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Abstract: From the literature, it is known that solutions of homogenous linear stable difference
equations may experience large deviations, or peaks, from the nonzero initial conditions at finite
time instants. In this paper we take a probabilistic standpoint to analyze these phenomena by
assuming that both the initial conditions and the coefficients of the equation have random
nature. Under these assumptions we find the probability for deviations to occur, which turns
out very close to unity even for equations of low degree, which means that peak is typical. We
also address other issues such as evaluation of the mean magnitude and maximum value of peak.
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1. INTRODUCTION

It is a well known fact (Feldbaum, 1948; Izmailov, 1987;
Polyak and Smirnov, 2016; Polyak et al., 2018) that solu-
tions of autonomous linear stable differential or difference
equations may experience large deviations from nonzero
initial conditions at finite time instants. Many negative
implications may follow, such as for instance instability of
computational schemes in numerical methods, invalidity of
linearized models in the vicinity of an equilibrium point,
poor behavior or breakdown of control systems. These
deviations are referred as peaks, and since exact values
of the magnitude of peak generally cannot be found in
closed form, computable lower and upper bounds are of
large interest. Also, design of control inputs that possibly
diminish or minimize peaks is of great importance.

For the continuous-time case, research in this direction
has been initiated as early as in Feldbaum (1948), see
also Izmailov (1987) for a modern formulation and a bright
result. Seemingly, the most recent paper on peak effects in
differential equations (continuous-time systems) is Polyak
and Smirnov (2016); see bibliography therein. Also see
Whidborne and McKernan (2007); Polyak et al. (2015)
for the vector case, where LMI-based upper bounds on the
magnitude of peak and design of peak-minimizing state
feedback are proposed.

Until very recently, no analogous research has been con-
ducted for linear difference equations (discrete time).
Whereas basic textbooks on difference equations as, e.g.,
the popular Elaydi (2005), provide numerous results on
the behavior of linear and nonlinear equations, stability
theory, and applications, they generally do not consider
peak phenomena.
⋆ Work of the first and third authors (formulation of the problem
and the results in Section 3) was supported by the Russian Science
Foundation through project no. 16-11-10015.

Of immediate interest is the scalar case: to the best of
our knowledge the only works directly related to this issue
are Shcherbakov (2017); Polyak et al. (2018); Shcherbakov
(2019). Similarly, only few results on peak effects are
available for vector difference equations; e.g., see Kogan
and Krivdina (2011); Shcherbakov and Parsegov (2018);
Ahievich et al. (2018); Dudarenko et al. (2019); Polyak
and Smirnov (2019).

In the most comprehensive paper (Polyak et al., 2018)
related to the scalar case, several estimates of peaks in sta-
ble linear difference equations are provided under various
assumptions on the initial conditions and root locations,
and closed-form expressions for peak and peak instant, or
bounds on these quantities, are proposed. In particular,
a detailed analysis of the non-asymptotic behavior of a
special class of trinomial high-order difference equations
is performed in (Shcherbakov, 2019). Importantly, these
results show that peak may take arbitrarily large values
even for low-order equations.

Overall, though being very interesting, the results on peak
effects that have been so far obtained in the literature
relate to various particular cases, or classes of difference
equations and initial conditions, whereas the general pic-
ture still remains quite unclear, since it is very hard to
make conclusions about the non-asymptotic behavior of a
“generic” polynomial with “generic” initial conditions.

To make a step towards a deeper understanding of peak
phenomena, in this paper we adopt a probabilistic view-
point, and assume a random nature of the coefficients of
stable equations and/or initial conditions. The goal is to
answer questions such as: How typical the peak is for
a Schur stable polynomial and for initial conditions in
the unit cube? What is the mean magnitude of peak?
What is the portion of initial conditions in the unit box
that yield peak for a given polynomial? and the like. In
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the discrete-time case, the set of stable roots and hence,
the coefficients of stable polynomials belong to bounded
sets, which facilitates probabilistic analysis of the peak
phenomena.

Part of the formulations discussed in the current paper
were mentioned in a preliminary form in (Shcherbakov,
2019; Polyak et al., 2018).

The outline of the paper is pretty much standard. The
next section provides notation and definitions required for
the exposition to follow. In Section 3, first main results on
the probability of peak and its magnitude are presented,
accompanied by discussion and numerical illustrations. In
Section 4 we present randomized algorithms for peak esti-
mation and the results of numerical simulations. Finally,
Section 5 closes the paper.

2. NOTATION AND DEFINITIONS

We consider generic nth order scalar linear difference
equation
xk + a1xk−1 + · · ·+ anxk−n = 0, k = n, n+ 1, . . . , (1)

with real coefficients ai ∈ R and initial conditions
x(0) = (x0, . . . , xn−1)

⊤ ∈ Rn. (2)
The characteristic polynomial

p(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an (3)

is assumed to be Schur stable, i.e., |λi| < 1 for all roots λi

of p(λ); denote
a = (a1, . . . , an)

⊤ ∈ Rn, Λ = {λ1, . . . , λn} ⊂ C.
We use a to denote both the polynomial and the vector
a = (a1, . . . , an)

⊤ of its coefficients. Also denote by
Sn = {a ∈ Rn : (3) is Schur stable} (4)

the Schur domain in the coefficient space, and by
Cn = {a ∈ Rn : ∥a∥1 < 1} ⊂ Sn (5)

the so-called Cohn domain; the condition a ∈ Cn is a
well-known simple sufficient condition for (3) to be Schur
stable; e.g., see Elaydi (2005).

Unless otherwise stated, we assume that x(0) belongs to
the unit box:

x(0) ∈ Bn = {x ∈ Rn : ∥x∥∞ ≤ 1}.
This is without loss of generality, since the solution of
(1), (2) depends linearly on the initial conditions, and the
assumption above is just a matter of scaling.

Of our interest is the following quantity:
η(a, x(0)) = max

k=n,n+1,...
|xk|, (6)

and we say that the trajectory experiences peak if
η(a, x(0)) > ∥x(0)∥∞.

We say that x(0)
∗ ∈ Bn is the worst-case initial condition if

x
(0)
∗ = arg max

x(0)∈Bn

η(a, x(0)).

By Assertion 2 in (Shcherbakov, 2019), the worst-case ini-
tial condition is attained at a vertex of Bn, and sometimes
we will pay special attention to the vertices as well as to
the whole surface of Bn. In the latter case, peak takes place
if η(a, x(0)) > 1.

Finally, the notation ξ ∼ U(X ) is intended to mean that
the random vector/scalar ξ has the uniform distribution
over the set X ⊂ Rn, and Prob{A} denotes the probability
of the event A.

3. MAIN RESULTS

In this section we present several results on evaluation of
peak by assuming the random nature of the coefficients a
and/or the initial conditions x(0).

3.1 Probability of potential peak

Let us define the following potential peak domain:
Pn = {a ∈ Sn : ∃ x(0) ∈ Bn : η(a, x

(0)) > ∥x(0)∥∞} (7)
which represents the set of all nth order stable difference
equations that experience peak for some initial conditions.

We have the following result (due to space limitations.
proofs of all assertions are omitted).
Theorem 1. The condition ∥a∥1 > 1 is necessary and
sufficient for the existence of x(0) such that η(a, x(0))>
∥x(0)∥∞. That is

a ∈ Pn ⇐⇒ ∥a∥1 > 1.

From this theorem, the set of stable difference equations
which do not experience peak, no matter what x(0) is, is
seen to coincide with the Cohn domain Cn defined in (5).
In other words, we have

Pn = Sn \ Cn.
In the following, we are interested in determining the
Lebesgue measure (volume, Vol) of the set Pn. To this
end, we first highlight that there exists a recursive for-
mula for Vol(Sn), originally proposed in Fam (1989) (also
see Tempo et al. (2013); Polyak and Halpern (2001),
and Shcherbakov and Dabbene (2011) for various appli-
cations):

Vol(S1) = 2, Vol(S2) = 4, Vol(S3) = 16/3,

Vol(Sn+1) =


Vol(Sn)

2

Vol(Sn−1)
for n odd,

nVol(Sn)Vol(Sn−1)

(n+ 1)Vol(Sn−2)
for n even.

(8)

Now, since

Vol(Cn) =
2n

n!
,

the exact probability of peak (in the sense of (7)) can
be computed. Specifically, for a given x(0) ∈ Bn and the
coefficient vector a ∼ U(Sn), consider the random variable

ηx(0)(a) = max
k

{|xk| : (1), (2)};

then

Pa(n)
.
= Prob{a ∈ Sn : ∃ x(0) ∈ Bn : η(a, x

(0)) > ∥x(0)∥∞}

= Prob{Pn} = 1− Vol(Cn)
Vol(Sn)

.

Numerical values of this probability are given in Table 1.
The probability of peak is seen to be rather high already
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n 1 2 3 4 5 6 7 8 9 10
Vol(Sn) 2 4 5.3333 7.1111 7.5852 8.0909 7.3974 6.7633 5.4965 4.4670
Pa(n) 0 0.5 0.75 0.9062 0.9648 0.9890 0.9966 0.9991 0.9997 0.9999

Table 1. Probability of peak for increasing degree n

for second (Pa(2) = 1/2) and third (Pa(3) = 2/3) order
equations, and it rapidly converges to unity for increasing
values of n. Observe that Pa(20) ≈ 1− 10−11.

In other words, when sampling the coefficients of polyno-
mials randomly uniformly in Sn, peak is a typical phe-
nomenon if understood in the sense of (7).

3.2 A special case

The conclusion of the previous analysis is that high-order
difference equations generically experience peak. However,
this is not the case if we restrict the analysis to specific
classes of high-order difference equations. For instance, we
consider next the (n+ 1)st order trinomial equation
xk+1 + a1xk − a2xk−n = 0, k = n+ 1, n+ 2, . . . , (9)

where a = (a1, a2)
⊤ ∈ R2 are the only two nonzero

coefficients (while all other coefficients are zero). The
associated characteristic polynomial is

p(λ) = λn+1 − a1λ
n + a2.

This equation represents one of the commonly used lin-
earized models of the population dynamics; it was first
analyzed in (Kuruklis, 1994), where the boundary of its
Schur domain Sn(a1, a2) on the plane (a1, a2) was com-
puted in “closed form.” Later, it became the subject of
numerous generalizations in (Dannan, 2004; Matsunaga,
2007), etc.; also, see (Elaydi, 2005) for discussions.

The set Sn(a1, a2) is depicted in Fig. 1 for n = 3, where its
parts, the peak domains and the Cohn domain are denoted
by Pn (the winglets) and Cn, respectively. Modulo certain
symmetry, this domain has the same shape for even values
of n.

As in the generic case, it is possible to evaluate the
probability Pa(n) of potential peak.
Theorem 2. For equation (9) and the set Pn defined in (7),
the following estimate holds:

Prob{a ∈ Pn} <
1

n+ 1
.

In other words, in contrast to the generic case above, this
probability decreases as the degree n grows.

3.3 Probability of peak for a given equation

In the previous sections we considered random coefficients
in Sn, and evaluated the probability of the equation to
expose peak.

Now, conversely, we let the coefficient vector a in (1) be
fixed, let x(0) be uniformly distributed in Bn, and consider
the random variable

ηa(x
(0)) = max

k
{|xk| : (1), (2)}.

Our goal is then to estimate
Px(0)(a, n)

.
= Prob{x(0) ∈ Bn : ηa(x

(0)) > ∥x(0)∥∞}, (10)
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Fig. 1. Stability domain and peak domains in the coeffi-
cient space of (9) for n = 3

i.e., the portion of initial conditions in Bn that yield peak
for a given equation.

We first remark that a simple lower bound for Px(0) is
immediate to obtain. Indeed, from (1) we have

xn = −(a1xn−1 + · · ·+ anx0) = −ā⊤x(0),

where ā
.
= fliplr(a), the reverse-order vector. Hence,

|ā⊤x(0)| > ∥x(0)∥∞ specifies all initial conditions in Bn

that yield peak at the first iteration. Note however that
computing the volume of this portion, we obtain just a
lower bound on the probability.
Remark 1. (Lower bound computation). To compute the
lower bound of (10), we need to solve the following
problem: Given fixed ā ∈ Rn, find the volume of the set

D =
{
x ∈ Bn : |ā⊤x| > ∥x∥∞

}
⊆ Bn.

Obviously, we have D = D+ ∪ D− , where
D+ =

{
x ∈ Bn : ā

⊤x > ∥x∥∞
}
,

and D− is its symmetric with respect to the origin. Hence,
Vol(D) = 2Vol(D+).

We note then that D+ consists of two convex hyper-
pyramids R0 and R1 with common base and apexes
v0 = (0, . . . , 0) and v1 = sign(ā) (proper vertex of Bn),
respectively. The rest of the vertices vi (those of the base)
are the intersection points of the hyperplane

H = {x ∈ Rn : ā⊤x = 1}
and the edges of the hyperbox Bn. Note that the inter-
section between a hyperbox and a hyperplane describes
a so-called hyperpolygon. The problem of computing the
vertices of that hyperpolygon has been addressed in the
literature, and computationally efficient algorithms are
available. For instance, the algorithm in Lara et al. (2009)
exhibits time complexity of O(mn), where m is the num-
ber of solutions (intersection points). Note also that the
volume of a hyperpyramid is given by the formula
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Vol(R) =
1

n
Ah

where A is the the (n− 1)-dimensional volume of the base
and h is the height.

An illustration of the sets of interest is given in Figure 2
for n = 3 and ā = (1, 0.5, 0.25)⊤; for ease of visualization,
only the set D+ is depicted. The main vertices v0 and v1
are given in green, the vertices of the base are plotted in
black.
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Fig. 2. A 3D illustration of the set D+ in Section 3.3

3.4 Expected peak magnitude

In this section, we shift our focus from the evaluation of the
probability of experiencing peak to the evaluation of the
possible magnitude of peak. We still take a probabilistic
perspective and we aim at evaluating the expected value
of the peak magnitude.

We concentrate our analysis on the special case of equal
roots λi ≡ ρ in (1), for which an explicit formula for the
solution exists (Polyak et al., 2018):
xk = x0P0(k)ρ

k + x1P1(k)ρ
k−1 + . . . xn−1Pn−1(k)ρ

k−n+1,
(11)

where

Pi(k) =
∏
j ̸=i

k − j

i− j
, i = 0, 1, . . . , n−1, j = 0, 1, . . . , n−1.

In particular, for n = 2 we have
xk = −x0(k − 1)ρk + x1kρ

k−1,

and for n = 3 the explicit expression writes

xk=x0
(k−1)(k−2)

2
ρk−x1k(k−2)ρk−1+x2

k(k−1)

2
ρk−2.

We let the vector x(0) = (x0, . . . , xn−1)
⊤ of initial con-

ditions be uniformly distributed over the unit box Bn.
Since xi, i = 0, . . . , n− 1, are independent and E{xi} = 0,
from (11) we have

E{xk} = 0

and

E{x2
k} =

1

3

n−1∑
i=0

P 2
i (k)ρ

2(k−i), (12)

i.e., a closed-form expression for the expectation and the
variance of the random variables xk.

It is hardly possible to obtain closed-form expression for
the peak magnitude of this quantity, but simulations show
that it can take very large values. Let ηx(0)(n, ρ) denote
the random variable, value of peak for the nth order
equation with all roots λi = ρ for random initial conditions
x(0) ∼ U(Bn). Then numerically, for the averaged squared
peak we have
E{η2x(0)(2, 0.9)} > 8 and E{η2x(0)(4, 0.9)} ≈ 2.5 · 105,

the latter being a very large number (note however that
we are considering squared quantities).

It should be observed that expression (12) gives the
“absolute value” of the averaged squared xks, whereas
finding the associated ∥x(0)∥∞-normalized quantity would
be more ostensive. To this end, the following result holds.
Theorem 3. Let xk, k = n, n + 1, . . . be a solution of the
stable nth order equation (1)–(2) with all equal roots λi ≡ ρ
and random initial conditions x(0) ∼ U(Bn). Then the
mean value of the squared normalized solution is given by

E
{ x2

k

∥x(0)∥2∞

}
=

n+ 2

3n

n−1∑
i=0

P 2
i (k)ρ

2(k−i). (13)

Note that our final goal would be to find the maximum
over k in (13), since η2

x(0)(n, ρ) = maxk
x2
k

∥x(0)∥2
∞

.

This is the subject of ongoing research. However, we
observe that the result in (13) may provide some insight:
for instance, we see that the expected peak would have
a direct dependence on the root magnitude ρ and on
the degree n, i.e., the larger ρ and/or the degree n, the
larger the peak. This is indeed confirmed by our numerical
observations, and is in concordance with the deterministic
results for polynomials with all equal roots (Polyak et al.,
2018).

Example 2. To illustrate the result in Theorem 3, we
perform the following experiment. Let us fix n, ρ and
numerically find the maximum of the right-hand side
of (13) over k; this will give us the expected value of peak
in the sense of (13). We then vary ρ from 0.4 to 0.99 and
repeat for n = 2, 3, 4, 5. The results are presented in Fig. 3
where the values of (13) are plotted in the logarithmic
scale for the indicated values of ρ and n.

These results show that, even for moderate degrees, the
averaged peak take huge values.

4. RANDOMIZED ALGORITHMS FOR PEAK
ESTIMATION

4.1 Random coefficients and initial conditions

In this section we propose randomized algorithms for
evaluating both the probability of peak and the magnitude
of it.

More specifically, we assume that both the coefficients
of the equation and the initial conditions are random,
uniformly distributed in the respective domains, and we
are interested in estimating the “total" probability of peak,
defined as follows:
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Fig. 3. Expected values of the mean squared peak for
ρ ∈ [0.4, 0.99] and n = 2, 3, 4, 5 (bottom up)

Pa,x(0)(n) = Prob{a ∈ Sn, x
(0) ∈ Bn : ηa(x

(0))>∥x(0)∥∞}.
(14)

Also, we are interested in deriving estimates on the mag-
nitude of such peak.

To this end, we make recourse to randomized estimation
schemes (Tempo et al., 2013).

In particular, for fixed degree n, we fix accuracy value
ϵ ∈ (0, 1), confidence value δ ∈ (0, 1), and sample N
pairs (a[i], x(0)[i]), with a[i] ∼ U(Sn) and x(0)[i] ∼ U(Bn),
i = 1, . . . , N . Note that sampling uniformly Schur stable
equations is doable by using the technique from (Andrieu
and Doucet, 1999); also see (Tremba et al., 2008) for
implementation.

For every i-th pair, we compute numerically the solution
xk for k = 1, . . . , kmax and let η[i]

.
= maxk |xk|/∥x(0)∥∞,

i = 1, . . . , N .

Then, we can immediately estimate the total peak proba-
bility in (14) by the empirical probability

P̂a,x(0)(n) =
Npeaks

N
,

where Npeaks is the overall amount of peaks (those for
which η[i] > 1).

It follows from the well-known Chernoff Bound (Chernoff,
1952; Tempo et al., 2013) that if we choose N such that

N ≥ NCher(ϵ, δ)
.
=

1

2ϵ2
log

2

δ
,

then, with probability greater than 1− δ, we have∣∣∣Pa,x(0)(n)− P̂a,x(0)(n)
∣∣∣ ≤ ϵ.

To estimate the magnitude of the “total” peak, we instead
make recourse to a recent result by Alamo et al. (2018)
that introduces a generalized notion of max function and
shows how it can be used to provide a probabilistic upper
bound on a given random variable.

To this end, we sort the N values η[i], i = 1, . . . , N ,
in the nonincreasing order and define the r-generalized
maximum ηrmax as the rth entry of this ordered sequence.

In other words, define ηrmax as the largest value of η[i] after
discarding the r − 1 largest values.

Clearly, for r = 1 one recovers the classical definition of
maximum, i.e., η1max = ηmax = max

i=1,...,N
η[i].

The following result is a direct consequence of (Alamo
et al., 2018, Property 3).
Lemma 1. With the quantities defined above, for given
ϵ, δ ∈ (0, 1), and r ∈ 1, . . . .N , if

r−1∑
k=0

(
N

k

)
ϵk(1− ϵ)N−k ≤ δ, (15)

then, with probability no smaller than 1− δ, the following
estimate holds

Prob{ηa(x(0)) > ηrmax} ≤ ϵ.

In words, almost certainly 1 , the probability of obtaining
a peak magnitude larger than the estimate ηrmax can be
made arbtrarly small by appropriately choosing ϵ and r.
In particular, in Alamo et al. (2018) it is shown that (15)
is satisfied if we choose

N ≥ NTeo(ϵ, δ, r)
.
=

1

ϵ

(
r − 1 + ln

1

δ
+

√
2(r − 1) ln

1

δ

)
.

(16)

In our experiments, we let ϵ = 0.01, δ = 10−6 and chose
r = 500, obtaining NCher = 65,612 and NTeo = 63,024,
respectively. Hence, we draw N = 66,000 random pairs
of equation/initial condition for different values of n =
2 . . . , 7. Since the considered degrees n are relatively low,
we took kmax = 100 “to make sure” we grasp the peak
instant. The results are presented in Table 2.

From the first row of the table, we observe that the “total”
peak probability P̂a,x(0)(n) grows as n grows. Also, whereas
very large peaks are observed (see the second row), these
are sort of exotic, since they have a rather low probability
of occurring, as the last row clearly shows.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we studied peak phenomena in stable dif-
ference equations from the probabilistic point of view, by
assuming random nature of the characteristic polynomial
and initial conditions. We showed that peak is “typical”
for a generic equation and its magnitude may potentially
take huge values, whereas on average, large peaks are not
likely to occur.

Directions of future research are numerous and diverse. For
instance, more specific results are desired on the evaluation
of the probability of peak for a given polynomial, as in
Section 3.3; a closed-form estimate of the mean value of
peak in the spirit of the results in Section 3.4; evaluation of
peak domains in the coefficient space for a specific initial
conditions, and the like. Probabilistic analysis of classes of
equations (e.g., those similar to (9)) are also of interest.

Beyond the scalar case considered here, analysis of peaks of
norms of Schur stable matrices is highly demanded as well
as the issues of robustness and peak-minimizing design.
1 That is, with probability 1−δ, but note that, due to the logarithm
in (16), the level δ can be chosen very small.
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n 2 3 4 5 6 7
P̂a,x(0)(n) 0.2268 0.2652 0.3549 0.4008 0.4628 0.5052
ηmax 28.2440 54.2223 61.0974 97.4572 124.3977 162.7770
ηrmax 3.4605 4.4748 5.9160 6.6763 7.7265 8.5282

Table 2. Results of the numerical experiment in Section 4.1
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