
An integral Nash equilibrium control
scheme for a class of multi-agent linear systems
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Abstract: We propose an integral Nash equilibrium seeking control (I-NESC) law which steers
the multi-agent system composed of a special class of linear agents to the neighborhood of the
Nash equilibrium in noncooperative strongly monotone games. First, we prove that there exist
parameters of the integral controller such that the system converges to the Nash equilibrium
in the full-information case, in other words, without the parameter estimation scheme used
in extremum seeking algorithms. Then we prove that there exist parameters of the I-NESC
such that the system converges to the neighborhood of the Nash equilibrium in the limited
information case where parameter estimation is used. We provide a simulation example that
demonstrates that smaller perturbation frequencies and amplitudes are needed to attain similar
convergence speed as the existing state-of-the-art algorithm.
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1. INTRODUCTION

Extremum seeking control (ESC) is a class of data-driven,
adaptive control techniques used in optimization problems
where the cost is a function of the states of a dynamical
system. The method is a zero-order method which means
it only uses the value of the cost function for optimiza-
tion and no a priori knowledge of the cost function is
needed, except for some basic assumptions. There was no
analytical proof of stability of ESC for general nonlinear
systems until the paper [Krstić and Wang [2000]]. This
sparked renewed interest into further development of this
type of control. Most of the research was based on the
original paper by Krstić and Wang, e.g. [Tan et al. [2006]],
[Ghaffari et al. [2012]], etc. There were also methods based
on different ideas, such as [Dürr et al. [2013]], where the
authors proposed an extremum seeking scheme based on
Lie algebra, which turned out to be equivalent to the
Krstić-Wang scheme. Based on a parameter estimation
scheme, Guay and Dochain propose an extremum seeking
scheme [Guay and Dochain [2017]] which does not use
singular perturbation and averaging theory. As a result,
a faster convergence rate is obtained. This fact motivates
further research on such type of ESC.

Nash equilibrium problems (NEP) are different from (dis-
tributed) optimization problems, as they are characterized
by a number of selfish agents whose goal is to optimize
their individual cost functions, possibly dependent on the
decision variables of other agents. In NEPs, the constraints
of each agent are independent of other agents, while in
generalized Nash equilibrium problems (GNEPs), they are
coupled. Recent interest in GNEPs is motivated many
engineering problems, such as demand-side management in
the smart grids [Saad et al. [2012]], charging/discharging
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of electric vehicles [Belgioioso and Grammatico [2017]]
and formation control [Lin et al. [2014]].The literature
on (G)NEPs mostly ignores the dynamics of individual
agents, which may be a problem in multi-agent systems
with non-negligible dynamics. The small portion of liter-
ature on (G)NEPs with dynamical agents can be divided
into two groups: passivity-based first-order algorithms and
extremum seeking zero-order algorithms.

By using a passivity property, the authors in [Gadjov
and Pavel [2018]] design a control law that guarantees
convergence to the Nash equilibrium (NE) of a multi-agent
system with single-integrator dynamics over a network. In
[Romano and Pavel [2019]], the authors extend the result
to the multi-integrator case. The network topology is time
invariant in both cases. In [De Persis and Grammatico
[2019]], the authors extend the results of [Gadjov and
Pavel [2018]] by designing a network weight adaptation
scheme. In [Bianchi and Grammatico [2019]], a controller
is proposed which guarantees convergence to a GNE of
a multi-agent system with integrator dynamics over a
network. Most prominently, extremum seeking was used
for NE seeking in [Frihauf et al. [2011]] where it is
proven that the extremum seeking control, under certain
conditions on the individual cost functions, converges to
a neighborhood of the NE for general nonlinear agents.
In [Liu and Krstić [2011]], it is proven that the use of
stochastic perturbation signals also induces convergence
to a neighborhood of the NE. The authors in [Poveda
and Teel [2017]] propose a framework for the synthesis
of a hybrid controller which may be used for NEPs with
nonlinear agents. All of the mentioned extremum seeking
controllers are based on [Krstić and Wang [2000]].

Contribution Motivated by the recent research inter-
est in NEPs, we adapt the ESC proposed in [Guay and
Dochain [2017]], [Guay et al. [2018]]. Specifically, our
contributions are the following: (i) We extend a known
proportional-integral extremum seeking control scheme to
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strongly monotone NEPs for a multi-agent linear systems
and we prove a practical convergence to a Nash equilib-
rium; (ii) We numerically observe an improved perfor-
mance with respect to [Frihauf et al. [2011]], as smaller
amplitudes and frequencies of the sinusoidal perturbations
signals are needed for a comparable convergence rate.

2. PROBLEM SETUP

We consider a multi-agent system with N agents indexed
by I = {1, 2, . . . , N}, each with the following dynamics:

ẋi = −xi +Biui, yi = hi(xi,x−i), (1)

where xi ∈ Rni is the state vector, ui ∈ Rmi is the control
input, yi ∈ R is the output variable which evaluates the
cost function hi : Rni × Rn−i → R. Let us also define
n :=

∑
ni, n−i :=

∑
j 6=i nj and m :=

∑
mi.

Standing Assumption 1 (Regularity)
For each i ∈ I, the function hi in (1) is continuous, differ-
entiable in xi and its partial gradient ∇xihi is Lipschitz
continuous in xi and x−i. 2

A common assumption amongst the extremum seeking
literature (for example [Krstić and Wang [2000]], [Guay
and Dochain [2017]], [Poveda and Teel [2017]]) is the
existence of the steady-state mapping, which tells us to
which state(s) the system converges when a constant input
is applied. For our subsystems (1), there exists a mapping

π(u) := col
(
(πi(ui))i∈I

)
= col

(
(Biui)i∈I

)
(2)

such that for every i ∈ I, πi(ui) = Biui. Let us also define

π−i(u−i) := col
(

(πj(uj))j 6=i

)
. (3)

In this paper, we assume that the goal of each agent is to
minimize its own steady-state cost function, i.e.,

min
ui∈Rmi

hi (πi(ui), π−i(u−i)) , (4)

which depends on the inputs of some other agents as
well. From a game-theoretic perspective, we consider the
problem to compute a Nash equilibrium (NE).

Definition 1. (Nash equilibrium). A collective input u∗ is
a NE of the game (4) if for all i ∈ I
hi
(
πi(u

∗
i ), π−i(u

∗
−i)
)
≤ inf
ui∈Rni

hi
(
πi(ui), π−i(u

∗
−i)
)
. 2

In plain words, a set of inputs is a NE if no agent
can improve its steady-state cost function by unilaterally
changing its input. Since the steady-state cost functions
are differentiable in ui, it follows from Thm. 16.3 in
[Bauschke et al. [2011]] that a collective vector u∗ is a
NE if and only if

∇ui
hi
(
πi(u

∗
i ), π−i(u

∗
−i)
)

= 0. (5)

In view of (5), we can stack all of the partial gradients
into a single vector and form the so-called pseudo-gradient
mapping of the steady-state cost functions:

F (u) := col
(
(∇ui

hi (πi(ui), π−i(u−i)))i∈I
)

(6)

Therefore, by (5) and (6), we note that the problem of
finding a Nash equilibrium of the game in (4) is equivalent
to finding u∗ such that F (u∗) = 0, which is the problem
of finding a zero of F in (6), u∗ ∈ zer(F ).

A relatively standard assumption in modern game theory
literature [Yu et al. [2017]], [Yi and Pavel [2019]] is strong
monotonicity of the pseudo-gradient mapping:

Standing Assumption 2 (Strong monotonicity)
The mapping F in (6) is strongly monotone, i.e.,

(F (u)− F (v))>(u− v) ≥ µ‖u− v‖2, (7)

for all (u,v) ∈ R2m, for some µ > 0. 2

Let us also define the pseudo-gradient of the cost functions

Fx(x) := col
(
(∇xi

hi (xi,x−i))i∈I
)
. (8)

We note that, in general, monotonicity of Fx(x) does not
imply monotonicity of F (u).

3. INTEGRAL NASH EQUILIBRIUM SEEKING
CONTROL

3.1 Full-information case

In this subsection, we assume that every agent knows
the analytic expression of its partial gradient and has
access to the inputs of the other agents. The integral Nash
equilibrium control in the next subsection will approxi-
mate the gradient and inputs of the other players and
use the approximations in the same control law as the
full-information case. Our proposed control law is inspired
by the extremum seeking control in [Guay and Dochain
[2017]], [Guay et al. [2018]]:

∀i ∈ I : u̇i = −τ−1
i B>i ∇xi

hi(xi,x−i) (9)

or in collective vector form

u̇ = −τ−1B>Fx(x), (10)

where B := diag(B1, . . . , BN ) and τ := diag(τ1, . . . , τN ).
Unlike [Guay and Dochain [2017]], we do not use the
proportional part, as it does not help with the convergence
to the Nash equilibrium.

Theorem 1. Let the S.A. hold and let (x(t),u(t)), t ≥ 0,
be the closed-loop solution to the dynamics in (1) with
control law in (9)–(10). Then, there exists τ∗ ≤ mini∈I τi,
such that (x(t),u(t)) converges to (x∗,u∗) = (π(u∗),u∗),
where u∗ is a Nash equilibrium of the game in (4). 2

3.2 Limited information case

Next, we consider that the agents have access to their
own cost output only. We emphasize that they neither
know the actions of other agents, nor they know the
analytic expressions of their partial gradients. This is the
standard setup used in extremum seeking, e.g. [Krstić and
Wang [2000]], [Guay and Dochain [2017]], [Poveda and
Teel [2017]]. The extremum seeking control proposed by
[Guay and Dochain [2017]] assumes that the cost function
of the system has a strong relative degree of value one.
This means that the first derivative of the cost function
has a direct influence on the input to the system. In the
case of multi-agent systems, where the cost functions do
not depend only on the states of their agent but also of
the others, we make an analogous assumption:

Assumption 1 (Degree of the output)
For every i ∈ I, ∇xihi(xi,x−i)

>Bi 6= 0 for all (xi,x−i) ∈
Rn \ {x∗}. 2

Let us first evaluate the derivative of the cost functions:

ẏi = −
∑N
j=1∇xjhi(x)>xi +

∑N
j 6=i∇xj

hi(x)>Bjuj

+∇xi
hi(x)>Biui, (11)
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and introduce the following variables:

θ0
i := −

∑N
j=1∇xj

hi(x)>xi +
∑N
j 6=i∇xj

hi(x)>Bjuj ,

θ1
i := ∇xi

hi(x)>Bi. (12)

The variable θ0
i measures the effect of the autonomous

dynamics of agent i on its cost function and the effects of
inputs of the other agents. The variable θ1

i measures the
effect of the input of agent i on the cost output yi. By
substituting θ0

i and θ1
i in (11), the derivative reads as

ẏi = θ0
i + θ1

i ui = [1, u>i ]θi, (13)

Note that θ1
i is proportional to the right-hand side in (9).

To estimate the local θ0
i and θ1

i , we use a time-varying
parameter estimation approach such as the one proposed
in [Guay and Dochain [2017]]. Let us provide a basic

intuition. Let ŷi and θ̂i be estimations of the output yi
and the variable θi respectively and let ei = yi − ŷi be
the estimation error. Then, the estimator model of (13)
for agent i is given by

˙̂yi = [1, u>i ]θ̂i +Kiei + c>i
˙̂
θi, (14)

where Ki is a free design parameter. Note that the first two
terms on the right-hand side resemble high gain observer
schemes. As the structure of the problem does not allow
the use of high gain observers, it is necessary to introduce
some other dynamics into the estimation. This is the
primary role of the third term in (14). Therefore, the
dynamics of ci(t) are choosen as

ċ>i = −Kic
>
i + [1, u>i ]. (15)

Let us introduce an auxiliary variable ηi, with dynamics
η̇i = −Kiηi − c>i θ̇, and its estimate η̂i, with dynamics

˙̂ηi = −Kiη̂i. (16)

It is also necessary to define a symmetric, positive definite
scaling matrix variable Σi ∈ Rmi+1×mi+1 with dynamics

Σ̇i = cic
>
i − kT

i Σi + σiI Σi(0) = α1
i , (17)

where k>i , σi and αi1 are free design parameters. The third
term is added so that the matrix is always invertible.

Equations (14)-(17) form the parameter update law pre-
sented in [Adetola and Guay [2008]]:

˙̂
θi = ΠΘi

(
θ̂i,Σ

−1
i (ci(ei − η̂i)− σiθ̂i)

)
, (18)

where ΠΘi
(θ̂, v) denotes the projection of the vector v onto

the tangent cone of the set Θi at θ̂, as defined by Equation
2.14 in [Nagurney and Zhang [2012]]. This implies that if

the starting value θ̂i(0) is in Θi, so will θ̂i(t) for all t.

We are finally ready to propose an integral decentralized
Nash equilibrium seeking control law of the form

∀i ∈ I : ui = ûi + di(t), ˙̂ui = −τ−1
i θ̂1

i , (19)

together with Equations (14)–(18). In the collective vector
form, Equation (19) read as

u = û+ d(t), ˙̂u = −τ−1θ̂1 (20)

As in [Guay and Dochain [2017]], for the parameter es-
timation scheme to converge, a persistency of excitation
(PE) assumption for every agent is introduced.

Assumption 2 (Persistence of excitation)
For every i ∈ I, there exist constants α2

i and Ti such that

∫ t+Ti

t

ci(τ)ci(τ)>dτ ≥ α2
i I, ∀t > 0, (21)

where ci(τ) is the solution to (15). 2

We conclude the section with the main theoretical result
of the paper, namely, the convergence of the closed-loop
dynamics to a Nash equilibrium of the game.

Theorem 2. Let the S. A. and Assumptions 1, 2 hold and
let (x(t),u(t)) be the closed-loop solution to the dynamics
(1) with control law in (14) – (18), (19). Let π be the
steady-state mapping in (2) and let D be the largest
amplitude of the perturbation signals {di(t)}i∈I . Then,
there exist gains (Ki, k

T
i , σi)i∈I and τ∗ ≤ mini∈I τi such

that (x(t),u(t)) converges towards the O(D2) neighbor-
hood of some (x∗,u∗) = (π(u∗),u∗), where u∗ is a Nash
equilibrium of the game in (4). 2

4. SIMULATION EXAMPLE

Consider a three agent system with dynamics:

ẋi = −xi + ui, for i ∈ {1, 2, 3}. (22)

The cost functions of agents are given by

y1 = 1.5(x1 − 1)2 + 1.5x1x2 + x1x3

y2 = −2x2x1 + 1.5(x2 − 2)2 + x2x3

y3 = −2.5x3x1 − x3x2 + 1.5(x3 − 3)2. (23)

Two types of controllers were simulated to have a compar-
ison; the limited information controller proposed by this
paper and the controller from [Frihauf et al. [2011]] with
additional low-pass and high-pass filters as in [Krstić and
Wang [2000]] in order to improve the performance. The
latter can be described by the following equations

η̇i = −ωihηi + ωihyi,

ξ̇i = −ωilξi + ωil(yi − ηi)Ai sin(ωit),

˙̂ui = −kiAiξi, ui = ûi +Ai sin(ωit). (24)

For our controller, the following parameters were chosen:
σ1 = σ2 = σ3 = 10−6, K1 = K2 = K3 = 50, k1

T =
k2
T = k3

T = 50, α1
I = α2

I = α3
I = 0.1, τ1 = 5, τ2

I = 10,
τ3
I = 15, d1(t) = 1

2 sin (40t), d2(t) = 1
2 sin (50t) and d3(t) =

1
2 sin (60t). Initial states of x, û, c, θ and η were set to

zero. The parameters K, kT and τI were initially chosen
large enough to ensure stability. Then τI was decreased
to speed up the convergence. Further decreases in τI were
making the states oscillate; further decreasing of K and
kT did not improve the performance of the algorithm. For
the Frihauf et al., the following parameters were chosen:
ω1
h = 180, ω2

h = 200, ω3
h = 220, ω1

l = 45, ω2
l = 50, ω3

l = 55,
ω1 = 90, ω2 = 100, ω3 = 110, k1 = k2 = k3 = 0.5
and A1 = A2 = A3 = 5. Firstly, we chose ω1, ω2

and ω3 such that highest convergence rate for a fixed Ai
was observed. Higher perturbation frequencies facilitate
faster learning of the gradient, but also higher frequencies
get damped out. At the chosen frequencies, best trade-
off was observed. Next, the amplitude was increased to
speed up the convergence. After Ai = 5, non-significant
increase in performance was observed. The results of the
numerical simulations can be seen in Figures 1 and 2.
While the convergence speed of both algorithms is similar,
the frequency and amplitude of the sinusoidal perturbation
signals are much lower with our I-NESC law.
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Fig. 1. State trajectories of the three agents under I-NESC
(solod blue) and [Frihauf et al. [2011]] (doted red)

Fig. 2. Input of the first agent under I-NESC (solid blue)
and [Frihauf et al. [2011]] (doted red)

5. CONCLUSION

Nash equilibrium problems can be solved efficiently via
extremum seeking if the agents belong to a certain class
of linear dynamics with strongly monotone and Lipschitz
continuous game mapping.

Appendix A. PROOF OF THEOREM 1

Stability of equilibrium points πi(ui) for every agent i ∈ I
can be characterised by the following Lyapunov function:

Vi(xi, ui) =
β

2
(xi −Biui)>(xi −Biui), (A.1)

where β > 0. The derivative of (A.1) is equal to

V̇i(xi, ui) = −β‖xi − πi(ui)‖2 − β(xi − πi(ui))>Bu̇i.
(A.2)

For very slow changes of the input ui, we expect the
subsystems will converge to a small neighborhood of
equilibrium points πi(ui). We consider the controller in
(10). Its goal is to estimate the Nash equilibrium input u∗

and to preserve the stability of the subsystems. Therefore,
we construct the following Lyapunov function candidate:

W (x,u) := T (u) + V (x,u) =
1

2
τ−1
minũ

>τ ũ+

N∑
i=1

Vi(xi, ui),

(A.3)

where ũ = u − u∗ and τmin = min{τ1, . . . , τN}. Now,
we bound the derivative of T . By adding and subtracting
F (u) to (10), u̇ reads as

u̇ = −τ−1F (u)− τ−1(B>Fx(x)− F (u)). (A.4)

From (A.3) and (A.4), we have

Ṫ (x,u) = −τ−1
minũ

>F (u)− τ−1
minũ

>(BFx(x)− F (u)).
(A.5)

Considering F (u) is strongly monotone and we have
F (u∗) = 0, since u∗ ∈ zer(F ), (7) reads as

F (u)>(u− u∗) = F (u)>ũ ≥ µ‖u− u∗‖2. (A.6)

To bound the second term in (A.5), we use the identity:

∇ui
hi(πi(ui), π−i(u−i))

> = ∇xi
hi(πi(ui), π−i(u−i))

>Bi.
(A.7)

By using the relations (6), (8) and (A.7), it follows that:

B>Fx(π(u)) = F (u). (A.8)

By exploiting (A.6) and (A.8), from (A.5) we have

Ṫ ≤ −µτ−1
min‖u− u

∗‖2

− τ−1
minũ

>(B>Fx(x)−B>Fx(π(u))). (A.9)

Since all of the functions are Lipschitz continuous, the
right-hand side in (A.9) can be upper bounded as follows:

Ṫ ≤ −µτ−1
min‖ũ‖

2 + Lτ−1
min‖ũ‖‖x− π(u)‖, (A.10)

where L > 0 is the Lipschitz constant of the mapping
B> ◦Fx. Now, we turn our attention to the full Lyapunov
function candidate W . The derivative is bounded as

Ẇ (x,u) ≤ −β‖x− π(u)‖2 − µτ−1
min‖ũ‖

2

+ Lτ−1
min‖ũ‖‖x− π(u)‖ − β(x− π(u))>Bu̇. (A.11)

To complete the proof, we bound the derivative of V
caused by the change of inputs:

−β(x− π(u))>Bu̇ ≤ β‖B‖‖u̇‖‖x− π(u)‖. (A.12)

By using (A.4), the norm of the derivative is bounded:

‖u̇‖ ≤ τ−1
min‖F (u)‖+ τ−1

min‖(B
>Fx(x)− F (u))‖. (A.13)

Again, since all of the functions are Lipschitz continu-
ous, the right-hand side of the previous equation can be
bounded as follows

‖u̇‖ ≤ LFτ
−1
min‖ũ‖+ Lτ−1

min‖x− π(u)‖, (A.14)

where LF > 0 is the Lipschitz constant of F . By using the
bounds (A.12) and(A.14), Ẇ can be bounded as follows:

Ẇ (x,u) ≤ −
[

‖ũ‖
‖x− π(u)‖

]>
M

[
‖ũ‖

‖x− π(u)‖

]
(A.15)

where

M =

 β − Lβ‖B‖τ−1
min −1

2
(L+ β‖B‖LF)τ−1

min

−1

2
(L+ β‖B‖LF)τ−1

min µτ−1
min

 .
(A.16)

Thus, if τmin ≥ (L+β‖B‖LF)2+4Lβ‖B‖
4βµ , then the matrix M

in (A.16) is positive definite, which in turn implies that Ẇ
is negative definite, which concludes the proof. �
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Appendix B. PROOF OF THEOREM 2

The proof is similar to the full-information case proof,
but unlike the full-information case, our inputs use the
estimation of the θi variables. Let us consider a Lyapunov
function candidate of the form L = W + V + T , where

W (η̃, θ̃) =
∑N
i=1

(
1
2 η̃
>
i η̃i + 1

2 θ̃
>
i Σiθ̃i

)
, (B.1)

V (x, û) =
∑N
i=1 Vi(xi, ûi), (B.2)

T (û) =
1

2
τ−1
min(û− u∗)>τ (u− u∗) =

1

2
τ−1
minũ

>τ ũ. (B.3)

Therefore, our candidate consists of a parameter estima-
tion term (W ), a local state-input Lyapnuov term (V ) and
the Nash equilibrium estimation error term (T ).

Parameter estimation term: We bound the time deriva-
tive of the W function similarly to [Guay and Dochain
[2017]] and [Guay et al. [2018]] with the only difference that
we let each agent choose their own parameters (σi,Ki, k

T
i ).

The Lyapunov derivative reads as follows:

Ẇ (η̃, θ̃) ≤ −ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2, (B.4)

where ka := mini

(
Ki − 1

2 −
k1ζi

2

)
, kb := mini

(
kT ′i γ1i

2

)
,

kc := maxi

(
1

2k1
+ γ2i

2k2

)
and σ := maxi σi.

Local state-input Lyapunov term: The derivative of the
Lyapunov term Vi(xi, ui) in (B.2) is

V̇i(xi, ui) =− β‖xi − πi(ûi)‖2 + β(xi − πi(ûi))>Bidi(t)
− β(xi − πi(ûi))>B ˙̂ui. (B.5)

The first addend is equal to the complete derivative of
the Lyapunov function in the case of constant inputs, the
amplitude of the second component is proportional to the
amplitude of the perturbations and the amplitude of the
third component is equal to the amplitude of the derivative
of the input ui. To bound the third component, we need to
bound ˙̂ui, hence ˙̂u, which reads as ˙̂u = −τ−1(B>Fx(x) +

θ̃
1
). By using the same argument as in (A.14), it follows

˙̂u ≤ LFτ
−1
min‖ũ‖+ Lτ−1

min‖x− π(û)‖+ τ−1
min‖θ̃

1
‖. (B.6)

By using the previous equation, it is possible to bound the
second addend in (B.5):

β(x− π(u))>B ˙̂u ≤ LFβτ
−1
min‖B‖‖ũ‖‖x− π(û)‖

+ Lβτ−1
min‖B‖‖x− π(û)‖2 + βτ−1

min‖B‖‖θ̃
1
‖‖x− π(û)‖.

Therefore, the derivative of V can be bounded as

V̇ (x,u) ≤ −β‖x− π(û)‖2 + LFβτ
−1
min‖B‖‖ũ‖‖x− π(û)‖

+ Lβτ−1
min‖B‖‖x− π(û)‖2 + βτ−1

min‖B‖‖θ̃
1
‖‖x− π(û)‖

− β(x− π(û))>Bd(t). (B.7)

The last term can be bounded by using the Cauchy—
Bunyakovsky—Schwarz inequality and the inequality ‖x‖‖y‖
≤ 1

2k‖x‖
2 + k

2‖y‖
2 to conclude the desired bound:

V̇ ≤−
(
β − Lβ‖B‖

τmin
− β‖B‖

2τmink3
− β‖B‖

2k4

)
‖x− π(û)‖2

+ LFβτ
−1
min‖B‖‖ũ‖‖x− π(û)‖+

1

2
βk3τ

−1
min‖B‖‖θ̃

1
‖2

+
1

2
βk4‖B‖‖d(t)‖2. (B.8)

Nash equilibrium estimation error term: The parameter
estimation also has an influence on the Nash equilibrium
estimation error. The derivative of (B.3) is equal to

Ṫ (x, û) = −τ−1ũ(B>Fx(x) + θ̃
1

i ). (B.9)

By the same method as in (A.10), (B.8), it follows that

Ṫ (û) ≤− µτ−1
min‖ũ‖

2 + Lτ−1
min‖ũ‖‖x− π(û)‖

+
1

2τmink5
‖ũ‖2 +

k5

2τmin
‖θ̃

1
‖2. (B.10)

The full Lyapunov candidate: With the bounds (B.4),
(B.8) and (B.10), the derivative of the full Lyapunov
candidate function is bounded as follows:

L̇ ≤− ka‖η̃‖2 − kb‖θ̃
0
‖2 −

(
µτ−1

min −
1

2τmink5

)
‖ũ‖2

−
(
β − Lβ‖B‖

τmin
− β‖B‖

2τmink3
− β‖B‖

2k4

)
‖x− π(û)‖2

−
(
kb −

k5

2τmin
− β‖B‖k3

2τmin

)
‖θ̃

1
‖2 + kc‖θ̇‖2 +

σ

2
‖θ‖2

+
LFβ‖B‖+ L

τmin
‖ũ‖‖x− π(û)‖+

β‖B‖k4

2
‖d(t)‖2.

(B.11)

We are left with determining bounds on ‖θ‖ and ‖θ̇‖. Since
all of the considered functions (and their composition) in
(1), (12) and (20) are Lipschitz continuous, it follows

‖θ‖2 ≤ L1‖x− π(û)‖2 + L2‖ũ‖2 (B.12)

‖θ̇‖2 ≤ L3‖x− π(û)‖2 + L4‖ũ‖2, (B.13)

for some L1, L2, L3, L4 > 0. Substituting (B.12) and
(B.13) into (B.11), we obtain

L̇ ≤ −
(

µ

τmin
− 1

2τmink5
− L2σ

2
− kcL4

)
‖ũ‖2 −

(
β − L1σ

2

− Lβ‖B‖
τmin

− β‖B‖
2τmink3

− β‖B‖
2k4

− kcL3

)
‖x− π(û)‖2

−
(
kb −

k5

2τmin
− β‖B‖k3

2τmin

)
‖θ̃

1
‖2 − ka‖η̃‖2 − kb‖θ̃

0
‖2

+
LFβ‖B‖+ L

τmin
‖ũ‖‖x− π(û)‖+

β‖B‖k4

2
‖d(t)‖2.

(B.14)

Now we prove that there exist parameters K, kT and
τmin such that the RHS in (B.14), apart from the term
with ‖d(t)‖2, is negative definite. The proof goes by the
same lines as in [Guay and Dochain [2017]]. Consider the
following reformulation of (B.14):

L̇ ≤− ka‖η̃‖2 − kb‖θ̃
0
‖2 −

(
−L2σ

2
− kcL4

)
‖ũ‖2

−
(
−β‖B‖

2k4
− L1σ

2
− kcL3

)
‖x− π(û)‖2

−
(
kb −

k5

2τmin
− β‖B‖k3

2τmin

)
‖θ̃

1
‖2 +

β‖B‖k4

2
‖d(t)‖2

−
[

‖ũ‖
‖x− π(u)‖

]>
M

[
‖ũ‖

‖x− π(u)‖

]
, (B.15)

where
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M =

 β − Lβ‖B‖
τmin

− β‖B‖
2τmink3

−L+ β‖B‖LF

2τmin

−L+ β‖B‖LF

2τmin

2µ− 1/k5

2τmin

 .
(B.16)

The parameter k3 can be chosen arbitrarily, while k5 has
to be chosen such that lower diagonal element in M is
positive, i.e. 2µ − 1/k5 > 0. Also, in order for M to be
positive definite, the following condition must be satisfied

v1(L, β‖B‖, LF, k3, k5, β, µ) =

(L+ β‖B‖LF)2 + 2Lβ‖B‖+ β‖B‖/k3

2β(2µ− 1/k5)
≤ τmin. (B.17)

From Equation (B.15), it can be also concluded that

τmin ≥
Lk3 + k5

kb
= v2(L, k3, k5, kb). (B.18)

Therefore, τmin ≥ max(v1, v2). Let λ = σmin(M). The
inequality (B.15) can be reformulated as

L̇ ≤− ka‖η̃‖2 − kb‖θ̃
0
‖2 −

(
λ− L2σ

2
− kcL4

)
‖ũ‖2

−
(
λ− β‖B‖

2k4
− L1σ

2
− kcL3

)
‖x− π(û)‖2

−
(
kb −

k5

2τmin
− β‖B‖k3

2τmin

)
‖θ̃

1
‖2 +

β‖B‖k4

2
‖d(t)‖2.

The parameters σ, kc must be chosen small enough, while
k4 must be large enough such that the following equations

hold true: 0 < λ− L2σ
2 −kcL4, 0 < λ− β‖B‖

2k4
− L1σ

2 −kcL3.
The parameter σ is a free design parameter; the parameter
kc can be made arbitrarily small by increasing the gains K
and kT (or to be more precise Ki and kT

i , see [Guay and
Dochain [2017]] for more details). The parameter k4 can
be arbitrarily chosen. Therefore, it is possible to choose
the controller parameters σ, kT and K such that all of the
constants that multiply the squares of the norms in (B.15)
(except for d(t)) are positive.
Next, we consider the Lyapunov functions of the subsys-
tems in (B.2), the bounds on matrices Σi and the quadratic
elements of the Lyapunov function candidate L. Let D
be the largest amplitude of all the perturbation signals
di(t). Then it can be concluded that there exists a positive

constant αL such that L̇ ≤ −αLL + β‖B‖k4D2

2 . With

z =
(
η̃, θ̃,x, ũ

)
∈ RN×Rm+N×Rn×Rm, let us define the

set Ωγ = {z | L(z) ≤ γ}. We choose γ such that z ∈ Ωγ ⇒
θ̂ ∈ Θ1 × Θ2 × · · · × ΘN . It follows that the trajectories

η̃, θ̃,x, ũ enter the set Ωγ0 =
{
z | L(z) ≤ β‖B‖k4D2

2αL

}
.

Thus, for D chosen such that Ωγ0 ⊂ Ωγ , the set Ωγ0 , which
is contained in a ball containing the point (0, 0,x∗, 0) with
radius of order O

(
D2
)
, is exponentially stable for the

closed-loop system. �

REFERENCES

Adetola, V. and Guay, M. (2008). Finite-time parameter
estimation in adaptive control of nonlinear systems.
IEEE TAC, 53(3).

Bauschke, H.H., Combettes, P.L., et al. (2011). Convex
analysis and monotone operator theory in Hilbert spaces,
volume 408. Springer, 2 edition.

Belgioioso, G. and Grammatico, S. (2017). Semi-
decentralized Nash equilibrium seeking in aggregative
games with separable coupling constraints and non-
differentiable cost functions. IEEE CSL, 1(2).

Bianchi, M. and Grammatico, S. (2019). A continuous-
time distributed generalized Nash equilibrium seeking
algorithm over networks for double-integrator agents.
ECC 2020 arXiv:1910.11608.

De Persis, C. and Grammatico, S. (2019). Distributed av-
eraging integral Nash equilibrium seeking on networks.
Automatica, 110.
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