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Abstract: A computational method is proposed for solving a structured quadratic optimal
control problem subject to linear discrete-time dynamics arising from a directed tree structured
interconnection of heterogeneous sub-systems. The problem is first formulated as a quadratic
program with structure along three dimensions of the decision space. A nested algorithm based
on block Jacobi iterations is proposed for the linear system of equations obtained from the
corresponding first-order optimality conditions. It is shown that the per iteration computational
burden scales favorably with increasing problem size in each dimension. The computations at
each iteration are amenable to distributed implementation on a network of parallel processors
mirroring the tree graph structure of the problem. Numerical experiments, based on a model data
for an automated irrigation network, are used to demonstrate aspects of the approach, including
the impact of early termination of the inner iterations in agreement with corresponding analysis.

Keywords: Linear Quadratic (LQ) control, tree graph, structured computations

NOTATIONS

Throughout this document, R := (−∞,+∞) is used to
denote the set of real numbers and N := {1, 2, . . .} is
the set of natural numbers. Rn denotes an n-dimensional
real vector and Rp×q denotes a real matrix with p rows
and q columns. A\{b} denotes all elements of the set A
except element b. Iq is the identity matrix of size q×q and
0p×q denotes a matrix of zeros of size p × q. A′ denotes
the transpose of a matrix. A � 0 means the symmetric
matrix A = A′ ∈ Rn×n is positive definite (i.e., there
exists c > 0 such that x′Ax ≥ cx′x for all x ∈ Rn) and
A � 0 means A is a positive semi-definite (i.e., x′Ax ≥ 0
for all x ∈ Rn). “diag(.)”” represents construction of
block diagonal matrix from input arguments and “col(.)”
represents concatenation of input arguments as column
vector. ⊗ represents the Kronecker product.

1. INTRODUCTION

In this paper, computational aspects of solving structured
large-scale finite-horizon linear-quadratic (LQ) optimal
control problems are investigated. Specifically problems
subject to linear discrete-time dynamics arising from the
interconnection of heterogeneous sub-systems in the form
of a directed tree graph. The key features are that (i)
each node has in degree no greater than 2, (ii) the out
degree is 1 for all nodes, except one node with no children,
and (iii) the sub-graph comprised of the branch nodes is
a directed path, where a branch node means a node of
in degree 2 or more. This kind of structure is relevant in
various domains, including water irrigation networks (Li
et al., 2005), supply chains (Perea-López et al., 2003), and
radial power distribution networks (Peng and Low, 2018).
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Fig. 1. Directed information flow in a tree graph network

To help clarify, consider a resource distribution network
consisting of a primary channel and secondary distribu-
tion channels. Suppose that resource flow regulators are
located at the source of and along channels immediately
downstream of every supply point to a secondary channel
or end-user as the case may be. Each of these regulators
is controlled to achieve a specified level of the resource in
the buffer at the supply points immediately downstream,
based on observations of this level and the downstream
flow load. Such a feedback control architecture results in
automatic demand driven release of the resource from the
source; e.g., see (Cantoni et al., 2007) for related work
on irrigation networks. Indeed, the information flow corre-
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sponds to the interaction of sub-systems on a directed tree
graph with the features described previously; see Fig. 1.
The type of LQ optimal control problem considered in this
paper arises, for example, in determining suitable reference
storage levels throughout the controlled network on the
basis of a demand forecast, accounting for the underlying
dynamics of the low-level feedback control system. The di-
rected tree graph structured interconnection of dynamical
sub-systems considered is shown in Fig. 1. Each node is
a sub-system and is labeled with subscript (i, j) with i ∈
K := {1, 2, . . . ,K} ⊂ N and j ∈ Ni := {1, 2, . . . , Ni} ⊂ N,
where K is the total number of sub-systems in the primary
channel and Ni is the total number of sub-systems in the
secondary channel originating from node i of the primary
channel. It can be seen from Fig. 1 that each sub-system
(i, 1) in the primary channel is only directly dependent on
the sub-systems (i+1, 1) and (i, 2), while each sub-system
(i, j) in the secondary channels only depends directly on
the sub-system (i, j+1). The state space dynamics of each
sub-system are

xi,j(t+ 1) = Ai,jxi,j(t) +Bi,jui,j(t)

+ Ei,jxi,j+1(t) + Fi,jxi+1,j(t),
(1)

where xi,j(t) ∈ Rni,j and ui,j(t) ∈ Rmi,j are the state and
input of sub-system (i, j) ∈ K × Ni at time t ∈ T :=
{0, 1, . . . , T} ⊂ N∪{0}, respectively. Initial conditions are
given by xi,j(0) = ξi,j ∈ Rni,j . The model parameters are
Ai,j ∈ Rni,j×ni,j , Bi,j ∈ Rni,j×mi,j , Ei,j ∈ Rni,j×ni,j+1

and Fi,j ∈ Rni,j×ni+1,j . Matrices Fi,j and Ei,j account for
the coupling between the states of adjacent sub-systems
in the primary and secondary channels respectively. Fi,j
are non zero for all i ∈ K\{K}, j = 1 and zero elsewhere
while matrices Ei,j are only zero for j = Ni so that the
boundary value of sub system xi,Ni+1(t) is effectively zero
for all t ∈ T .

The finite-horizon optimal control problem of interest is
the following:

min
x, u

1

2

K∑
i=1

( Ni∑
j=1

((T−1∑
t=0

[
xi,j(t)
ui,j(t)

]′ [
Qi,j 0

0 Ri,j

] [
xi,j(t)
ui,j(t)

]
+ xi,j(T )Pi,jxi,j(T )

))
(2a)

subject to

xi,j(0) = ξi,j for i ∈ K, j ∈ Ni, (2b)

xi,j(t+ 1) = Ai,jxi,j(t) +Bi,jui,j(t)

+ Ei,jxi,j+1(t) + Fi,jxi+1,j(t)

for i ∈ K, j ∈ Ni, t ∈ T \{T},
(2c)

where Ri,j ∈ Rmi,j×mi,j , Qi,j ∈ Rni,j×ni,j and Pi,j ∈
Rni,j×ni,j are symmetric positive definite matrices. The
decision variables u and x consist of components ui,j(t)
for i ∈ K, j ∈ Ni, t ∈ T \{T} and xi,j(t) for i ∈
K, j ∈ Ni, t ∈ T , respectively. It can be seen that the
cost function (2a) is separable across the time horizon
and along the two spatial dimensions indexed by i and j,,
respectively. However, there is coupling between states of
adjacent sub-systems in the constraint (2c), which encodes
the temporal and spatial dynamics of the directed tree
structured interconnection of sub-systems..

The finite horizon LQ optimal control just described is a
structured quadratic program (QP). The solution of this

QP can be computed by solving the linear system of equa-
tions arising from the first-order optimality conditions also
known as Karush-Kuhn-Tucker (KKT) conditions (No-
cedal and Wright, 2000). Due to the special structure of
equality constraint which encodes the dynamics, this linear
system of equations is also structured.

The main contribution of this paper relates to exploiting
structure in the aforementioned KKT conditions, extend-
ing prior work of the authors pertaining to the special
case of a path graph network (i.e., no secondary chan-
nels (Cantoni et al., 2017; Zafar et al., 2019)). Specifically,
an algorithm based on nested block Jacobi iterations is
devised for solving the corresponding linear system of
equations, and thus, the optimal control problem. These
iterations retain structure in all three dimensions of the
problem and yield a favorable scaling of the computational
burden with the number of sub-systems along the primary
channel and secondary channels, and the length of the
time horizon. In particular, for a fixed number of inner
iterations, the per out-iteration computational cost scales
linearly in all three dimensions. The computations of all
iterations are amenable to distributed implementation on
a network of parallel processors mirroring the tree graph
structure of the problem.

The rest of the paper is organized as follows. In Section 2,
the aforementioned structured QP is formulated and the
corresponding KKT conditions are identified. In Section 3,
the nested algorithm based on block Jacobi iteration is
presented. The convergence of these nested Jacobi itera-
tions including error analysis when the inner iterations are
terminated early is considered in Section 4. The proposed
method is applied to determine the set-point references
for an automated irrigation network model. Computation
time results for a single processor implementation are
presented in Section 5. Finally, some concluding remarks
are given in Section 6.

2. PROBLEM FORMULATION

For the sake of simplifying the arguments and notation,
the following assumptions are made:

Assumption 1. The number of pools in each secondary
channel is equal to N1 = N2 = . . . = NK = N and N
represents the common set of secondary channel indexes.

Remark 2. Assumption 1 only aids in the simplification
of notations and clarity of presentation. All subsequent
developments remain valid if Assumption 1 does not hold.
In such case, the size of the block matrices presented in
equation (4) will be different for each index j and the limit
of summation goes to N = maxi(Ni).

Following (Cantoni et al., 2017) and (Zafar et al., 2019),
where cascade (i.e., directed path) interconnections are
studied within an LQ optimal control context, by defining,
ūi,j := col(ui,j(0), . . . , ui,j(T − 1)) ∈ Rmi,jT and x̄i,j :=

col(xi,j(0), . . . , xi,j(T )) ∈ Rni,j(T+1), the problem (2) can
be reformulated as the following temporally stacked QP:

min
x̄i,j ,ūi,j ,
i∈K, j∈N

1

2

K∑
i=1

( N∑
j=1

([
x̄i,j
ūi,j

]′ [
Q̄i,j 0

0 R̄i,j

] [
x̄i,j
ūi,j

]))
(3a)

subject to
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0 = Āi,j x̄i,j + B̄i,j ūi,j + Ēi,j x̄i,j+1

+ F̄i,j x̄i+1,j + H̄i,jξi,j , i ∈ K, j ∈ N ,
(3b)

where

Q̄i,j=

[
IT ⊗Qi,j 0ni,jT×ni,j

0ni,j×ni,jT Pi,j

]
∈ Rni,j(T+1)×ni,j(T+1),

R̄i,j=IT ⊗Ri,j ∈ Rmi,j(T )×mi,j(T ),

H̄i,j=col(Ini,j
0ni,j×ni,j

· · · 0ni,j×ni,j
) ∈ Rni,j(T+1)×ni,j ,

Āi,j=−Ini,j(T+1) +

[
0ni,j×ni,jT 0ni,j×ni,j

IT ⊗Ai,j 0ni,jT×ni,j

]
,

B̄i,j=

[
0ni,j×mi,j(T )

IT ⊗Bi,j

]
, Ēi,j=

[
0ni,j×ni,jT 0ni,j×ni,j

IT ⊗ Ei,j 0ni,jT×ni,j

]
,

F̄i,j=

[
0ni,j×ni,jT 0ni,j×ni,j

IT ⊗ Fi,j 0ni,jT×ni,j

]
,

for i ∈ K, j ∈ N . Āi,j ∈ Rni,j(T+1)×ni,j(T+1) and

B̄i,j ∈ Rni,j(T+1)×mi,j(T ). F̄i,j ∈ Rni,j(T+1)×ni+1,j(T+1)

and F̄i,j = 0 for all {(i, j)| i = K or j 6= 1}. Ēi,j ∈
Rni,j(T+1)×ni,j+1(T+1) and Ēi,Ni

= 0 (so that effectively
x̄i,Ni+1

= 0). Notice that all matrices in the temporally

stacked QP (3) are block diagonal except matrices Āi,j
which are block bi-diagonal.

Now defining n̂j :=
∑K
i=1 ni,j(T + 1), m̂j :=

∑K
i=1mi,jT ,

ν̂j :=
∑K
i=1 ni,j , ûj := col(ū1,j , . . . , ūK,j) ∈ Rm̂j and

x̂j := col(x̄1,j , . . . , x̄K,j) ∈ Rn̂j , problem (3) can be
reformulated by stacking across the dimension of the
primary channel which results in the following sparse and
structured quadratic program (QP).

min
x̂j ,ûj ,
j∈N

1

2

N∑
j=1

([
x̂j
ûj

]′ [
Q̂j 0

0 R̂j

] [
x̂j
ûj

]))
(4a)

subject to

0 = Âj x̂j + B̂j ûj + Êj x̂j+1 + Ĥj ξ̂j , j ∈ N , (4b)

where

Âj = diag(Ā1,j , .., ĀK,j), j ∈ N\{1},

Â1 =


Ā1,1 F̄1,1

Ā2,1
. . .
. . . F̄K−1,1

ĀK,1

 ∈ Rn̂j×n̂j ,

Q̂j=diag(Q̄1,j , .., Q̄K,j) ∈ Rn̂j×n̂j , R̂j=diag(R̄1,j , .., R̄K,j)

∈ Rm̂j×m̂j , B̂j = diag(B̄1,j , .., B̄K,j) ∈ Rn̂j×m̂j , Êj =

diag(Ē1,j , .., ĒK,j) ∈ Rn̂j×n̂j and Ĥj = diag(H̄1,j , .., H̄K,j)

∈ Rn̂j×ν̂j are all block diagonal matrices with ÊN = 0.

2.1 First Order Optimality Conditions

The KKT conditions for problem (4) are given by

Q̂j x̂j + Â′j p̂j + Ê′j−1p̂j−1 = 0,

R̂′j ûj + B̂′j p̂j = 0,

Âj x̂j + B̂j ûj + Êj x̂j+1 + Ĥjξj = 0,

for j ∈ N . The variables p̂j = col(p̄1,j , . . . , p̄K,j) ∈ Rn̂j are
Lagrange multipliers. Since Q and R are positive definite,
the problem is strictly convex and the KKT conditions

are necessary and sufficient for optimality (Nocedal and
Wright, 2000).

Defining ñ =
∑N
j=1(n̂j), m̃ =

∑N
j=1(m̂j), ν̃ =

∑N
j=1(ν̂j),

x̃=col(x̂1, . . . , x̂N ), ũ=col(û1, . . . , ûN ), p̃=col(p̂1, . . . , p̂N ),
the KKT conditions can be written asQ̃ 0 Ã′

0 R̃ B̃′

Ã B̃ 0

[x̃ũ
p̃

]
=

[
0
0
−rp̃

]
, (5)

where

Ã =


Â1 Ê1

Â2
. . .
. . . ÊN−1

ÂN

 ∈ Rñ×ñ.

and matrices Q̃ = diag(Q̂1, . . . , Q̂N ) ∈ Rñ×ñ, R̃ =

diag(R̂1, . . . , R̂N ) ∈ Rm̃×m̃, B̃ = diag(B̂1, . . . , B̂N ) ∈
Rñ×m̃, H̃ = diag(Ĥ1, . . . , ĤN ) ∈ Rñ×ν̃ , rp̃ = −H̃ξ̃ ∈ Rñ

and ξ̃ = col(ξ̂1, . . . , ξ̂N ) ∈ Rν̃ . It is apparent that the linear
system of equations (5) is very sparse and structured. In
the next section, this structure is exploited to devise an
iterative algorithm based on block Jacobi iterations to
solve the system of equations (5).

3. BLOCK JACOBI ITERATIONS

Defining ṽ := col(x̃, ũ), (5) can be written as[
Z Y ′

Y 0

] [
ṽ
p̃

]
=

[
0
−rp̃

]
, (6)

where Z =

[
Q̃ 0

0 R̃

]
and Y =

[
Ã B̃

]
.

Note that matrix Z is positive definite and hence, that the
inverse is positive definite. Equation (6) can be solved as

(Y Z−1Y ′)p̃ = rp̃, (7)

ṽ = Z−1rṽ,

where rṽ = −Y ′p̃. Since Z � 0 and Y is full row rank,
Y Z−1Y ′ is positive definite. The matrix Z is block diago-
nal with block size independent of N , K and T . Therefore
computation of Z−1 can be carried out efficiently. How-
ever, Y Z−1Y ′ is a block tri-diagonal matrix and solving
(7) is computationally more expensive.

The linear system (7) can be solved by block Jacobi
iterations. First, note that Y Z−1Y ′ has the block tri-
diagonal structure

∆ = Y Z−1Y ′ =


Φ̂1 Ω̂1

Ω̂′1 Φ̂2 Ω̂2

. . .
. . .

. . .

Ω̂′N−2 Φ̂N−1 Ω̂N−1

Ω̂′N−1 Φ̂N

 , (8)

where

Φ̂j = ÂjQ̂
−1
j Â′j + B̂jR̂

−1
j B̂′j + ÊjQ̂

−1
j+1Ê

′
j ∈ Rn̂j×n̂j ,

Ω̂j = ÊjQ̂
−1
j+1Â

′
j+1 ∈ Rn̂j×n̂j ,

for j ∈ N and Q̂N+1 = 0. Let

Ψ = diag(Φ̂1, . . . , Φ̂N ) ∈ Rñj×ñj (9)
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and Ξ := Ψ−∆. The Jacobi iterations for solving (7) are
given by the following:

Ψp̃k+1 = rp̃ + Ξp̃k, (10)

where k is the iteration index (Hackbusch, 2016). Since
∆ � 0, the block diagonal matrix Ψ � 0 (Golub and Van
Loan, 2013, Cor 4.2.2). The convergence of these iterations
to the solution of (7) is considered in Section 4.

3.1 Structure of Matrices

At each Jacobi iteration, the linear system of equations
in (10) needs to be solved. The computational complexity
of each Jacobi iteration depends on the structure of the
matrix Ψ. It can be seen from (9) that Ψ � 0 is block

diagonal. Each diagonal block Φ̂j is also very sparse and

structured. For j ∈ N\{1}, each Âj is block diagonal,

whereby both Φ̂j and Ω̂j are block diagonal. However, Φ̂1

is block tri-diagonal because Â1 is block bi-diagonal. In
summary,

Φ̂j =

Φ̄1,j

. . .

Φ̄K,j

 ∈ Rn̂j×n̂j for j ∈ N\{1}, (11a)

Φ̂1 =


Φ̄1,1 φ1,1

φ′1,1 Φ̄2,1 φ2,1

. . .
. . .

. . .

φ′K−2,1 Φ̄K−1,1φK−1,1

φ′K−1,1 Φ̄K,1

 ∈ Rn̂j×n̂j , (11b)

where

Φ̄i,j = Āi,jQ̄
−1
i,j Ā

′
i,j + B̄i,jR̄

−1
i,j B̄

′
i,j + Ēi,jQ̄

−1
i,j+1Ē

′
i,j

∈ Rni,j(T+1)×ni,j(T+1) ∀ i ∈ K, j ∈ N\{1},
Φ̄i,1 = Āi,1Q̄

−1
i,1 Ā

′
i,1 + B̄i,1R̄

−1
i,1 B̄

′
i,1 + Ēi,1Q̄

−1
i,2 Ē

′
i,1

+ F̄ i,1Q̄
−1
i+1,1F̄

′
i,1 ∈ Rni,1(T+1)×ni,1(T+1) ∀ i ∈ K,

φi,1 = F̄ i,1Q̄
−1
i+1,1Ā

′
i+1,1 ∈ Rni,1(T+1)×ni,1(T+1) i ∈ K\{K},

and Q̄i,N+1 = Q̄K+1,1 = 0.

Remark 3. If the variable stacking were done across the
dimension of the secondary channels first, instead of the
primary channel as in (4), then the structure of every Φ̂j
would be the same as Φ̂1.

The size of each sub-block of Φ̂j scales linearly with T .
Moreover, Φ̄i,j is block tri-diagonal with block-size that
is independent of K, N and T . As such, in solving (10),
for i ∈ K, j ∈ N\{1}, the computation of each block

component p̄k+1
i,j of p̃k+1 decomposes into a small block

tri-diagonal equation Φ̄i,j p̄
k
i,j = r̄ki,j to solve. This can be

achieved by backward and forward recursions (Meurant,
1992), with aggregate complexity that scales linearly in
T , the number of blocks, and cubically with respect to
ni,j , the size of each block. On the other hand, for j = 1,
a block tri-diagonal system of equations with block-size
that depends linearly on T needs to be solved. With a
view to retaining linear in T complexity, it is proposed to
(approximately) solve this system of equations by inner
Jacobi iterations.

Dropping the explicit dependence on the outer iteration
index k, the first block equation of (10) is given by

Algorithm 1 Outer Block Jacobi Iterations

1: Compute Q̂−1
j , R̂−1

j , Φ̂j , Ω̂j for j ∈ N
2: Initialize p̂0

j = 0 for j ∈ N
3: k ← 0; ζ ← ε+ 1
4: while ζ ≥ ε do
5: r̂k1←− Ĥ1ξ1−Ω̂1p̂

k
2

6: for j = 2, . . . , N − 1 do
7: r̂kj←− Ĥjξj−Ω̂j p̂

k
j+1−Ω̂′j−1p̂

k
j−1

8: end for
9: r̂kN←− ĤNξN−Ω̂′N−1p̂

k
N−1

10: Using Algorithm 2 solve

Φ̂1p̂
k+1
1 = r̂k1

11: for j = 2, . . . , N do
12: for i = 1, 2, . . . ,K do
13: Noting that r̂kj = col(r̄k1,j , . . . , r̄

k
K,j)

use Backward-Forward recursions to solve

Φ̄i,j p̄
k+1
i,j = r̄ki,j

14: end for
15: end for
16: k ← k + 1; ζ ← maxj

∥∥p̂kj − p̂k−1
j

∥∥
∞

17: end while

Algorithm 2 Inner Block Jacobi Iterations

1: Initialize p̄0
i,1 = 0 for i ∈ K

2: s← 0; ζ̂ ← ε̂+ 1

3: while ζ̂ ≥ ε̂ and s < Smax do
4: rs1,1 ← r̄k1,1 − φ1,1p̄

s
2,1

5: for i = 2, . . . ,K − 1 do
6: rsi,1 ← r̄ki,1 − φi,1p̄si+1,1 − φ′i−1,1p̄

s
i−1,1

7: end for
8: rsi,1 ← r̄kK,1 − φ′K−1,1p̄

s
K−1,1

9: for i = 1, 2, . . . ,K do
10: Use Backward-Forward recursions to solve

Φ̄i,1p̄
s+1
i,1 = rsi,1

11: end for
12: s← s+ 1; ζ̂ ← maxi

∥∥p̄si,1 − p̄s−1
i,1

∥∥
∞

13: end while

Φ̂1p̂1 = r̂1, (12)

where Φ̂1 is the block tri-diagonal matrix (11b). Let

Υ̂1 = diag(Φ̄1,1, . . . , Φ̄K,1) ∈ Rn̂j×n̂j (13)

and Λ̂1 := Υ̂1 − Φ̂1. Then, at each iteration k of outer
block Jacobi iterations, the inner block Jacobi iterations
for solving (12) are given by the following:

Υ̂1p̂
s+1
1 = r̂1 + Λ̂1p̂

s
1. (14)

This results in a nested algorithm. All steps of the outer
and inner Jacobi iterations are summarized in Algorithm 1
and Algorithm 2, respectively.

Remark 4. The nested block Jacobi iterations can be par-
allelized on a network ofN×K processing agents mirroring
the structure of the given tree graph, but with undirected
information flow as Ψ in (10) is block tri-diagonal. For ex-
ample, the computations in Algorithm 1 can be distributed
on a linear network of N parallel processing agents with
each agent having K parallel computing threads. The
information exchange required between outer iterations of
the while-loop 4-17 is very localized. In lines 5 through 9,
communication between adjacent processors is required.
This amounts to 2(N − 1) exchanges of information per
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iteration. The update in line 16 can be determined via a
forward-backward pass along the cascade to update the
max of

∥∥p̂kj − p̂k−1
j

∥∥
∞, which incurs a further 2(N − 1)

exchanges. Therefore, the overall per-iteration communi-
cation overhead scales linearly with N for a distributed
implementation of outer iterations.

Remark 5. For j ∈ N\{1}, K block tri-diagonal systems
of equations are each solved only once per outer iteration
k. However, for j = 1 these K block tri-diagonal systems of
equations are solved up to Smax times. Therefore, the total
computational time required per outer iteration is upper
bounded by that of agent 1. With a fixed bound on the
number of inner iterations, the per iteration computational
complexity of every outer block Jacobi iteration scales
linearly with N , K and T .

4. NESTED JACOBI ITERATIONS

Let Γ := Ψ−1Ξ denote the iteration matrix of the outer
Jacobi iterations (10). Let p̃∗ denote the exact solution
of (7). This is a fixed-point of the iterations, for which
p̃k → p̃∗ as k →∞ from any initial value if and only if

rad(Γ) < 1, (15)

where rad(·) denotes spectral radius. See (Hackbusch,
2016, Thm 2.16), for example. Since the positive definite
matrix ∆ = Y Z−1Y ′ = Ψ − Ξ is block tri-diagonal, it
follows that (15) holds, as noted in (Zafar et al., 2019,
Theorem 6). Similarly, the inner iterates p̂s1 converge,
as s → ∞, to the solution p̂∗1 of (12) if and only if

rad(Υ̂−1
1 Λ̂1) < 1. Again, this holds because Φ̂1 = Υ̂1 −

Λ̂1 � 0 is also block tri-diagonal.

When the number of inner Jacobi iterations is limited to
Smax > 0, the update at outer iteration k corresponds to

p̃k+1 = Ψ−1(rp̃ + Ξp̃k) + wk (16)

where

wk = diag(Θ1, 0, . . . , 0)(rp̃ + Ξp̃k)

and Θ1 = (
∑Smax

l=0 (Υ̂−1
1 Λ̂1)lΥ̂−1

1 )− Φ̂−1
1 . In particular,

p̃k+1 = (Ψ−1 + diag(Θ1, 0, . . . , 0))(rp̃ + Ξp̃k).

This converges to a fixed point if and only if rad(Γ +
diag(Θ1, 0, . . . , 0)Ξ) < 1, which holds provided Θ1 is suffi-
ciently small because eigenvalues vary continuously (Horn
and Johnson, 2013, Thm D1) and rad(Γ) < 1. It is pos-

sible to make Θ1 arbitrarily small since rad(Υ̂−1
1 Λ̂1) < 1,

whereby
∑Smax

l=0 (Υ̂−1
1 Λ̂1)lΥ̂−1

1 → Φ̂−1
1 as Smax → ∞. The

proximity of the perturbed fixed-point to the solution p̃∗

of (10) can also be made arbitrarily close by increasing
Smax.

In (16), if ‖wk‖∞ ≤ εw for all outer iterations k, then the
`∞-to-`∞ gain from the disturbance wk to the error defined
relative to the unperturbed trajectory of the iterates p̃k

is relevant to nested algorithm performance. This gain is
finite since the corresponding dynamics is bounded-input
bounded-output (BIBO) stable because rad(Ψ−1Ξ) <
1 (Bacciotti, 2019). As such, smaller εw implies a smaller
perturbation from the exact solution.

In the next section, numerical experiments are performed
to illustrate the effect of early termination of inner iter-
ations on the convergence of outer iterations to a preset
tolerance.

5. NUMERICAL RESULTS

In this section, numerical experiments are performed by
applying the Algorithm 1 to solve an optimal control
problem involving model data for an automated irriga-
tion network under so-called distant-downstream control
(Cantoni et al., 2007). The irrigation network consists of
K number of controlled pools in the primary channel and
N number of controller pools in each secondary channel
originating from the pools of primary channel. After tem-
poral discretization, the dynamics of each controlled pool
can be described by a sub-system in the form of (1). For
each sub-system, the control input ui,j(t) is the adjustment
of the water-level reference, while the state variable xi,j(t)
is the deviation of state trajectory from equilibrium. For
each sub-system i ∈ K, j ∈ N , which takes the form (1)
with ni,j = 4, mi,j = 1, the corresponding cost is set such
that Qi,j = I and Ri,j = 1.

The implementation involves a single thread on one pro-
cessor. That is, the possibility of exploiting parallelism in
Algorithm 1 and 2 is not considered. The experiments
are performed by setting K = N and T = K + N and
varying the value of N from 10 to 100, whereby the largest
problem considered has 10.04 million primal variables and
8.04 million dual variables.

Fig. 2 shows the processor time for single thread imple-
mentations of Algorithm 1 with stopping condition set to
ε = 10−9 and Algorithm 2 with stopping condition set to
εin = 10−9 and varying Smax. It shows that the increase in
computational time has a quartic slope. Due to different
number of inner iterations, the total computational time is
different with Smax = 1 being fastest for each of the above
implementations.
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Fig. 2. Comparison of processor time for solving KKT
Equations

Fig. 3 shows the total number of iterations performed
by Algorithm 1 until convergence. The total number of
iterations grow modestly with system size due to increase
in rad(Γ). Also, the total number of outer iterations are
same for different Smax. This is by virtue of the stopping
criteria

∥∥p̂k+1
j − p̂kj

∥∥
∞ < ε, ∀ j ∈ N . It shows that each

component p̂kj of p̃ converges to a stationary point p̂+
j .

Accuracy of the solution is shown in Fig. 4.

Fig. 4 shows the error ‖Ãx̃+B̃ũ+H̃ξ̃‖∞ for the outcome x̃
and ũ of nested Jacobi iterations. For Smax = 1, 3, this er-
ror is large but its modest for Smax = 5, 7. For Smax = 9,
the error is of order 10−5. However, for fixed number of
inner iterations, the error increases with increase in system
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Fig. 3. Total number of iterations of Algorithm 1 for
different inner iterations

size. This is due to the modest increase in the spectral
radius of (Υ̂−1

1 Λ̂1). For Smax = 100, Jacobi iterations
converge to set tolerance εin and the error is of order 10−12.
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Fig. 4. Infinity norm of the error at solution

Fig. 5 shows the maximum of the total number of inner
iterations performed by Algorithm 2 for each iteration of
Algorithm 1. For Smax = 100, it can be seen that the
Algorithm 2 converges to specified tolerance with in few
tens of iterations. However, there is a modest increase in
the total number of iterations performed as the system size
increases.
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Fig. 5. Total number of iterations of Algorithm 2

6. CONCLUSIONS

A nested algorithm based on block Jacobi iterations is de-
vised for solving a class of tree-structured finite horizon op-
timal control problems subject to the linear discrete-time
dynamics. The proposed algorithm exhibits per-iteration
computational cost which scales linearly with the number
of sub-systems N , K and the length of time horizon T . The
computations at each iteration can be distributed across

N ×K parallel processing agents in a network mirroring
the tree structure of the graph. A preliminary conver-
gence analysis of the proposed algorithm is provided. It
is observed numerically that there is a modest growth in
spectral radius of the iteration matrix Γ which results in
increase of the number of iterations required to converge
in the size N = K, T = N +K of problems. Future work
includes a detailed theoretical analysis for convergence
of nested Jacobi iterations subject to early termination
of inner iterations. It also includes the consideration of
inequality constraints on the state and control input vari-
ables and extending the results for a more general class of
tree graphs.
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