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Abstract: In this paper we study the problem of how quantization may affect the maximum
likelihood estimation of the parameters of a probability density function representing a
compound distribution. We consider and compare three different approaches to design a variable
quantizer allowing to guarantee a predefined loss of Fisher information which is used as a
measure of the information loss due to quantization. We also propose the approximations
which characterize the asymptotic behavior of the loss allowing a significant reduction of the
computational complexity.
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1. INTRODUCTION

Due to radical changes in the industry, often called the
fourth industrial revolution, more and more wireless de-
vices are used in industrial applications, including wireless
sensor networks, which provide information to control the
plant. Hence, it must be ensured that sensor information
is transferred successfully, which highly depends on the
available radio channel. Thus, a better understanding of
the channel propagation characteristics and associated sta-
tistical models are important in such applications.

Fading models based on compound distributions are most
suitable to describe the radio channel power gain over long
time horizons, Agrawal et al. (2014). A compound distri-
bution may arise as the convolution of a lognormal (LN)
distribution that is used to model a shadowing component
of the channel power gain and a Gamma (G) distribution
that models a fast fading component. The choice of a
correct compound distribution can have a considerable
impact on the latency, the energy consumption, and the
average bit error rate (BER) of the wireless sensor net-
work, see Olofsson et al. (2016); Agrawal et al. (2014);
Shao and Beaulieu (2010); Gungor and Hancke (2009);
Olofsson and Ahlén (2018); Croonenbroeck et al. (2017).

Obtain accurate parameter estimates is essential for the
design of wireless control systems for industrial use. The
parameters of the compound distribution can be estimated
by the maximum likelihood (ML) method providing con-
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sistent estimates, Olofsson et al. (2016); Dogandzic and
Jin (2004). However, the received signal strength (RSS)
is measured using sensors with a certain resolution, i.e.,
data are received in quantized bins. When dealing with
quantized observations, some amount of information that
the observations carry about the unknown parameters may
be lost. Then the appropriate quantization interval should
be chosen to bound the maximal information loss.

The authors’ previous paper, Seifullaev et al. (2019), stud-
ied the case of uniform quantization. But the results can
be significantly improved when a variable quantizer is
used. This paper considers three different approaches for
variable quantizer designs: random perturbations, contrac-
tion mapping, and two-sided uniform quantization. For the
latter two, an approximation of the loss of the information
is proposed that significantly reduces the computational
complexity. As a measure of the information lost due to
quantization, we use the Fisher information (a classical
measure of information that observations carry about un-
known parameters of a distribution).

The rest of the paper is structured as follows. In Section 2
the problem of how to characterize the loss of Fisher
information due to quantization is considered. Section 3
describes the results for uniform quantization. In Section
4 the methods of how to design the variable quantizers are
considered and compared. Section 5 draws conclusions.

2. PROBLEM FORMULATION

Consider the compound distribution

p(y |σ,m) =

∫ ∞
−∞

p1(y − v |m) p0(v |σ)dv, (1)
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where y is continuous received signal power in dBm, and
p1 and p0 are the dB representations of the G- and LN-
distributions with the parameters m and σ, respectively,
see Olofsson et al. (2016); Agrawal et al. (2014); Olofsson
and Ahlén (2018). In the dB-domain, the G-distribution is

p1(y |m) =
mm

µΓ(m)
em

y−ȳ
µ e−m e

y−ȳ
µ
, (2)

where Γ(·) denotes the gamma function, µ = 10/ln 10, ȳ is
the corresponding mean power in dBm and m ≥ 1 is the
Nakagami-m fading parameter. The LN-distribution in the
dB-domain transforms to the normal (N) distribution

p0(y |σ) =
1√
2πσ

e
−y2

2σ2 (3)

with zero mean and standard deviation σ > 0.

Without loss of generality we assume ȳ = 0 in (2). For
simplicity we will consider the case when the standard
deviation σ is unknown, and the parameter m is fixed.
We consider σ ∈ (0, 5] (Region-of-Interest), see Olofsson
and Ahlén (2018). The results for unknown m or unknown
m and σ can be obtained similarly.

Consider a set of continuous measurements Y = [yc
1, . . . , y

c
K ]

and a likelihood function P(σ | Y) =
∏K
i=1 p(y

c
i |σ). We

assume the observations yci to be independent and iden-
tically distributed. We use ML estimation to estimate
the unknown parameter σ, i.e., σ̂ = arg maxσ P(σ | Y) =
arg maxσ lnP(σ | Y). The amount of information that
the observations carry about the unknown parameter
can be measured by the Fisher information Iσ =

E
{

[Ψ(σ | Y)]
2 |σ

}
, where Ψ(σ | Y) =

∂

∂σ
lnP(σ | Y) is the

score function.

Under the assumption that the observations Y are inde-
pendent it follows that

Iσ = Kiσ, (4)

where K is the number of observations and

iσ = E
{

[ψ(y |σ)]
2 |σ

}
=

∫ ∞
−∞

[ψ(y |σ)]
2
p(y |σ)dy, (5)

is the Fisher information number, ψ(y |σ) = ∂p(y |σ)
∂σ

1
p(y |σ) .

Assume that the set of received measurements is obtained
from a coarse quantizer, i.e., instead of yc

i we will consider
the points yi, i = 1, . . . ,K, that are obtained in bins. The
k-th bin interval is given by Ik = (zk, zk+1) k = 1, . . . , N,
where zk = ȳk − ∆

2 , ∆ > 0 is the width of the k-th bin,
and N is the total number of bins. Here ȳk is the middle
point of the k-th bin, and we assume that yi = ȳk for
yi ∈ Ik, i = 1, . . . ,K. Then the distribution corresponding
to p(y |σ) is defined by

q(y |σ) =
1

∆

∫
Ik

p(ζ|σ)dζ, y ∈ Ik. (6)

The problem is to characterize the quality of estimation
based on quantized observations by investigating the loss
of Fisher information due to quantization, i.e.,

d∆
σ = iσ − i∆σ , (7)

where

i∆σ = E
{[
ψ∆(y |σ)

]2 ∣∣∣ σ} , (8)

and ψ∆(y |σ) = ∂q(y |σ)
∂σ

1
q(y |σ) .
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Fig. 1. The maximum value of ∆ for which the relative
loss of iσ does not exceed 2%.

3. UNIFORM QUANTIZATION

Let us start with the case when all bins have the same
width, i.e., uniform quantization. When the bin intervals
are sufficiently small, the asymptotic behavior of the loss
d∆
σ can be characterized by the following theorem (see

(Seifullaev et al., 2019, Them 1).)

Theorem 1. The loss of Fisher information due to quanti-
zation d∆

σ ≥ 0 can be assessed as

lim
∆→0

d∆
σ

∆2
=

1

12
E

{[
∂ψ(y | θ)
∂y

]2
∣∣∣∣∣ σ
}
. (9)

Denote d̃∆
σ = ∆2

12 E

{[
∂ψ(y |σ)

∂y

]2 ∣∣∣∣ σ} . From Theorem 1 we

have that d∆
σ ∼ d̃∆

σ for small ∆.

The detailed investigation on how uniform quantization
influences on the loss of Fisher information can be found
in Seifullaev et al. (2019), concluding that more accurate
measurements are needed for small values of σ, i.e., in case
of peaky distributions. E.g. Fig. 1 illustrates the maximum

values of ∆ guaranteeing that the relative loss r∆
σ =

d∆
σ

iσ

does not exceed 2%, i.e., ∆max
σ = max

{
∆
∣∣ r∆
σ ≤ 0.02

}
.

Fig. 1 also shows that in case of 2% relative loss the
approximation of the loss obtained with Theorem 1 is
sufficiently good, which greatly reduces the computational
load when characterizing a quantization interval which
guarantees an appropriate quality of the ML estimates.

Consider the compound distribution p(y |σ) depicted in
Fig. 2. We see that for small σ the compound distribu-
tion p(y |σ) has small support and a steep bell shaped
curvature, when for large σ the support is wide and the
distribution is more symmetric and flat.

Denote by S(σ) the width of 99.9%-support of the
distribution p(y |σ), i.e., S(σ) = yright − yleft, where∫ yleft

−∞ p(y |σ)dy =
∫∞
yright

p(y |σ)dy = 0.0005. Then for

every fixed σ∗ the number of quantized bins covering
the 99.9%-support of p(y |σ∗) and provide at most 2%
relative loss of Fisher information can be computed as
dS(σ∗)/∆max

σ∗ e, where dze denotes the least integer greater
than z. We see that with the growth of σ the length of
the bin intervals increases approximately by factor four
(see Fig. 1). At the same time, the width of support also
grows by factor two, see Fig. 3. Hence, the number of bins
decreases raughly by half when σ increases from 0 to 5.
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Fig. 2. The compound distribution p(y |σ).
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Fig. 3. Blue lines: the number of quantized bins providing
at most 2% relative loss (actual values (solid line) and
approximated ones (dashed line)). Red line: S(σ).

4. VARIABLE QUANTIZATION

In a case of uniform quantization we have the same width
∆ for all bins, i.e., the same measurement resolution for
all intervals of y. At the same time, not all intervals
affect the Fisher information equally. For instance, we can
intuitively expect that for the boundary bins, where the
distribution has a very low slope, we do not need the
same accuracy while the intervals with a steeper slope of
p require a more fine-grained quantizer. Thus, we expect
that using a variable quantizer may result in a lower
loss of Fisher information keeping the same number of
bins. For variable quantization the k-th bin interval Ĩk
is denoted by Ĩk = (z̃k, z̃k+1), k = 1, . . . , N, where the
end points, z̃1 and z̃N+1, are fixed, i.e., z̃1 = z1 = yleft

and z̃N+1 = zN+1 = yright. The goal of the variable

quantizer is to place the points ỹk = z̃k+z̃k+1

2 by selecting
z̃k, k = 2, . . . , N in an optimal way. Below, we consider
and compare three different variable quantizers.

4.1 Random perturbations

The first method to obtain the sequence {z̃k}N+1
k=1 from

{zk}N+1
k=1 providing a lower loss of Fisher information com-

pared to uniform quantization is random perturbations,
where the points z̃k are varied iteratively starting with
z̃k = zk for k = 2, . . . , N , followed by randomly perturbing
one or several points yielding z′k and calculating the loss of
information for z′k. At each iteration, if the loss using z′k is
lower than the previous one, then the new locations z′k are
accepted, i.e, set z̃k = z′k. Otherwise, the new locations are
rejected, i.e., using z̃k. The advantage of this method is the
simple design of the quantizer and its easy implementation.

Uniform quantizer, 15 bins, Loss = 10.7%

-15 -10 -5 0 5
0

0.05

0.1

0.15
Random Perturbations, Loss = 6.39%

-15 -10 -5 0 5
0

0.05

0.1

0.15

Fig. 4. Variable quantization obtained from the uniform
quantizer using random perturbations for σ = 1.

The result of such a random approach is shown in Fig. 4,
where 700 iterations for σ = 1 and N = 15 bins where
used. The loss of Fisher information decreased from 10.7%
to 6.39% and is expected to decrease further for more
iterations. But since the main disadvantage of this method
is its very high computational complexity as we need to
compute the actual loss at each iteration, this method
is acceptable to get some intuition on possible suitable
quantization intervals but is inappropriate in practice.

4.2 Contraction mapping

To reduce the computational complexity we want to find a
non-iterative method that allows deriving an approxima-
tion of the loss as well. We assume now that the variable
quantizer is implemented by applying a differentiable map-
ping F : IR → IR, i.e., z̃k = F (zk), for k = 2, . . . , N . The
loss of Fisher information due to variable quantization can
then be approximated, see Theorem 3 in Poor (1988):

Proposition 1. Assume that the function G(y) = dF (y)
dy

is invertible. Then the loss of Fisher information due to
variable quantization can be assessed as

lim
∆→0

d∆
σ

∆2
=

1

12
E

{[
G−1(y)

∂ψ(y | θ)
∂y

]2
∣∣∣∣∣ σ
}
, (10)

where G−1 is the inverse of G.

The main challenge is to design the mapping F that gives
an advantage in the loss compared to uniform quantiza-
tion. Since, intuitively, one needs more accurate measure-
ments for the intervals where the distribution has a high
slope, we define F as a two-sided contraction mapping with
the fixed points corresponding to the largest slope of p:

F (y) =

{
yl
∗ e−a

l(y−yl
∗), y 6 ym,

yr
∗ e a

r(y−yr
∗), y > ym,

(11)

where ym is a mode (peak value) of the distribution p,

yl
∗ = max

yleft<y6ȳm

∣∣∣dp(y |σ)
dy

∣∣∣, yr
∗ = max

ȳm<y<yright

∣∣∣dp(y |σ)
dy

∣∣∣, al =

log yleft−log yl
∗

yl
∗−yleft

and ar =
log yright−log yr

∗
yright−yr

∗
.

Proposition 2. The mapping (11) is a contraction with:

• the points yl
∗ and yr

∗ are the fixed points, i.e., F (yl
∗) =

yl
∗ and F (yr

∗) = yr
∗,
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Uniform quantizer, 15 bins, Loss = 10.7%
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Variable quantizer, Loss = 8.78%
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Fig. 5. Variable quantization obtained from the uniform
one using the contraction mapping for σ = 1.
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Fig. 6. The loss of Fisher information due to variable quan-
tization based on contraction mapping: the actual loss
(solid lines) and approximated as in (10) (dashed).

• for all y ∈ (yleft, yright) one has
y < F (y) < yl

∗, for yleft < y < yl
∗

yl
∗ < F (y) < y, for yl

∗ < y 6 ym

y < F (y) < yr
∗, for ym < y < yr

∗
yr
∗ < F (y) < y, for yr

∗ < y < yright

Proof. By direct calculations.

Note that (11) has a gap at ȳm. But Proposition 1 is still
satisfied, where the expectation integral in (10) is a sum
of two integrals on the intervals (yleft, ȳm) and (ȳm, yright).

Fig. 5 shows that for σ = 1 and N = 15 the loss of
Fisher information is decreased from 10.7% to 8.78%.
The obtained loss is greater than for the case of random
perturbations (see Fig. 4). However, the implementation of
the quantizer based on the contraction mapping is much
more simple. Moreover, using approximation (10) allows
to significantly reduce the computational complexity. See
Fig. 6 for the actual and approximated relative losses
for different values of ∆, where ∆ is the step of the
uniform quantizer equivalent to an average step of the
variable quantizer with the same number of bins and
width of support. Fig. 7 illustrates the loss due to variable
quantization based on mapping (11) compared with the
loss due to uniform quantization showing that variable
quantization gives better results only for the large values of
∆ while for ∆ < 1 (approximately) the uniform quantizer

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

Fig. 7. The loss of Fisher information: variable quantiza-
tion based on (11) (solid lines) and uniform quantiza-
tion (dashed lines).

shows better performance since for small ∆ the number
of bins is large. Hence, the loss within the large middle
bin becomes significant compared to the other bins. At
the same time from Fig. 6 we can conclude that the
approximation (10) is relatively good only for ∆ < 0.5.
Thus, the contraction mapping cannot be considered as a
generally suitable approach to design variable quantizers.

4.3 Two-sided uniform quantization

Figs. 4 and 5 reveal that the resulting variable quantizers
have one wide middle bin and two large bins corresponding
to the tails of the distribution p. This indicates that
only a little amount of Fisher information is lost within
these intervals when using quantized measurements. Let
us consider the problem more formally next.

From (5) we know that the Fisher information number

is the integral of the function f(y) = [ψ(y |σ)]
2
p(y |σ)

in a case of continuous measurements, and f∆(y) =[
ψ∆(y | θ)

]2
p(y | θ) in a case of quantized ones. The plot

of f(y) is shown in Fig. 8 (blue line), showing that the
function f(y) has three peaks, where the left and right
peaks are different due to asymmetry of the distribution
p. At the same time we know that the function ψ∆(y | θ) =

ψk = const for y ∈ Ĩk. Hence, the function f∆(y) is
piecewise-continuous and constitutes scaled copies of the
distribution p(y |σ) within the intervals Ĩk (see the red
curve in Fig. 9). Since both functions, f(y) and p(y |σ),
have peaks close to the peak value ȳm of the function f(y),
one can find a relatively large interval (ȳl, ȳr) such that∫ ȳr

ȳl

f(y)dy ≈
∫ ȳr

ȳl

f∆(y)dy. (12)

Also we know that at the points yleft and yright both func-
tions, f(y) and p(y |σ), have small values. Then definitely
it will be possible to find the points yl and yr such that the
integrals

∫ yl

yleft
[f(y)− f∆(y)]dy and

∫ yright

yr
[f(y)− f∆(y)]dy

are sufficiently small.

As stated in Section 4.1, the random perturbations ap-
proach gives some intuition on suitable quantization inter-
vals. Fig. 4 shows that the bins within the interval (yl, ȳl)
have approximately the same width. The same is true for
the interval (ȳr, yr). Hence, for simplicity, we can consider
the uniform quantizers within these intervals.

Therefore, the design of the two-sided uniform quantizer
can be performed in two steps (see Fig. 8). The first step
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Fig. 8. Two-sided uniform quantizer design. The blue curve
is the function f(y) that should be integrated to
obtain the Fisher information number iσ.

is to choose three relatively large bins (blue areas): one
middle bin containing the peak value ȳm of f(y), and two
bins corresponding to the tails of p. The second step is
to specify the number of bins for two intervals of uniform
quantization (orange and green areas). Since the peaks are
asymmetric a smaller step for the larger peak (green area)
should be taken, whereas a larger step can be selected for
the wider peak (orange area). As a result, we obtain the
following variable quantizer:

• Ĩ1 = (yleft, yl) and ĨN = (yr, yright),

• N1 uniform bins Ĩk for k = 2, . . . , k∗ − 1,
• N2 uniform bins Ĩk for k = k∗ + 1, . . . , N − 1,
• Ĩk∗ = (ȳl, ȳr), where k∗ = N −N1 −N2 − 2.

The main challenge of such quantizer is to find the param-
eters (yl, ȳl, ȳr, yr, N1, N2) giving the smallest value of the
loss. One way is to simply find the parameters iteratively.
However, such an approach requires a lot of computational
resources and might hence offer little benefit compared to
the iterative method proposed in Section 4.1. In this paper,
we therefore propose the following parameter settings:

• The parameters yl and yr can be chosen such that∫ yl

yleft

f(y)dy =

∫ yright

yr

f(y)dy = ε,

where we choose ε = 0.01.
• We can see from Fig. 8 that the left and right

peaks of the function f(y) are asymmetric. Then the
quantizer step for the interval with a higher peak, i.e.,
the interval (ȳr, yr) for σ = 1, should definitely be
taken smaller. However, for higher peaks, the width
of support is smaller as well. For the region of interest
σ ∈ (0, 5], a good choice of the numbers of bins,
N1 and N2, is N1 = N2 = N−3

2 for odd N , and

N1+1 = N2 = N−2
2 for even N . By choosing the same

numbers of bins for the left and the right intervals,
(yl, ȳl) and (ȳr, yr), we automatically obtain a smaller
quantizer step for the interval with a higher peak of
f(y).
• The choice of ȳl and ȳr depends on the number of

bins. Indeed, if N is too small then the error between
the integrals in (12) is relatively small compared to
the loss within the intervals (yl, ȳl) and (ȳr, yr). Then
we can take the bin (ȳl, ȳr) relatively wide which
decreases the step of both uniform quantizers. If N is
too large, then the loss due to the uniform quantizers

-20 -15 -10 -5 0 5 10
0

0.005

0.01

0.015

0.02

Fig. 9. The plots of f(y) and f∆(y) for σ = 1 and N = 15
bins.

Uniform quantizer, 15 bins, Loss = 10.7%
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Fig. 10. Two-sided uniform quantization (right figure)
compared to uniform quantization (left figure) for
σ = 1, and N = 15.

is small, and hence, the error between the integrals
in (12) becomes significant. We should then make the
middle bin narrower. In this paper we propose the
following choice of ȳl and ȳr:

ȳl = ȳm − d, ȳr = ȳm + d,

where d is inversely proportional to N .

The plots of f(y) and f∆(y) for the parameters designed
as above are shown in Fig. 9. In Fig. 10 we can see that
for σ = 1 and N = 15 bins the loss of Fisher information
is reduced from 10.7% (uniform quantization) to 4.56%
(two-sided uniform quantization).

For the two-sided uniform quantizer, the loss can be ap-
proximated based on Theorem 1. Introduce the follow-
ing notations: L1 = (yleft, yl) ∪ (ȳl, ȳr) ∪ (yr, yright) and
L2 = (yl, ȳl) ∪ (ȳr, yr). Since we have three relatively
large bins within L1, for these intervals the actual loss
should be computed, while for the intervals L2 where the
uniform quantizers are used the loss can be preferably
approximated.

Theorem 2. The loss of Fisher information due to two-
sided uniform quantization can be approximated as

d∆
σ ≈

∫
L1

(
[ψ(y |σ)]

2 −
[
ψ∆(y |σ)

]2)
p(y |σ)dy + d̃∆

σ ,

where lim∆→0
d̃∆
σ

∆2
=

1

12

∫
L2

[
∂ψ(y | θ)
∂y

]2

p(y |σ)dy.

Proof. Omitted for brevity.
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Fig. 11. The loss of Fisher information due to two-sided
uniform quantization: the actual loss (solid lines) and
the approximated loss (dashed lines).
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Fig. 12. The loss of Fisher information: two-sided uniform
quantization (solid lines) and uniform quantization
(dashed lines).

The actual and approximated relative losses are shown
in Fig. 11 for different values of the average bin width
∆. We can see that the approximation is sufficiently
accurate for ∆ < 1. Fig. 12 illustrates the loss due to two-
sided uniform quantization compared with the loss due to
uniform quantization. We see that the two-sided uniform
quantizer shows better performance.

4.4 Comparison of results

The obtained variable quantizers are compared in Fig. 13
which illustrates the minimal number of quantized bins
providing at most 2% loss of Fisher information.

For the random quantizer we have used 700 iterations
and reduced the number of bins compared to the uniform
quantizer. We definitely could obtain even better results
by increasing the number of iterations, however, as was no-
ticed above, the computational complexity of the random
method is extremely high. In Fig. 13 we can also see that
for the quantizer based on contraction mapping the ap-
proximation is inaccurate for large σ since with the growth
of σ the number of bins decreases, leading to larger values
of ∆ (see also Fig. 6). For the two-sided uniform quantizer,
the approximation is sufficiently good for all σ. Another
advantage that provides an easier implementation of the
proposed two-sided uniform quantizer is that for all values
σ we obtain a similar number of bins providing at most
2% loss. Therefore, we can conclude that using two-sided
uniform quantization allows us to significantly reduce the
minimal number of quantized bins which guarantees an
appropriate quality of estimates.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

30
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Fig. 13. The number of quantized bins providing at most
2% loss of Fisher information: actual values (solid
lines) and approximated values (dashed lines).

5. CONCLUSIONS

The problem of choosing quantization intervals for the
compound distribution to provide an appropriate loss of
Fisher information is considered. Using variable quantiza-
tion instead of uniform one can significantly reduce the
information loss. Three different approaches to design the
variable quantizer are proposed, where the two-sided uni-
form quantization method showed the best performance.
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