j=1

η∑
`=1

hihjα`(t)

r∑
ρ=1

g`βρ(Pβiρ + Pβρj)

=

r∑
i=1

η∑
`=1

hiα`(t)φ̃

r∑
ρ=1

g`βρ

(
Pβiρ + Pβρi

)
≥

r∑
i=1

r∑
ρ=1

hiḣρ

(
Pβiρ + Pβρi

)
. (38)

Then, replacing (38) in (37) it yields

x(t)′

[
r∑
i=1

r∑
j=1

r∑
i=k

hihjhk (A′kPβij + PβijAk)

+

r∑
i=1

r∑
ρ=1

hiḣρ

(
Pβiρ + Pβρi

)]
x(t) < 0. (39)

Thus, by (39) there is at least one β such that V̇σ(x)(x(t))
is negative for any t, which ensures that the solution of
system (2), with switching law (28), is attracted to the
origin.

The efficiency of Theorem 3 is illustrated by two numerical
examples.
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Table 1. Relationships between the derivatives of the membership functions at the vertices

1 2 3 . . . j . . . p

ḣ1 = −ḣ2 ḣ1 = −ḣ3 ḣ1 = −ḣ5 ḣ1 = −ḣ1+2j−1 ḣ1 = −ḣ1+2p−1

ḣ3 = −ḣ4 ḣ2 = −ḣ4 ḣ2 = −ḣ6 ḣ2 = −ḣ2+2j−1

ḣ5 = −ḣ6 ḣ5 = −ḣ7 ḣ3 = −ḣ7 ...ḣ7 = −ḣ8 ḣ6 = −ḣ8 ḣ4 = −ḣ8

ḣ9 = −ḣ10 ḣ9 = −ḣ11 ḣ9 = −ḣ13 ḣ2j−1 = −ḣ2×2j−1

ḣ11 = −ḣ12 ḣ10 = −ḣ12 ḣ10 = −ḣ14 ḣ1+2×2j−1 = −ḣ1+3×2j−1

ḣ13 = −ḣ14 ḣ13 = −ḣ15 ḣ11 = −ḣ15 ḣ2+2×2j−1 = −ḣ2+3×2j−1

ḣ15 = −ḣ16 ḣ14 = −ḣ16 ḣ12 = −ḣ16 ...

ḣ3×2j−1 = −ḣ4×2j−1

...
...

... . . .
... . . .

...

ḣr−20 = −ḣr ḣr−21 = −ḣr ḣr−22 = −ḣr . . . ḣr−2j−1 = −ḣr . . . ḣr−2p−1 = −ḣr

NUMERICAL EXAMPLE

Consider the same numerical TS fuzzy system given in
Faria et al. (2013)

A1 =

[
−5 −4
−1 a

]
, A2 =

 −4 −4

(3b− 2)

5

3a− 4

5


A3 =

 −3 −4

2b− 3

5

2a− 6

5

 , A4 =

[
−2 −4
b −2

] (40)

and membership functions, for |xi| ≤ π/2,

h1 = w1
0(x1)w2

0(x2), h2 = w1
0(x1)w2

1(x2)

h3 = w1
1(x1)w2

0(x2), h4 = w1
1(x1)w2

1(x2)
(41)

with wi0(xi) =
1− sin(xi)

2
, wi1(xi) = 1− wi0(xi).

Stability of system (2), with local models (40) and mem-
bership functions (41), was verified with Theorems 1, 2 and
3. The LMIs were solved using YALMIP (Löfberg, 2004)

and SeDuMi (Sturm, 1999) with parameters φρ = φ̃ =
0.9425, ∀ ρ ∈ R, a ∈ [−3 − 1] and b ∈ [0 200]. Figure 1
shows the stable region of each compared method.

−3 −2.5 −2 −1.5 −1

0

40

80

120

160

200

a

b

Fig. 1. Feasible regions of Theorem 1 (◦), Theorem 2 (◦,
×) and Theorem 3 (◦, ×, •).

By Fig. 1, the stable region of Theorem 3 covers the stable
regions of Theorems 1 and 2, ensuring that LMIs (34)
are less conservative. The LMI relaxation was obtained

reducing the number of columns in matrix G̃ by using
property (30) (see Table 1, for p = 2).

Another advantage of Theorem 3 regarding Theorems 1
and 2 is the basin of attraction (10). For instance, taking
parameters a = −2 and b = 90, by Fig.1 all theorems
are feasible. However, they can ensure the feasibility using
different maximum values for parameter φ̃. The maximum
value φ̃ of Theorems 1, 2 and 3, respectively, are 0.94, 1.65
and 3.77.

The impact of parameter φ̃ in the estimate of the basin of
attraction is showed in Fig. 2.

By Fig. 2, the best estimate of the basin of attraction B
is given by Theorem 3. Moreover, Fig. 2 shows the time
response of system for initial condition x0 = [−0.2 0.35].

−0.4 −0.2 0 0.2 0.4
−1

−0.5

0

0.5

1

x1

x
2

Fig. 2. Basin of attractions of Theorem 1 (dotted line),
Theorem 2 (dashed line) and Theorem 3 (solid line).

The dynamical behavior of the Lyapunov candidate func-
tion (27) with switching law (28) are illustrated in Fig. 3.
Since Vσ(x(t)) is positive and decreasing, than it repre-
sents a Lyapunov function for system (2).

4. CONCLUSIONS

LMI conditions for the stability analysis of TS fuzzy sys-
tems were proposed. An alternative way to describe the
time derivative of the membership functions combined
with a polynomial Lyapunov function gave less conserva-
tive conditions for the feasibility of the LMI constraints.
Futhermore, the results can also provide better estimation
of the attraction basin.
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