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Abstract: In this work, it is proposed a Switched Differential Neural Networks structure (SDNN)
to model the human physiological response in a virtual stimuli scenario. Two physiological
variables are assessed: electrocardiography and electrodermal activity, which provide a reflex
response after stimuli. The proposed approach is focused on the representation of two discrete
primary states, relaxation and stress as the response of the virtual stimuli. A switched dynamic
approach is set, in which the trigger of an stimuli generates a change in the heartbeat rate
as well as in the skin conductivity, constructing the switch between the mentioned states.
The SDNN allows to obtain a model structure whose dynamics corresponds to the rate of
change of the physiological variables, given as result a particular class of uncertain switched
systems. The proposed non-parametric identification in this switched structure is implemented
and experimentally assessed showing appropriate convergence rates in, both, switching regions
and the continuous states.

Keywords: Uncertain dynamic systems, switching systems, non-parametric identification,
virtual reality, physiological signals.

1. INTRODUCTION

The emergent applications of virtual reality systems have
allowed studying multiple aspects of the human-machine
interaction. One of the most studied is the detection of
user emotions through the Autonomic Nervous System
(ANS) responses when the subject is under provoked ex-
ternal stimuli [Picard et al. (2001)]. Here, the term stimuli
refers to any combination of stimulus with visual, audi-
tive, and haptic components. Physiological signals allow
to measure these responses, among the available options,
the electrocardiography (ECG) and electrodermal activity
(EDA) have shown the possibility to identify states like
relaxation, stress, joy, anger, or anxiety. There is a wide
variety of works that deal with the identification of discrete
emotional states showing fair results in areas like multime-
dia systems [Kroupi et al. (2016)], rehabilitation systems
[Koenig et al. (2011)], human-robot interaction [Swangnetr
and Kaber (2013)], and certainly virtual reality [Felnhofer
et al. (2015)]. However, the mathematical modeling of
those scenarios is a hard task since physiological systems
are nonlinear, and highly uncertain; their structure de-
pends on complex interactions, their parameters depend
on the subject conditions and they are, in most of the
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cases, time-varying, or not measurable in real-time [Cobelli
and Carson (2019)].

The aforementioned problem becomes much more chal-
lenging when the response of the human is changing ac-
cording to external stimuli. It is common that when a
system changes between different conditions, this is usually
modeled as a hybrid system, where the stimuli can be seen
as a discrete input, and the changes are time-continuous.
Hybrid Dynamic Systems (HDS) arise whenever one mixes
logical decision-making with a continuous-time process [Ye
et al. (1998)]. The continuous/discrete-time subsystems
are represented as a set of differential/difference equations
whereas the logical/decision-making subsystem (supervi-
sor) can be represented through a set of approaches as in
[Henzinger et al. (1998)], for instance: Petri nets, Fuzzy
logic decision system, static neural networks, and com-
monly by automata [Li et al. (2002)], [Branicky (1998)].
Recently, Dynamic Hybrid Systems have been used to
model physiological systems, particularly linear and non-
linear Switching Systems [Lee and Galiana (2005)], [Huang
et al. (2019)], as an alternative to deal with complexity
behavior [Quinn et al. (2008)]. Nonetheless, the partic-
ular problem is still the modeling of the physiological
behavior due to the high uncertainty and the lack of
mathematical structures to represent it. In this sense, it
is possible to take advantage of the so-called Differential
Neural Networks (DNNs) [Poznyak et al. (2001b)]. The
DNNs provide a nonlinear system identification technique
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to approximate the behavior of a system, obtaining an
adaptive model structure of the uncertain system where
the convergence approximation is guaranteed by means of
Lyapunov techniques.Such method has shown appropriate
results on identifying uncertain system which are difficult
to model. For instance, chemical degradation processes is a
highly uncertain system where the degradation kinetics are
modeled via DNN [Poznyak et al. (2019)]. This allows to
design and implement a control strategy for the regulation
of some chemical agents during the process. Furthermore,
another example is the modeling of distributed param-
eters systems governed by partial differential equations
[Aguilar-Leal et al. (2016)]. In this case the technique is
used along with Finite Element Methods to model the
dynamic behavior of two and three dimensions objects.

In this paper, it is implemented a class of non-parametric
adaptive identifier, a Switching Differential Neural Net-
work Identifier (SDNN) for a class of uncertain HDS
[Garćıa et al. (2009)]. Our work considers ECG, and
EDA as two continuous uncertain switched states between
two discrete states: relaxation and stress. An approach
of ECG dynamic identification, as a switching system,
has been presented by [Oster et al. (2015)]; it is tackled
the case when mathematical models of the continuous-
time subsystem (of HDS) are unknown, and only some
data collections are available. ECG and EDA can be
measured and collected in time. It is also assumed that
the logical/decision-making subsystem is well established
and known, which includes knowing the time when the
stimuli are applied. From this information, a set of DNNs
is adjusted to obtain a representation of each continuous-
time subsystem component. Therefore, the main contri-
bution of this work is the application of the SDNN to
obtain a model structure that captures the dynamics of
the physiological response under input stimuli, which is
an open problem in the literature. Moreover, the obtained
model will provide a continuous-time alternative to the
current static classification schemes, which usually require
several data sets per class during the learning process.
Besides, getting such a continuous model will allow ex-
ploring the possibility of implement control strategies for
the regulation of the physiological condition of a subject
according to multi-modal input stimuli in a wide variety
of multimedia systems.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces basic concepts and the nomenclature
about hybrid (switching) systems as well as the notion
of uncertain switching systems. Next, section 3 states the
Switching Differential Neural Network Identifier (SDNN)
along with stability methods based on Lyapunov theory for
hybrid systems, and for the convergence of the identifier.
The physiological uncertain system including the ECG and
EDA models is presented in section 4, including the ex-
perimental setup for the virtual reality test. The results of
the proposed approach are presented in section 5, showing
the performance of the HDNN for the identification of
the ECG and EDA signals. Last section includes the con-
clusions and future considerations for using the proposed
model on human-in-the-loop control systems.

2. PRELIMINARIES

2.1 Hybrid systems (Switching systems)

Switching systems are continuous-time hybrid systems
where the particular differential equation that governs the
evolution of the state at any given time/instant is deter-
mined by a switching rule/signal [Goedel et al. (2012)].
Let us consider the following switching system consisting
of nonlinear subsystems [Xu and Zhai (2005)]:

ẋ(t) = fi(x, t)
x ∈ R

n, fi : R
n × R → R

n, i ∈ I , {1 . . .M}
(1)

For the system (1) the active subsystem at each instant is
specified by switching sequences. Given x (t0), a switching
sequence is of the form̟ = ((t0, i0) , (t1, i1) , . . . , (tM , iM )),
where: (t0 ≤ t1 ≤ . . . ≤ tM , ik ∈ I), and specifies that sub-
system ik is active in [tk, tk+1). All of them, non zero
sequences. In general, it is also assumed that a hybrid
system has a discontinuous state jump governed by

x (t) := gi,j
(

x
(

t−k
)

, t
)

(2)

when it switches from subsystem ik−1 to ik(x
(

t−k
)

, tk) at
time tk. Each function gi,j (i, jǫI, i 6= j) characterizes the
jump from subsystem i to j. Behavior study of switching
system (1)-(2), usually specifies some infinite time interval
T = [t0,∞) , or finite time interval T = [t0, tf ] in which a
trajectory is generated. Switching sequences are generated
by a switching law defined as in [Xu and Zhai (2005)].

Definition 2.1. Given a time interval T , a switching law S
over T is a mapping S : Rn → ΣT which specifies a non-
zero switching sequence ̟ǫΣT for any initial state x (t0).

Here ΣT ,{switching sequence Σ over T }.

S over a given T is often determined by some rules or
algorithms, which describe how to generate a switching
sequence for a given x (t0) , rather than mathematical
equations. As defined before, a hybrid system without
state jump at switching instants is called switched system,
which can be denoted as the system defined in equation
(1). It will be assumed that for every x (t0) and ΣT , the
hybrid/switched system possesses a unique solution over
T .

2.2 Uncertain Switching Systems

If each i − component of the right hand side of equation
(1) is unknown or uncertain, a Hybrid Differential Neural
Network Identifier (HDNN) [Garćıa et al. (2009)], [Garcia-
Solares et al. (2016)] can be implemented. Such structures
consider the capacity of Differential Neural Networks to
approximate the dynamic behavior of the continuous-time
process (incomplete or partially known). Compared to
Static Neural Networks (NN), Dynamic Neural Networks
as DNN approach permit to avoid problems related to
global extreme search converting the learning process to
an adequate feedback design [Poznyak et al. (2001a)],
[Lewis et al. (1996)]. Thus, each i−component of equation
(1) can be approximated by a set of nonlinear functions
f̄i (x(t), u(t) | Wi(t)) where f̄i ∈ R

n defines the approxi-
mate mapping depending on the time-varying parameters
Wi (t). These parameters should be adjusted by a concrete
adaptation law. That adaptive algorithm is derived by
stability analysis based on Lyapunov theory. According to
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the DNN-approach of [Poznyak et al. (2001a)], a nonlinear
function f̄i(x(t), u(t) | Wi (t)) may be decomposed into two
parts: the former approximates the linear dynamic part by
a Hurwitz fixed matrix Ai ∈ R

n×n and the nonlinear part
is approximated by time-varying parameters Wi (t) with
sigmoid multipliers, that is:

f̄i (x(t), u(t) | Wi(t))
:= Aix(t) +W1i(t)σi (x(t)) +W2i(t)ϕi (x(t)) u(t)

(3)

where: Ai ∈ R
n×n, W(1,2)i(t) ∈ R

n×p,σ (·) ∈ R
p×1,ϕ (·) ∈

R
p×r and u(t) ∈ R

r×1 is an external bounded input but
not a control, i.e. Uadm := {u (t) : ‖u (t)‖ ≤ Υu < ∞}, this
approximation considers the general situation including
such where u(t) ≡ 0. The activation vector-functions σ (·)
and ϕ (·) are usually selected as a function with sigmoid-
type components, i.e.,

σr (x(t)) := ar

(

1 + br exp

(

−

n
∑

s=1

csxs(t)

))−1

ϕs,s (x(t)) := ar,s

(

1 + br,s exp

(

−

n
∑

e=1

cexe(t)

))−1

,

(4)

Activation functions satisfy the following sector conditions

‖σ (x(t))− σ (x′(t))‖
2
Λσ

≤ Lσ ‖x(t)− x′(t)‖
2
Λ′

σ

‖ϕ (x(t))− ϕ (x′(t))‖
2
Λϕ

≤ Lϕ ‖x(t)− x′(t)‖
2
Λ′

ϕ

(5)

and are globally bounded on R
n. In system (3), the con-

stant parametersAi as well as the time-varying parameters
Wi(t) should be properly adjusted to guarantee the state

approximation. For any fixed matrices W1i(t) = Ŵ1i,

W2i(t) = Ŵ2i the dynamics (1) can be represented as:

ẋ(t) = Aix(t)+Ŵ1iσ (x(t))+Ŵ2iϕi (x(t)) u(t)+f̃i(t)+ξ (t)
(6)

where: f̃i(t) := fi (x(t)) − f̄i

(

x(t) | Ŵi

)

is referred to the

modelling error vector-field and the vector ξt represents
the noises and disturbances affecting the state vector. This
approximation remains valid inside each region Zi ⊂ R

n.
In view of the corresponding boundedness, the following
upper bound for the unmodelled dynamics f̃i (t) takes
place:

∥

∥

∥
f̃i(t)

∥

∥

∥

2

Λf

≤ f̃0 ∀i ∈ [1,M ]

f̃0 > 0; Λf > 0, Λf = Λ⊤
f

(7)

3. SWITCHED DIFFERENTIAL NEURAL
NETWORK IDENTIFIER

Without loss of generality, from here on the HDNN will
be denoted as a Switched-DNN. In [Garćıa et al. (2009)] it
is found the general stability proof for Uncertain Hybrid
Systems Identification. Let us introduce the following
Switched-DNN Identifier:

fi(x, x̂, t) := Aix̂(t)+W1i(t)σi (x̂(t))+W2i(t)ϕi (x̂(t))u(t)
(8)

working inside the region Zi ⊂ R
n. Here, the weights

matrices W1i (t) and W2i (t) supply the adaptive behavior
and accurate representation of the uncertain nonlinear

system if they are adjusted by an adequate manner. It
is suggested the following nonlinear weight updating law
derived from the practical stability analysis described in
[Garćıa et al. (2009)]:

Ẇ1i (t) = −αQi
W̃1i (t)− k̃1i2k1iPi∆tσ

⊺

i (x̂(t))

Ẇ2i (t) = −αQi
W̃2i(t)− k̃2iPi∆tu

⊺(t)ϕ⊺

i (x̂(t))
(9)

where: αQi
= 2−1λmin(P

−
1

2

i QiP
−

1

2

i ), Qi, Pi ∈ R
n×n,Qi,

Pi > 0; W̃ji (t) := Wji (t)− Ŵji; k̃ji ∈ R, kji > 0, j = 1, 2
∆ (t) := x̂(t)−x(t) with Pi positive definite solution of the
following set of Riccati algebraic equations:

PiAi +A
⊺

i Pi + PiRiPi + Q̃i = 0

Ri = Ŵ1iΛ1iŴ
T
1i + Λ4i, i = 1, ..,M

Q̃i = LσΛ
−1
1i + LϕΥuΛ

−1
5i +Q

(10)

where Λ1i, Λ4i and Λ5i are positive definite matrices
(Λ1i,Λ4i,Λ5i ∈ R

n×n). To improve the behavior of these

adaptive laws, the matrix Ŵ1i can be provided by one
of the, so-called, training algorithms [Stepanyan and Ho-
vakimyan (2007)]. For detailed concepts, methods, and
proofs on the practical stability of hybrid systems, the
reader is referred to [Xu and Zhai (2005)]. In the next
section, it will be described the setup of the physiologi-
cal switched system, which involves the ECG and EDA
signals. This will be associated with the previously stated
Neural identifier.

4. PHYSIOLOGICAL UNCERTAIN SWITCHED
SYSTEM SET-UP

Currently there are multiple approaches to the identifica-
tion of discrete states of the human (e.g. stress, anxiety,
joy, boredom) through classification techniques using par-
ticular conditions of their physiological signals. There are
two important considerations for the classification of these
states, first the activity or type of stimulus a person is
exposed to, and second their baseline physiological condi-
tion. The first refers to the fact that incorrect states can
be identified due to the execution of physical tasks and not
by the stimulus of interest. For example, in [Katsigiannis
et al. (2019)], there was an incorrect assessment of the
user status using a bicycle simulator due to the levels of
sweating produced during the physical activity of the task.
On the other hand, the baseline conditions of the subject
are important since a normalization is necessary to see
the changes in percentage form. For example Diemer et
al. [Diemer et al. (2016)] recorded an average increase of
15 beats per minute with respect to the baseline state on
test subject when they were exposed to an acrophobia sce-
nario. Therefore, the switching conditions can be extended
depending on the case study, the number of states to be
identified, and the physiological conditions of each subject.

Particularly in this work, two discrete states are consid-
ered to model the switched physiological response under
stimuli: relaxation and stress/anxiety. Such states are ex-
amined by means of two time-continuous states, the elec-
trical heart activity ECG, and the electrodermal activity
EDA. These signals are widely used in emotion assessment
studies, showing accurate results to identify the mentioned
discrete states.

The switch between the discrete states will be determined
by the increment or detriment respecting a threshold
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fixed over the heart rate obtained from the ECG signal.
The good health condition of the subject is assumed in
this study, but it is possible to extend the transition
rule to an abnormality condition, as considered in [Oster
et al. (2015)] where switched Kalman Filters are proposed.
Then, the general physiological uncertain switched system
structure is presented below

Q1 =

[

ẋ1(t)
ẋ2(t)

]

= [ f1(x, t) ] , ωHR ≤ ω∗
HR

Q2 =

[

ẋ1(t)
ẋ2(t)

]

= [ f2(x, t) ] , ωHR > ω∗
HR

(11)

where: Q1 is the discrete state relaxation and Q2 is the
discrete state stress/anxiety. x1(t) is the ECG and x2(t)
is the EDA, ωHR is the current heart rate frequency,
ω∗
HR is the threshold heart rate switching condition. Two

scenarios were considered to implement the SDNN. First,
using artificial signals generated by two mathematical
models from the literature, and second, with real acquired
signals from an experiment using Virtual Reality. The aim
was to assess the behavior of the SDNN in the case of
”ideal” signals (waveform), against the result with real
subject’s signals, usually including noise and artifacts. We
describe the setup for both tests in the following section.

4.1 ECG and EDA Simulations

To generate artificial signals of ECG and EDA, the mathe-
matical models of [McSharry et al. (2003)] and [Amin and
Faghih (2019)] have been considered. Particularly the ECG
signal is modeled using the set of differential equations
proposed by [McSharry et al. (2003)]. These equations
are adapted to a hybrid systems approach and reflects a
quasi periodic movement around an attracting limit cycle
of unit radius in the (x, y) plane, and where each revolution
corresponds to a heartbeat. Subsequently, the human state
changes can be represented as

ζ̇1 = αζ1 − ωjζ2

ζ̇2 = αζ2 + ωjζ1 (12)

ζ̇3 = −
∑

j∈P,Q,R,S,T

aj,1∆θj,1 exp

(

∆θ2j,1

2b2j,1

)

− (ζ3 − ̺0)

where the index j represents the j− th discrete state, α =
1 −

√

ζ21 + ζ22 , θ = arctan2(ζ2, ζ1), ∆θj,i = (θ − θj), and
ω is the angular velocity of the trajectory which defines
the variations in the length of the RR-intervals. Moreover,
̺0 = Asin(2πf2t) with A = 0.15mv which represents the
coupling of the baseline value to the respiratory frequency
f2. In addition, the values of a, b, θj are defined according
to the PQRST points of a normal subject (see [McSharry
et al. (2003)] for details). The principal disadvantage of
this model is that it is oriented to represent the electrical
trace (waveform) without relation to the physiological
conditions of a subject; this is, the system has no variables
associated with stimuli inputs, and only the frequency of
the signal can be modified.

In the case of the EDA, the Skin Conductance (SC)
provides information about different eccrine sweat gland
activities and can be represented by the summation of two
signals, a tonic component (slowly varying) and a pha-
sic component (fast varying) [Amin and Faghih (2019)].

Specifically the phasic component describes changes in
SC, and it can be modeled by the following differential
equations

ξ̇1(t) = −
1

τ1
ξ1(t) +

1

τ1
u(t)

ξ̇2(t) = −
1

τ2
ξ1(t)−

1

τ2
ξ2(t) (13)

where ξ1 is a non-observed state variable (neural states),
τ1, τ2 are SC time constants corresponding to rise and fall
times, ξ2 is the phasic component, and u(t) is the input
stimulation which corresponds to a set of neural impulses
that according to different amplitude and length properties
allow to quantify an emotional state (see [Amin and Faghih
(2019)] for details about the deconvolution process of the
input stimuli). The problem with such EDA model is that
is related to non measurable inputs (the neural system
control) which can not be physically generated without
invasive techniques (invasive electrodes). Here, the models
were used to create a simulation of the proposed system
(11). A timeline of 35 seconds where the HR frequency
of the ECG signal was modified such that changes from
baseline state to a higher frequency that represents a stress
shock. Later this returns to the baseline state. This process
was repeated one more time during the considered interval.
In the case of the EDA a set of stimuli were recreated using
two pulse signals with amplitudes 6 and 7 according to
the configuration described in [Amin and Faghih (2019)].
Both pulses were associated with the time instants were
the ECG signal change the frequency. In this case, the
exact moment of the “switch” between states was known
due to the preprogrammed frequency and pulse signals.

4.2 ECG and EDA Experimental Measurements

The virtual reality experiment was based on a Mood In-
duction Procedure [Serrano et al. (2016)], which is com-
monly used to study the effects of stimuli on emotional
states and cognitive functions. The ECG and EDA activity
signals were recorded using a development board, Bitalino
Revolution Kit. Both signals were sampled at 1 KHz using
Ag/AgCl electrodes. For the ECG signal an Einthoven tri-
angle configuration was used. In the case of the EDA, two
disposal electrodes were placed on the medial phalanges of
the index and middle finger of the right hand. Moreover,
the signals were processed using MATLAB. The ECG
and EDA signals were recorded from a healthy subject to
determine the corresponding relaxed or stress states. The
user signed an informed consent letter. To implement a
virtual environment it was considered the Unity 3D game
engine platform and the Oculus Rift display system which
includes an immersive audio subsystem. The environment
consists on a core scene that depicts a park scenario while
the user remains in a park bench located on a structure
that places it at a height equivalent to 30m (acrophobia
scenario). This kind of Virtual Reality exposure has shown
good results to elicit stress and anxiety on users even
when they report to not have fear of heights [Diemer et al.
(2016)].

The baseline or “relaxed” state considers the user seated
on the bench while observing the three-dimensional envi-
ronment; this was the start position and remained there for
three minutes. Such an environment with their correspond-
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ing colors, sounds, and without movements was considered
as the stimuli number one. The bench begins to rotate
until it generates a free fall of the user within the virtual
environment to provoke a change in the user’s state, this
is also complemented by a prototype movement platform
where the user is sitting, allowing to feel the movements of
rotation before the fall. Therefore, the stimuli number two
is considered as this fall within the scenario which gener-
ates a rapid change in the alert state of the user, increasing
their heart rate frequency as well as their skin conductance
level. Besides, to obtain the time instant where Heart Rate
HR frequency ωHR increments or “switch”, an R-peak
detection algorithm (see [Sadhukhan and Mitra (2012)])
was used to compute HR of the subject. The selected
algorithm posses low computing requirements; however,
more sophisticated algorithms can be used according to
the raw state of the ECG signal (for instance, consider the
well-known Pan & Tompkins algorithm). Figure 1 depicts
the prototype with the subject during the test.

Figure 1. Experimental platform and subject connected to
the Bitalino acquisition board.

5. RESULTS

The proposed SDNN identifier structure is:

f1(x, x̂, t) = A1x(t) +W11(t)σi(x(t))
f2(x, x̂, t) = A2x(t) +W12(t)σi(x(t))

(14)

For the ECG and EDA simulation, the parameters of
the SDNN were selected as A1 = [−1 0; 0 − 2] ∗ 0.1,
P1 = [100 0; 0100] ∗ 10000, A2 = [−1 0; 0 − 2] ∗ 0.1, P2 =
[350 0; 0 350]∗10000. The states of the SDNN were defined
as x1 (ECG signal) and x2 EDA. Figures 2 and 3 show the
comparison between the states x1, x2 and their estimations
x̂1, x̂2 generated by the DNN. The switching between
states is represented by the gray coloured zones in the
Figures. Notice that there is an asymptotic convergence
of the states to the original generated by the models (12),
(13), which is also reflected on the mean quadratic errors
shown in Figures 4 and 5. Last Figures exhibit an error
increase close to the switching zones which eventually
decreases after a short time period (close to 500 ms). A
simplified process to train the SDNN Identifier with the
artificial signals can be seen in Algorithm 1.

For the identification test with the experimental signals,
similar results were achieved. The same parameters for
the SDNN were considered as the identifier was trained
with the simulated signals. The results of identification are

shown in Figures 6 and 7. The convergence of the states
presents even shorter times in the case of artificial signals.
In the case of artifacts in the ECG signal the convergence
was appropriate. However, more signals subject to artifacts
and noise due to physical activity must be analysed to
study the robustness of the strategy. The corresponding
error signals for the experimental tests are presented
in figures 8, 9. Unlike the simulated error signals, the
experimental ones does not exhibit the error increase in
the switching zones, showing an appropiate validation of
the identifier. This validation process of SDDN identifier
is described by Algorithm 2.
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Figure 2. Comparison between the state x1 and its esti-
mation x̂1 for the simulated ECG signal. The gray
coloured zones indicate the switching zones.
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Figure 3. Identification of the state x̂2 and its comparison
with the simulated skin conductance level x2.
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Figure 4. Identification error for x1.

6. CONCLUSION

The suggested SDNN identifier has demonstrated good re-
sponse in the face of variability of the physiological signals.
This is an important feature since each person presents dif-
ferent physiological conditions, including variable baseline
levels (which can be seen as initial conditions), distinct
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Figure 5. Identification error for x2.
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Figure 6. Comparison between recorded ECG x1 and its
estimation x̂1. The initial convergence is achieved in
about 500 ms.
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Figure 7. Identification of the x̂2 signal for the real skin
conductance level.
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Figure 8. Experimental identification error for x1.
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Figure 9. Experimental identification error for x2.

Algorithm 1 DNN Identifier Training

Input: Use models 12, 13.
Output: x̂1, x̂2,∆, and matrix Pi.
1: Initialization : Set Ai, k1i, α, select f1(x, x̂, t)
2: while ∆ > ǫ do
3: Set Pi

4: Execute Identification
5: Compute ωHR

6: if ωHR > ω∗
HR then

7: Switch to f2(x, x̂, t)
8: else
9: Remain with f1(x, x̂, t)

10: end if
11: end while

Algorithm 2 DNN Identifier Validation

Input: Registered physiological signals.
Output: x̂1, x̂2,∆, W1, W2.
12: Initialization : Set Ai, k1i, α, as previous, Pi obtained

in Algorithm 5, and select f1(x, x̂, t).
13: Execute Identification
14: Compute ωHR

15: if ωHR > ω∗
HR then

16: Switch to f2(x, x̂, t)
17: else
18: Remain with f1(x, x̂, t)
19: end if

response times, and even change in the waveforms due to
the measuring instruments and conditions of the experi-
ments. So, the neuroidentifier is a suitable alternative to
the problem of modeling for this class of systems. Despite
the good performance of the identifier, the authors con-
sider improving the study on future research, including
the problem of partial measurements, which represents a
real issue during the biosignal acquisition process. Addi-
tionally, future work includes the identification of multiple
subjects that may require the individual training of the
identifier; this could lead to characterize certain types of
population or the effective/ineffective stimuli used in vir-
tual reality. About the convergence analysis, it was realized
considering the practical stability of identification error for
a class of hybrid systems. As can be seen, this algorithm
was easily implemented for real acquired signals. In this
sense, the adaptive modeling strategy of the continuous
subsystems represents an initial methodology to be used
in the human-in-the-loop control implementation. The pre-
sented technique will allow studying the design of control
strategies to regulate the state of a subject adapting the
stimuli associated with the task in real-time, which is an
open problem in the virtual reality systems.
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