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Abstract: The paper presents a parameters estimation procedure for physical systems modeled
using the POG (Power-Oriented Graphs) technique. The coefficients defining the constitutive
relation for both static and dynamic physical elements within the system can be estimated,
as well as the coefficients describing energy conversions taking place either within the same
energetic domain or between two different energetic domains. The evolution of the state vector
over time is supposed to be known, whereas its first derivative is supposed to be unknown and
is obtained by using a new algorithm for computing the discrete-time derivative of a sampled
signal, which is effective even in presence of disturbances affecting the signal samples. As long
as the unknown parameters appear linearly within the system differential equations, the system
is allowed to exhibit any nonlinear function of the state vector and its first derivative. The
procedure is finally applied to two different case studies: a linear one and a nonlinear one.

Keywords: Dynamic modelling, Dynamic systems, Signal processing, Parameter estimation,
Linear systems, Nonlinear systems.

1. INTRODUCTION

The adoption of model-based approaches is increasingly
common when dealing with mechatronic physical systems,
as it enables a deep knowledge and permits a more effective
control of the system under consideration. Immediately
after the system modeling, the estimation of the unknown
parameters describing the system behavior needs to be un-
dertaken, in order to make the model suitable for perform-
ing reliable simulations of the system behavior. For this
purpose, several approaches are presented in the literature;
e.g. in Dongyu et al. (2005), where the authors study
the application of a genetic algorithm to power systems,
and in Aso et al. (2002), where the maximum likelihood
method is applied to sector cell systems. Different versions
and applications of the least squares algorithm are shown
in Chen et al. (2011), Huibo and Jiangbo (2017), Li et al.
(2018) and Tan et al. (2019). In this paper, a procedure for
performing physical parameters estimation, exploiting the
POG technique as a tool for modeling physical systems,
see Zanasi (2010), is presented. The following hypotheses
are made:

• The system differential equations are known;
• The system differential equations are linear with
respect to the unknown parameters;

• The evolution of the state vector over time is known;

Note that the first hypothesis is always verified, as the
modeling of the system is easily and effectively carried out

using the POG technique as a first step, see Zanasi and
Grossi (2009a), Fei et al. (2011), Zanasi and Tebaldi
(2019a) and Tebaldi and Zanasi (2019) for examples of
applications of this technique to the modeling of com-
plex physical systems in the automotive and agricultural
fields. The second hypothesis poses a constraint on the
appearance of the unknown parameters in the system,
but does not set any constraint regarding the state vector
and its first derivative, whose components can also appear
nonlinearly within the system differential equations. The
third hypothesis requires the knowledge of the state vector
time behavior, whereas the knowledge of the first deriva-
tive of the state vector components is not required, as a
very effective computation of the latter can be performed
thanks to the proposed algorithm, see Sec. 2 and App. A.
Other solutions are present in the literature concerning the
computation of the discrete-time derivative of a sampled
signal, see Ridha et al. (1997) and Hermanowicz (2001).
The algorithm proposed in this paper iteratively computes
the filtered i-th sample of the considered signal and its first
derivative on the basis of the previous and next samples,
namely (i− 1)-th and (i+ 1)-th respectively.

This paper is structured as follows: Sec. 2 provides a
theoretical explanation of the proposed algorithm for com-
puting the discrete-time derivative of a sampled signal,
as well as the comparison of the results it provides with
those given by the Simulink discrete derivative block. The
estimation procedure is then applied to two different case
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Fig. 1. Graphical interpolation of points (xi, yi).

studies: a linear system composed of a DC electric motor
driving an hydraulic pump, see Sec. 3, and a nonlinear
system composed of a Permanent Magnet Synchronous
Motor driven by a control and subject to an external load
torque, see Sec. 4. Finally, the conclusions of this work are
given in Sec. 5.

2. DISCRETE-TIME DERIVATIVE ALGORITHM

Let us consider a discrete-time signal (xk, yk) and let
(xi, yi) denote the samples of such signal, where xi is
the i-th time sample, yi is the i-th signal sample and
i = {0, 1, . . . , N}, being N the number of samples. The
first three input points are graphically represented in Fig. 1
for the sake of clearness.

The proposed algorithm is based on the idea of iteratively
solving the following problem: given yf0, dy0, (x1, y1) and
(x2, y2), and using a parabolic interpolation, compute yf1
and dy1 in order to minimize d21 + d22. Let us consider the
following parabola:

y(x) = a x2 + b x+ c (1)

and compute the parameters a, b and c such that:

y(x0) = yf0,
dy(x)

dx

∣
∣
∣
∣
x=x0

= dy0, min
a

(d21 + d22) (2)

The first two constraints provide the following relations:
{

a x2
0 + b x0 + c = yf0

2a x0 + b = dy0
⇒

{
b = dy0 − 2ax0

c = yf0 − a x2
0 − b x0

(3)

Distance d1 in (2) can be expressed as follows:

d1 = |a x2
1 + b x1 + c− y1| (4)

Substituting (3) in (4), one obtains:

d1(a) = |a (x1 − x0)
2 + yf0 + dy0(x1 − x0)− y1|

Similarly, from (3) and (4), one obtains:

d2(a) = |a (x2 − x0)
2 + yf0 + dy0(x2 − x0)− y2|

The minimum of f(a)=d21(a)+d
2
2(a) occurs when

df(a)
da

=0:

df(a)

da
=2(a(x1 − x0)

2+yf0+dy0(x1 − x0)−y1)(x1 − x0)
2+

+2(a (x2 − x0)
2+yf0+dy0(x2 − x0)−y2)(x2 − x0)

2 = 0

By solving with respect to a, it results:

a = −
a′ + a′′

(x1 − x0)4 + (x2 − x0)4
(5)

where
{

a′ = (yf0 + dy0(x1 − x0)− y1)(x1 − x0)
2

a′′ = (yf0 + dy0(x2 − x0)− y2)(x2 − x0)
2

(6)

By substituting (5) and (6) in (3), the values of parameters
b and c can then be derived.

By replacing parameters b and c in (1), one derives a
parabola that can be used to determine the filtered version
yf1 of the original data sample at x = x1:

yf1 = a x2
1 + b x1 + c

= a x2
1 + b x1 + yf0 − a x2

0 − b x0

= a(x2
1 − x2

0) + b(x1 − x0) + yf0

= a(x2
1 − x2

0) + (dy0 − 2ax0)(x1 − x0) + yf0

= yf0 + dy0(x1 − x0) + a(x1 − x0)
2

(7)

Similarly, the derivative dy1 at x = x1 can be determined:

dy1=2ax1+b=2ax1+dy0 −2ax0=dy0+2a(x1−x0) (8)

If the samples are equally spaced, namely satisfying:

T = (x1 − x0) = (x2 − x1) = (x3 − x2) = . . .

the solution in (5) and (6) simplifies as follows:

a = −
(yf0 + dy0T − y1) + 4(yf0 + 2dy0T − y2)

17T 2

whereas parameters dy1 and yf1, defined in (8) and (7)
respectively, can be expressed in the following way:

dy1 = dy0 + 2aT, yf1 = yf0 + dy0T + aT 2

The algorithm described in this section has been imple-
mented in the Matlab function “[dz,zf]=DX DT(t,z)”,
whose internal code is provided in App. A. Note that the
code reported in the function already accounts for the case
of non-equally spaced samples, i.e. the general solution
described by (5), (6), (7) and (8) is implemented.

2.1 Application of the algorithm

This section shows the application of the algorithm de-
scribed in Sec. 2 to the computation of the discrete-time
derivative of a sampled signal.

Let us consider the following continuous-time signal:

x(t) =

5∑

i=1

ai sin(2π fi t),







ai = [50 73 33 12 96]

fi = [22 87 94 61 46]
(9)

whose exact time derivative is given by:

d x(t)

dt
= ẋ(t) =

5∑

i=1

2π ai fi cos(2π fi t) (10)

Let us assume that signal x(t) in (9) is sampled with sam-
pling time T over a time interval t, being t∈ [0, 0.025] [s]
and T = 10−4 [s]. The resulting sampled signal x(k T ) =
x(t)|t=k T is then derived by using the following tools: the
Simulink discrete derivative block and the Matlab function
in App. A implementing the proposed algorithm. For the
latter, yf0 and dy0 introduced in Sec. 2 are initialized as
shown in App. A, namely to the first sample value and to
the difference quotient between the second and first sample
values, respectively:

yf0 = y0, dy0 =
y1 − y0
x1 − x0

.

Note that, since the sampling time T is constant, the
current case is that of equally spaced samples. For this
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Fig. 2. Derivatives comparison on the original signal.

reason, the simulation for computing the discrete-time
derivative using the Simulink discrete derivative block is
performed using a fixed-step size solver with T =10−4 [s].

The results of the computations are shown in Fig. 2, whose
legend is depicted in the following. The top-left subplot
shows the exact time derivative of the signal reported
in (10) (red line), the time derivative of the sampled
signal computed by using the Simulink discrete derivative
block (green dashed line) and the time derivative of
the sampled signal computed by the proposed algorithm
(blue dashed line). The top-right subplot shows a zoomed
version of the same pieces of information as the top-
left subplot using the same color notation, from which
the reader can clearly see the exactness of the derivative
computation performed by the proposed algorithm as well
as the error which is made instead by the Simulink discrete
derivative block. The bottom subplot shows the relative
error Ersim(t) between the exact derivative in (10) and the
computation by the Simulink discrete derivative block over
time normalized with respect to the maximum value of the
exact derivative (orange line), and its mean value Ērsim

(orange dashed line) with reference to the right vertical
axis. Additionally, the bottom subplot of Fig. 2 shows
the relative error Eralg

(t) between the exact derivative in
(10) and the computation by the proposed algorithm over
time normalized with respect to the maximum value of the
exact derivative (light blue line) and its mean value Ēralg

(light blue dashed line) with reference to the left vertical
axis. The better results given by the proposed algorithm
with respect to the Simulink discrete derivative block can
be appreciated, since the ratio between the mean relative
errors Ēralg

/Ērsim is equal to 0.0095.

Let us now assume that the original signal x(t) in (9) is af-
fected by a random disturbance d(t) whose maximum am-
plitude is eight times lower than the maximum amplitude
of signal x(t). The result is shown in the top-left subplot of
Fig. 3, where the blue dashed line is the original signal x(t),
the green line is the disturbed signal xd(t) = x(t) + d(t)
and the red line is the filtered signal xf (t) given by the
proposed algorithm using Eq. (7). The same derivation
tools as before are applied to the disturbed signal xd(t)
and the results are shown in the top-right subplot of Fig. 3
in a zoomed time interval, to better appreciate the results.
The blue dashed line is the exact derivative of the original
signal in (10), the cyan line is the time derivative of the
disturbed sampled signal computed by using the Simulink
discrete derivative block and the magenta line is the time
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Fig. 3. Derivatives comparison on the disturbed signal.

derivative of the disturbed sampled signal computed by
the proposed algorithm using Eq. (8). The bottom sub-
plot shows the relative error Erdsim

(t) between the exact
derivative in (10) of the original signal and the derivative
of the disturbed sampled signal computed by the Simulink
discrete derivative block over time normalized with respect
to the maximum value of the exact derivative (orange line)
and its mean value Ērdsim

(orange dashed line) with ref-
erence to the right vertical axis. Additionally, the bottom
subplot of Fig. 3 shows the relative error Erdalg

(t) between
the exact derivative in (10) of the original signal and the
derivative of the disturbed sampled signal computed by
the proposed algorithm over time normalized with respect
to the maximum value of the exact derivative (light blue
line) and its mean value Ērdalg

(light blue dashed line)
with reference to the left vertical axis. Note that the
ratio between the mean relative errors Ērdalg

/Ērdsim
is

equal to 41.95. From this latter ratio and from Fig. 3, the
reader can appreciate how the proposed algorithm works
better than the Simulink discrete derivative block even in
presence of a random disturbance affecting the signal. This
result is achieved thanks to the fact that, at each i-th time
sample xi, the algorithm proposed in Sec. 2 computes the
derivative dyi of the preliminarily filtered version yfi of the
original signal sample yi, where the preliminary filtering is
performed thanks to a parabolic interpolation, see Eq. (7).

3. A DC MOTOR DRIVING AN HYDRAULIC PUMP

The first case study consists of a DC electric motor con-
nected to an hydraulic pump, as shown in Fig. 4. This sys-
tem involves three different energetic domains: electrical,
mechanical rotational and hydraulic. The corresponding
POG graphical representation in shown in Fig. 5: the
power sections present in the POG scheme have a di-
rect correspondence with the real physical sections. Let
x =[Ia ωm P0]

T be the state vector of the system, i.e. the
output variables of the dynamic elements. The state space
dynamic model can be obtained by direct inspection of the
POG scheme, see Zanasi (2010):
[
La 0 0
0 Jm 0
0 0 C0

]

︸ ︷︷ ︸

L

[
İa
ω̇m

Ṗ0

]

︸ ︷︷ ︸

ẋ

=

[
−Ra −Km 0
Km −bm −Kp

0 Kp −αp

]

︸ ︷︷ ︸

A

[
Ia
ωm

P0

]

︸ ︷︷ ︸

x

+

[
1 0
0 0
0 1

]

︸ ︷︷ ︸

B

[
Va

Q0

]

︸︷︷︸

u

(11)

where u is the input vector and L, A and B are the
energy, power and input matrices, respectively, see Zanasi
(2010). The meaning of the parameters and variables in
system (11) is described in the following with reference
to Fig. 4 and Fig. 5. Parameters La, Jm and C0 are the
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Fig. 5. POG scheme of the DC motor with hydraulic pump.

motor inductance, the rotor inertia and the capacitance of
the hydraulic accumulator, respectively. Parameters Ra,
bm and αp represent the motor electric resistance, the rotor
friction coefficient and the hydraulic leak, respectively.
Terms Km and Kp describe the energy conversion tak-
ing place between electrical/mechanical rotational and be-
tween mechanical rotational/hydraulic energetic domains,
respectively. The system state variables are the motor
armature current Ia, the rotor angular speed ωm and the
pressure P0 within the hydraulic accumulator; the system
inputs are the motor voltage Va and volume flow rate Q0.

System (11) can be rewritten as follows:





İa 0 0 Ia ωm 0 0 0
0 ω̇m 0 0 − Ia ωm P0 0

0 0 Ṗ0 0 0 0 −ωm P0





︸ ︷︷ ︸

Φ(t)













La

Jm
C0

Ra

Km

bm
Kp

αp













︸ ︷︷ ︸

p

=

[
Va

0
Q0

]

︸ ︷︷ ︸

q(t)

(12)

where p is the vector of the unknown parameters. Sys-
tem (12) satisfies the first two hypotheses introduced in
Sec. 1, as the system equations are known and linear with
respect to the components of vector p. Additionally, the
availability of experimental observations of the evolution
of the state vector x over time, in response to the input
vector u, makes the third hypothesis satisfied as well.

Matrix Φ(t) = Φ(x(t), ẋ(t)) in system (12) is a function
of vectors x(t) and ẋ(t), whereas vector q(t) = q(u(t)) is
function of the input vector u(t). Matrix Φ(t) and vector
q(t) are known if vector x(t), ẋ(t) and u(t) are known.

Let us suppose that vectors x(t) and u(t) are known
for t = kT , where T is the sampling period and k ∈
[0, 1, 2, . . . , N ]: x(t)−→x(kT )=xk, u(t)−→u(kT )=uk.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

5000

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4
10-4

Armature Current

Angular Speed

Output Pressure

I a
[A

]
ω
m

[r
p
m
]

P
0
[a
tm

]

Time [s]

Fig. 6. Measured forced evolution of xk for system in Fig. 5.

Vector ẋk can be numerically obtained from vector xk by
applying the discrete-time derivative algorithm in Sec. 2:

ẋ(t) −→ ẋ(t)|t=k T ≃
∂ xk

∂(kT )
= ẋk.

From xk, ẋk and uk, Φ(kT ) and q(kT ) are known:

Φ(kT ) = Φ(x(t), ẋ(t))|t=k T ≃ Φ(xk, ẋk)

q(kT ) = q(u(t))|t=k T = q(u(kT )) = q(uk)

Considering the sampling instants t = kT , for k ∈
[0, 1, 2, . . . , N ], system (12) can be rewritten as follows:









Φ(0)
Φ(T )
Φ(2T )

...
Φ(NT )









︸ ︷︷ ︸

Φ

p =









q(0)
q(T )
q(2T )

...
q(NT )









︸ ︷︷ ︸

q

⇔ Φp = q.

and solved by finding the vector p minimizing the Eu-
clidean norm ||e||2 of the error vector e = Φp−q, namely:

p =(ΦT Φ)-1ΦT

︸ ︷︷ ︸

Φ−†

q. ⇔ p = Φ−† q (13)

where Φ−† is the pseudo-inverse of matrix Φ.

3.1 DC motor with hydraulic pump: Parameters Estimation

Let us suppose that the forced evolution of the compo-
nents of the state vector x =[Ia ωm P0]

T acquired from
experimental measurements are those shown in Fig. 6. The
latter figure is referred to as “forced evolution” because
the system initial conditions are set to zero: Ia0

= 0
[A], ωm0

= 0 [rpm] and P00 = 0 [atm], whereas the
system inputs are constant and equal to Va = 400 [V]
and Q0 = 0.18 [dm2/s].

By applying the least square algorithm resolutive formula
(13), and exploiting the algorithm presented in Sec. 2
for computing the discrete-time derivative of the forced
evolution, the components of vector p in (12) containing
the system unknown parameters are estimated.

A comparison between the estimated and actual system
parameters values is reported in Table 1, from which it
is possible to appreciate the very good matching resulting
from the estimation, since the error between the actual
and estimated parameters is very low, as reported in the
last column of Table 1.
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Table 1. Estimation results for system in Fig. 5.

Estimated Values Actual Values Error

La 0.00030056 0.0003 5.5823 · 10−7

Jm 9.9999 · 10−5 0.0001 8.1943 · 10−10

C0 0.9505 · 10−7 1 · 10−7 4.9478 · 10−9

Ra 3.5 3.5 1.0699 · 10−5

Km 0.50001 0.5 5.2025 · 10−6

bm 0.00191 0.0019099 1.4551 · 10−7

Kp 7.7704 · 10−6 8 · 10−6 2.2959 · 10−7

ap 9.5987 · 10−5 0.0001 4.0129 · 10−6
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Fig. 7. POG scheme of the PMSM.

4. PERMANENT MAGNET SYNCHRONOUS MOTOR

The second case study consists of a Permanent Magnet
Synchronous Motor (PMSM). The dynamics of this system
is described by the POG block scheme in Fig. 7 in a
transformed rotating d-q frame Σω, that is a reference
frame which rotates together with the rotation of the rotor,
see Fei et al. (2011). Under the hypothesis of sinusoidal
rotor flux and star-connected stator phases, the state space
model of the system is the following one:
[
pLse 0 0
0 pLse 0

0 0 Jm

][
İd
İq

ω̇m

]

=−

[
pRs −p2ωmLse 0

p2ωmLse pRs Kq

0 −Kq bm

][
Id
Iq

ωm

]

+

[
Vd

Vq

−τ̄e

]

(14)

where

τ̄e = τe + bc sgn(ωm) + bmq sgn(ωm)ωm
2. (15)

The meaning of the system parameters and variables in
(14) and (15) can be found in Fei et al. (2011), Zanasi
and Tebaldi (2019b) and Zanasi and Tebaldi (2019c).

System (14) can be rewritten as follows:

[
pİd−p

2ωmIq pId 0 0 0 0 0

pİq+p
2ωmId pIq ωm 0 0 0 0

0 0 −Iq ω̇m ωm sgn(ωm) sgn(ωm)ωm
2

]

︸ ︷︷ ︸

Φ(t)










Lse

Rs

Kq

Jm
bm
bc
bmq










︸ ︷︷ ︸

p

=

[
Vd

Vq

−τe

]

︸ ︷︷ ︸

q(t)

This system satisfies the first two hypotheses introduced
in Sec. 1: the system equations are known and are linear
with respect to the components of vector p. Furthermore,
thanks to the experimental observations of the evolution
of the state vector x, the third hypothesis is satisfied too.

4.1 PMSM: Parameters Estimation

Let us assume that a speed control is applied to the
considered PMSM, making the motor speed ωm follow a
step speed profile ωmdes

, see the blue dashed line in the top
subplot of Fig. 9. Let us also assume that the operating
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Fig. 8. Motor torques and voltages.

conditions are such as to make the motor subject to a
sinusoidal load torque τe. The desired motive torque τmdes

minimizing the speed error ∆ωm
= ωmdes

−ωm is computed
using the following control law in the Laplace domain:

τmdes
=

(
KP + KP KI s

KI s

)

∆ωm
(16)

being KP and KI two design parameters properly chosen
and s the complex variable. The desired torque τmdes

is
turned into an input voltage vector Vs driving the motor
through a vectorial control, see Zanasi and Grossi (2009b).

Let us suppose that the experimental observations are
those shown in Fig. 8 and Fig. 9. The upper subplot
of Fig. 8 shows the sinusoidal load torque τe applied
to the motor (magenta dashed line), the desired motive
torque τmdes

demanded by (16) (blue dashed line) and the
generated motive torque τm (red line), see Fig. 7. The
components Vd and Vq of voltage vector Vs imposed by
the vectorial control as inputs for the system are shown
in the lower subplot of Fig. 8 in green and blue line,
respectively. The forced evolution for the components of
the state vector x =[Id Iq ωm]

T, see (14), acquired from
experimental measurements is shown in Fig. 9. The upper
subplot shows the desired step speed profile ωmdes

(blue
dashed line) and the actual motor speed ωm (red line). The
lower subplot of Fig. 9 shows the components Id and Iq of
current vector Is in green and blue line, respectively. The
latter figure is referred to as “forced evolution” because the
system initial conditions are set to zero: Is0 =[ 0 0 ]

T [A]
and ωm0

= 0 [rpm]. The very good matching resulting from
the estimation can be appreciated in Table 2, showing the
very low error between the actual and estimated system
parameters.

Table 2. Estimation results for system in Fig. 7.

Estimated Values Actual Values Error

Lse 2.8426 · 10−5 2.84 · 10−5 2.5606 · 10−8

Rs 0.02 0.02 3.4427 · 10−7

Kq 0.95 0.95 3.6194 · 10−6

Jm 0.1184 0.1184 3.2935 · 10−6

bm 0.00099531 0.001 4.6904 · 10−6

bc 6.4539 · 10−5 0 6.4539 · 10−5

bmq 0.00010002 0.0001 2.0756 · 10−8

5. CONCLUSIONS

In this paper, a parameters estimation procedure suitable
for physical systems modeled using the POG technique has
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been presented. The procedure is based on the exploita-
tion of a new algorithm for computing the discrete-time
derivative of a sampled signal, allowing to compute the
discrete-time derivative very effectively even in presence
of disturbances affecting the signal samples, thanks to the
preliminary filtering action it performs. The joint use of
the least-squares method and the proposed algorithm for
computing the first derivative of the state vector evolution
over time has been applied to two different case studies, a
linear one and a nonlinear one, showing the effectiveness
of the presented approach.
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Appendix A. FUNCTION DX DT(T,Z)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [dz ,zf]= DX_DT(t,z)

% t = time vector

% z = input vector

% dz = derivative of z with respect to t

% zf = filtered input vector

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial value:

dz(1)=(z(2)-z(1))/(t(2)-t(1)); zf(1)=z(1);

% Intermediate values:

for i=[2: length(t)-1]

x0=t(i-1); x1=t(i); x2=t(i+1); s0=zf(i-1);

ds0=dz(i-1); y1=z(i); y2=z(i+1);

a=-((s0 -ds0*x0+ds0*x1 -y1)*(x0 -x1 )^2+...

(s0 -ds0*x0+ds0*x2 -y2)*(x0 -x2 )^2)...

/((x0 -x1 )^4+(x0 -x2 )^4);

b=ds0 -2*a*x0; c=s0 -a*x0^2-b*x0;

zf(i)=a*x1^2+b*x1+c; dz(i)=2*a*x1+b;

end

% Last value:

i=length(t);

zf(i)=z(i); dz(i)=(z(i)-zf(i -1))/(t(i)-t(i-1));

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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